25
Carrier Mobility and Velocity  Mobility - the ease at which a carrier (electron or hole) moves in a semiconductor  Symbol: m n  for electrons and m p  for holes  Drift veloci ty   the speed at which a carrier moves in a crystal when an electric field is present  For electrons: v d  = m n E  For holes: v d  = m p E

Characterization Techniques and Epitaxy

Embed Size (px)

Citation preview

Page 1: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 1/25

Carrier Mobility and Velocity

 Mobility - the ease at which a carrier(electron or hole) moves in asemiconductor

 – Symbol: mn for electrons and mp for holes

 Drift velocity  – the speed at which acarrier moves in a crystal when an electric

field is present – For electrons: vd = mn E

 – For holes: vd = mp E

Page 2: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 2/25

Drift Currents

 E  pn Aq I 

 L

V  E 

 pn Aq L

V  I 

 pnq A

 L

 R

V  I 

o pon

a

o pona

o pon

aa

m m 

m m 

m m 

 

 

 

 

1

Page 3: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 3/25

Four Point Probe

Probe tips must makean Ohmic contact

 – Useful for Si

 – Not most compoundsemiconductors

S when t2ln

Swhen t2

 I 

V t 

 I 

   

   

Page 4: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 4/25

Diffusion

When there are changes in theconcentration of electrons and/or holesalong a piece of semiconductor

 – the Coulombic repulsion of the carriers forcethe carriers to flow towards the region with alower concentration.

Page 5: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 5/25

Diffusion Currents

o pondiff  diff  diff  

o po pdiff  

diff  

onondiff  

diff  

 p Dn Dq J  J  A I 

dx

dpqD pqD J 

 A

 I 

dx

dnqDnqD J 

 A

 I 

 pn

 p

 p

n

n

Page 6: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 6/25

Relationship between Diffusivityand Mobility

q

kT  D

q

kT  D

 p

 p

n

n

Page 7: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 7/25

Mobility vs. Dopant Concentrationin Silicon

http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html#Hall

Page 8: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 8/25

 Van der Pauw

Four equidistant Ohmiccontacts

Contacts are small in

area Current is injected

across the diagonal

 Voltage is measuredacross the otherdiagonal

Top view of Van der Pauw sample

http://www.eeel.nist.gov/812/meas.htm#geom

Page 9: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 9/25

Calculation

Resistance is determined with and without amagnetic field applied perpendicular to thesample.

 F  R Rt 

 R

 B

t  H 

22ln

14,2334,12

24,13

   

  m 

F is a correction factor that takesinto account the geometric shapeof the sample.

Page 10: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 10/25

Hall Measurement

See http://www.eeel.nist.gov/812/hall.html for amore complete explanation

http://www.sp.phy.cam.ac.uk/SPWeb/research/QHE.html

Page 11: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 11/25

Calculation

Measurement of resistance is made while amagnetic field is applied perpendicular to thesurface of the Hall sample. – The force applied causes a build-up of carriers along

the sidewall of the sample The magnitude of this buildup is also a function of the

mobility of the carriers

where A is the cross-sectional area.

 L A

 R R R

 L

 H  H  H   

  m 

Page 12: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 12/25

N vs. P doping

The sign of the Hall voltage, VH, and on

 R 13,24 in the Van der Pauw measurementprovide information on doping.

Page 13: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 13/25

Epitaxial Material Growth

Liquid Phase Epitaxy (LPE)

 Vapor Phase Epitaxy (VPE)

Molecular Beam Epitaxy (MBE) Atomic Layer Deposition (ALD) or Atomic

Layer Epitaxy (ALE)

Metal Organic Chemical Vapor Deposition(MOCVD) or Organometallic Vapor PhaseEpitaxy (OMVPE)

Page 14: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 14/25

MBE

Wafer is moved into the chamber using amagnetically coupled transfer rod

Evaporation and sublimation of source material

under ultralow pressure conditions (10-10 torr) – Shutters in front of evaporation ovens allow vapor to

enter chamber, temperature of oven determinesvapor pressure

Condensation of material on to a heated wafer – Heat allows the atoms to move to appropriate sites to

form a crystal

Page 15: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 15/25

Schematic View

http://web.tiscali.it/decartes/phd_html/III-Vms-mbe.png

http://ssel front eecs umich edu/Projects/proj00630002 jpg

Page 16: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 16/25

http://www.mse.engin.umich.edu/research/facilities/132/photo

http://ssel-front.eecs.umich.edu/Projects/proj00630002.jpg

Page 17: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 17/25

 Advantages

Slow growth rates

In-situ monitoring of growth

Extremely easy to prevent introduction ofimpurities

Page 18: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 18/25

Disadvantages

Slow growth rates

Difficult to evaporate/sublimate somematerials and hard to prevent theevaporation/sublimation of others

Hard to scale up for multiple wafers

Expensive

Page 19: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 19/25

MOCVD

Growths are performed at room pressure or lowpressure (10 mtorr-100 torr)

Wafers may rotate or be placed at a slant to the

direction of gas flow – Inductive heating (RF coil) or conductive heating

Reactants are gases carried by N2 or H2 intochamber

 – If original source was a liquid, the carrier gas isbubbled through it to pick up vapor

 – Flow rates determines ratio of gas at wafer surface

Page 20: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 20/25

Schematic of MOCVD System

http://nsr.mij.mrs.org/1/24/figure1.gif

Page 21: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 21/25

http://www.semiconductor-today.com/news_items/2008/FEB/VEECOe450.jpg

Page 22: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 22/25

 Advantages

Less expensive to operate

 – Growth rates are fast

 – Gas sources are inexpensive

Easy to scale up to multiple wafers

Page 23: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 23/25

Disadvantages

Gas sources pose a potential health andsafety hazard

 – A number are pyrophoric and AsH3 and PH3 

are highly toxic

Difficult to grow hyperabrupt layers

 – Residual gases in chamber

Higher background impurityconcentrations in grown layers

Page 24: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 24/25

Misfit Dislocations

Occur when the difference between thelattice constant of the substrate and theepitaxial layers is larger than the critical

thickness.

http://www.iue.tuwien.ac.at/phd/smirnov/node68.html

Page 25: Characterization Techniques and Epitaxy

8/10/2019 Characterization Techniques and Epitaxy

http://slidepdf.com/reader/full/characterization-techniques-and-epitaxy 25/25

Critical Thickness, tC

whereb is the magnitude of the lattice distortion caused by adislocation (Burger vector)

f is the mismatch between the lattice constants of film

and the substraten is Poisson’s ratio (transverse strain divided by the axial

strain).