79
Chapter 6 Linear Transformations 6.1 Introduction to Linear Transformations 6.2 The Kernel and Range of a Linear Transformation 6.3 Matrices for Linear Transformations 6.4 Transition Matrices and Similarity Elementary Linear Algebra R. Larsen et al. (6 Edition)

Chapter 6 Linear Transformations

  • Upload
    fayola

  • View
    1.638

  • Download
    283

Embed Size (px)

DESCRIPTION

Chapter 6 Linear Transformations. 6.1 Introduction to Linear Transformations 6.2 The Kernel and Range of a Linear Transformation 6.3 Matrices for Linear Transformations 6.4 Transition Matrices and Similarity. Elementary Linear Algebra R. Larsen et al. (6 Edition). - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 6 Linear Transformations

Chapter 6Linear Transformations

6.1 Introduction to Linear Transformations

6.2 The Kernel and Range of a Linear Transformation

6.3 Matrices for Linear Transformations

6.4 Transition Matrices and Similarity

Elementary Linear AlgebraR. Larsen et al. (6 Edition)

Page 2: Chapter 6 Linear Transformations

2/78

6.1 Introduction to Linear Transformations

Function T that maps a vector space V into a vector space W:

spacevector :, ,: mapping WVWVT

V: the domain of T

W: the codomain of T

Elementary Linear Algebra: Section 6.1, pp.361-362

Page 3: Chapter 6 Linear Transformations

3/78

Image of v under T:

If v is in V and w is in W such that

wv )(T

Then w is called the image of v under T .

the range of T: The set of all images of vectors in V.

the preimage of w: The set of all v in V such that T(v)=w.

Elementary Linear Algebra: Section 6.1, p.361

Page 4: Chapter 6 Linear Transformations

4/78

Ex 1: (A function from R2 into R2 )22: RRT

)2,(),( 212121 vvvvvvT

221 ),( Rvv v

(a) Find the image of v=(-1,2). (b) Find the preimage of w=(-1,11)

Sol:

)3 ,3())2(21 ,21()2 ,1()( )2 ,1( )(

TTa

vv

)11 ,1()( )( wvTb)11 ,1()2,(),( 212121 vvvvvvT

11 2 1

21

21

vvvv

4 ,3 21 vv Thus {(3, 4)} is the preimage of w=(-1, 11).Elementary Linear Algebra: Section 6.1, p.362

Page 5: Chapter 6 Linear Transformations

5/78

Linear Transformation (L.T.):

nnsformatiolinear tra to::spacevector :,

WVWVTWV

VTTT vuvuvu , ),()()( (1)

RccTcT ),()( )2( uu

Elementary Linear Algebra: Section 6.1, p.362

Page 6: Chapter 6 Linear Transformations

6/78

Notes:

(1) A linear transformation is said to be operation preserving.

)()()( vuvu TTT

Addition in V

Addition in W

)()( uu cTcT

Scalar multiplication

in V

Scalar multiplication

in W

(2) A linear transformation from a vector space into itself is called a linear operator.

VVT :

Elementary Linear Algebra: Section 6.1, p.363

Page 7: Chapter 6 Linear Transformations

7/78

Ex 2: (Verifying a linear transformation T from R2 into R2)

Pf:

)2,(),( 212121 vvvvvvT

number realany : ,in vector : ),( ),,( 22121 cRvvuu vu

),(),(),( :addition(1)Vector

22112121 vuvuvvuu vu

)()()2,()2,(

))2()2(),()(())(2)(),()((

),()(

21212121

21212121

22112211

2211

vu

vu

TTvvvvuuuu

vvuuvvuuvuvuvuvu

vuvuTT

Elementary Linear Algebra: Section 6.1, p.363

Page 8: Chapter 6 Linear Transformations

8/78

),(),( tionmultiplicaScalar )2(

2121 cucuuucc u

)()2,(

)2,(),()(

2121

212121

u

u

cTuuuuc

cucucucucucuTcT

Therefore, T is a linear transformation.

Elementary Linear Algebra: Section 6.1, p.363

Page 9: Chapter 6 Linear Transformations

9/78

Ex 3: (Functions that are not linear transformations)xxfa sin)()(

2)()( xxfb

1)()( xxfc

)sin()sin()sin( 2121 xxxx )sin()sin()sin( 3232

22

21

221 )( xxxx

222 21)21(

1)( 2121 xxxxf2)1()1()()( 212121 xxxxxfxf

)()()( 2121 xfxfxxf

nnsformatiolinear tra not is sin)( xxf

nnsformatio tra linearnot is )( 2xxf

nnsformatiolinear tra not is 1)( xxf

Elementary Linear Algebra: Section 6.1, p.363

Page 10: Chapter 6 Linear Transformations

10/78

Notes: Two uses of the term “linear”.

(1) is called a linear function because its graph is a line.

1)( xxf

(2) is not a linear transformation from a vector space R into R because it preserves neither vector addition nor scalar multiplication.

1)( xxf

Elementary Linear Algebra: Section 6.1, p.364

Page 11: Chapter 6 Linear Transformations

11/78

Zero transformation:

VWVT vu, ,:

VT vv ,0)( Identity transformation:

VVT : VT vvv ,)( Thm 6.1: (Properties of linear transformations)

WVT :

00 )( (1) T)()( (2) vv TT

)()()( (3) vuvu TTT

)()()( )()(Then

If (4)

2211

2211

2211

nn

nn

nn

vTcvTcvTcvcvcvcTT

vcvcvc

v

v

Elementary Linear Algebra: Section 6.1, p.365

Page 12: Chapter 6 Linear Transformations

12/78

Ex 4: (Linear transformations and bases)

Let be a linear transformation such that 33: RRT )4,1,2()0,0,1( T)2,5,1()0,1,0( T

)1,3,0()1,0,0( T

Sol:)1,0,0(2)0,1,0(3)0,0,1(2)2,3,2(

)0,7,7( )1,3,0(2)2,5,1(3)4,1,2(2 )1,0,0(2)0,1,0(3)0,0,1(2)2,3,2(

TTTTT (T is a L.T.)

Find T(2, 3, -2).

Elementary Linear Algebra: Section 6.1, p.365

Page 13: Chapter 6 Linear Transformations

13/78

Ex 5: (A linear transformation defined by a matrix)

The function is defined as32: RRT

2

1

211203

)( vvAT vv

32 into formn nsformatiolinear tra a is that Show (b) )1,2( where, )( Find (a)

RRTT vv

Sol: )1,2()( va

036

12

211203

)( vv AT

)0,3,6()1,2( T

vector2R vector 3R

)()()()( )( vuvuvuvu TTAAATb

)()()()( uuuu cTAccAcT

(vector addition)

(scalar multiplication)

Elementary Linear Algebra: Section 6.1, p.366

Page 14: Chapter 6 Linear Transformations

14/78

Thm 6.2: (The linear transformation given by a matrix)Let A be an mn matrix. The function T defined by

vv AT )(is a linear transformation from Rn into Rm.

Note:

nmnmm

nn

nn

nmnmm

n

n

vavava

vavavavavava

v

vv

aaa

aaaaaa

A

2211

2222121

1212111

2

1

21

22221

11211

v

vv AT )(mn RRT :

vectornR vector mR

Elementary Linear Algebra: Section 6.1, p.367

Page 15: Chapter 6 Linear Transformations

15/78

Show that the L.T. given by the matrix

has the property that it rotates every vector in R2

counterclockwise about the origin through the angle .

Ex 7: (Rotation in the plane)22: RRT

cossinsincosA

Sol:)sin,cos(),( rryxv (polar coordinates)

r : the length of v : the angle from the positiv

e x-axis counterclockwise to the vector v

Elementary Linear Algebra: Section 6.1, p.368

Page 16: Chapter 6 Linear Transformations

16/78

)sin()cos(

sincoscossinsinsincoscos

sincos

cossinsincos

cossinsincos)(

rr

rrrr

rr

yxAT vv

r : the length of T(v) + : the angle from the positive x-axis counterclockwise t

o the vector T(v)Thus, T(v) is the vector that results from rotating the vector v counterclockwise through the angle .

Elementary Linear Algebra: Section 6.1, p.368

Page 17: Chapter 6 Linear Transformations

17/78

is called a projection in R3.

Ex 8: (A projection in R3)

The linear transformation is given by33: RRT

000010001

A

Elementary Linear Algebra: Section 6.1, p.369

Page 18: Chapter 6 Linear Transformations

18/78

Show that T is a linear transformation.

Ex 9: (A linear transformation from Mmn into Mn m )

):( )( mnnmT MMTAAT

Sol:

nmMBA ,

)()()()( BTATBABABAT TTT

)()()( AcTcAcAcAT TT

Therefore, T is a linear transformation from Mmn into Mn m.

Elementary Linear Algebra: Section 6.1, p.369

Page 19: Chapter 6 Linear Transformations

19/78

Keywords in Section 6.1:

function: 函數 domain: 論域 codomain: 對應論域 image of v under T: 在 T 映射下 v 的像 range of T: T 的值域 preimage of w: w 的反像 linear transformation: 線性轉換 linear operator: 線性運算子 zero transformation: 零轉換 identity transformation: 相等轉換

Page 20: Chapter 6 Linear Transformations

20/78

6.2 The Kernel and Range of a Linear Transformation Kernel of a linear transformation T:

Let be a linear transformationWVT :

Then the set of all vectors v in V that satisfy is called the kernel of T and is denoted by ker(T).

0)( vT

} ,0)(|{)ker( VTT vvv

Ex 1: (Finding the kernel of a linear transformation)

):( )( 3223 MMTAAT T

Sol:

000000

)ker(T

Elementary Linear Algebra: Section 6.2, p.375

Page 21: Chapter 6 Linear Transformations

21/78

Ex 2: (The kernel of the zero and identity transformations)

(a) T(v)=0 (the zero transformation )WVT :

VT )ker(

(b) T(v)=v (the identity transformation )VVT :

}{)ker( 0T

Ex 3: (Finding the kernel of a linear transformation)):( )0,,(),,( 33 RRTyxzyxT

?)ker( TSol:

}number real a is |),0,0{()ker( zzT

Elementary Linear Algebra: Section 6.2, p.375

Page 22: Chapter 6 Linear Transformations

22/78

Ex 5: (Finding the kernel of a linear transformation)

):( 321211)( 23

3

2

1

RRTxxx

AT

xx

?)ker( T

Sol:}),,( ),0,0(),,(|),,{()ker( 3

321321321 RxxxxxxxTxxxT

)0,0(),,( 321 xxxT

00

321211

3

2

1

xxx

Elementary Linear Algebra: Section 6.2, p.376

Page 23: Chapter 6 Linear Transformations

23/78

11

1

3

2

1

ttt

t

xxx

)}1,1,1span{( }number real a is |)1,1,1({)ker(

ttT

01100101

03210211 .. EJG

Elementary Linear Algebra: Section 6.2, p.377

Page 24: Chapter 6 Linear Transformations

24/78

Thm 6.3: (The kernel is a subspace of V)The kernel of a linear transformation is a subspace of the domain V.

WVT :

)16. Theorem( 0)0( TPf:VT ofsubset nonempty a is )ker(

then. of kernel in the vectorsbe and Let Tvu

000)()()( vuvu TTT

00)()( ccTcT uu )ker(Tc u

)ker(T vu

. of subspace a is )ker(Thus, VT Note:

The kernel of T is sometimes called the nullspace of T. Elementary Linear Algebra: Section 6.2, p.377

Page 25: Chapter 6 Linear Transformations

25/78

Ex 6: (Finding a basis for the kernel)

82000102010131211021

and Rin is where,)(by defined be :Let 545

A

ATRRT xxx

Find a basis for ker(T) as a subspace of R5.

Elementary Linear Algebra: Section 6.2, p.377

Page 26: Chapter 6 Linear Transformations

26/78

Sol:

000000041000020110010201

082000010201001312011021

0

.. EJG

A

s t

14

021

00112

4

22

5

4

3

2

1

ts

tt

ststs

xxxxx

x

TB of kernel for the basis one:)1 ,4 ,0 ,2 ,1(),0 ,0 ,1 ,1 ,2(

Elementary Linear Algebra: Section 6.2, p.378

Page 27: Chapter 6 Linear Transformations

27/78

Corollary to Thm 6.3:

0 of spacesolution the toequal is T of kernel Then the)(by given L.T thebe :Let

xxx

AATRRT mn

) of subspace( ,0|)()(

):on ansformatilinear tr a( )(mm

mn

RRAANSTKer

RRTAT

xxxxx

Range of a linear transformation T:

)(by denoted is and T of range thecalled is Vin vector of images arein W that w vectorsall ofset Then the

L.T. a be :Let

Trange

WVT

}|)({)( VTTrange vv

Elementary Linear Algebra: Section 6.2, p.378

Page 28: Chapter 6 Linear Transformations

28/78

. :Tn nsformatiolinear tra a of range The WWV fo ecapsbus a si

Thm 6.4: (The range of T is a subspace of W)

Pf:)1Thm.6.( 0)0( T

WTrange ofsubset nonempty a is )(

TTT of range in the vector be )( and )(Let vu

)()()()( TrangeTTT vuvu

)()()( TrangecTcT uu

),( VVV vuvu

)( VcV uu

.subspace is )( Therefore, WTrange

Elementary Linear Algebra: Section 6.2, p.379

Page 29: Chapter 6 Linear Transformations

29/78

Notes:

of subspace is )()1( VTKer

L.T. a is : WVT

Corollary to Thm 6.4:

)()( of spacecolumn the toequal is of range Then the

)(by given L.T. thebe :Let

ACSTrangeAT

ATRRT mn

xx

of subspace is )()2( WTrange

Elementary Linear Algebra: Section 6.2, p.379

Page 30: Chapter 6 Linear Transformations

30/78

Ex 7: (Finding a basis for the range of a linear transformation)

82000102010131211021

and is where,)(by defined be :Let 545

A

RATRRT xxx

Find a basis for the range of T.

Elementary Linear Algebra: Section 6.2, p.379

Page 31: Chapter 6 Linear Transformations

31/78

Sol:

BA EJG

0000 04100 02011 01020 1

82000102010131211021

..

54321 ccccc 54321 wwwww

)(for basis a is , ,

)(for basis a is , ,

421

421

ACScccBCSwww

T of range for the basis a is )2 ,0 ,1 ,1( ),0 ,0 ,1 ,2( ),0 ,1 ,2 ,1(

Elementary Linear Algebra: Section 6.2, pp.379-380

Page 32: Chapter 6 Linear Transformations

32/78

Rank of a linear transformation T:V→W:

TTrank of range theofdimension the)(

Nullity of a linear transformation T:V→W:

TTnullity of kernel theofdimension the)(

Note:

)()()()(

then,)(by given L.T. thebe :Let

AnullityTnullityArankTrank

ATRRT mn

xx

Elementary Linear Algebra: Section 6.2, p.380

Page 33: Chapter 6 Linear Transformations

33/78

then. space vector a into space vector ldimensiona-nan form L.T. a be :Let

WVWVT

Thm 6.5: (Sum of rank and nullity)

Pf:AmatrixnmT an by drepresente is Let

) ofdomain dim() of kerneldim() of rangedim()()(

TTTnTnullityTrank

rArank )( Assume

rArankATTrank

)( ) of spacecolumn dim() of rangedim()((1)

nrnrTnullityTrank )()()(rn

ATTnullity

) of spacesolution dim() of kerneldim()()2(

Elementary Linear Algebra: Section 6.2, p.380

Page 34: Chapter 6 Linear Transformations

34/78

Ex 8: (Finding the rank and nullity of a linear transformation)

000110201

by define : L.T. theofnullity andrank theFind 33

A

RRT

Sol:

123)() ofdomain dim()(2)()(

TrankTTnullityArankTrank

Elementary Linear Algebra: Section 6.2, p.381

Page 35: Chapter 6 Linear Transformations

35/78

Ex 9: (Finding the rank and nullity of a linear transformation)

}0{)( if ofrank theFind )(4 is ofnullity theif ofrank theFind )(

2 is range theof dimension theif of kernel theofdimension theFind )(

n.nsformatiolinear tra a be :Let 75

TKerTcTTb

TaRRT

Sol:

325) of rangedim() of kerneldim( 5) ofdomain dim()(

TnTTa

145)()()( TnullitynTrankb

505)()()( TnullitynTrankc

Elementary Linear Algebra: Section 6.2, p.381

Page 36: Chapter 6 Linear Transformations

36/78

vector.single a of consists range in the every wof preimage theif one-to-one called is :function A WVT

One-to-one:

. that implies )()( inV, vandu allfor iff one-to-one is

vuvu

TTT

one-to-one not one-to-one

Elementary Linear Algebra: Section 6.2, p.382

Page 37: Chapter 6 Linear Transformations

37/78

in preimage a has in element every if onto be tosaid is :function A

VWVT

w

Onto:

(T is onto W when W is equal to the range of T.)

Elementary Linear Algebra: Section 6.2, p.382

Page 38: Chapter 6 Linear Transformations

38/78

Thm 6.6: (One-to-one linear transformation)

}0{)( iff 1-1 is TThen L.T. a be :Let

TKerWVT

Pf:1-1 is Suppose T

0 :solution oneonly havecan 0)(Then vvT

}0{)( i.e. TKer

)()( and }0{)( Suppose vTuTTKer

0)()()( vTuTvuTL.T. a is T

0)( vuTKervu1-1 is T

Elementary Linear Algebra: Section 6.2, p.382

Page 39: Chapter 6 Linear Transformations

39/78

Ex 10: (One-to-one and not one-to-one linear transformation)

one.-to-one is )(by given : L.T. The )( T

mnnm AATMMTa

matrix. zero only the of consists kernel its Because nm

one.-to-onenot is :ation transformzero The )( 33 RRTb . of all is kernel its Because 3R

Elementary Linear Algebra: Section 6.2, p.382

Page 40: Chapter 6 Linear Transformations

40/78

Thm 6.7: (Onto linear transformation)

. ofdimension the toequal is ofrank theiff onto is Then l.dimensiona finite is whereL.T., a be :Let

WTTWWVT

Thm 6.8: (One-to-one and onto linear transformation)

onto. isit ifonly and if one-to-one is Then .dimension ofboth and spaceor with vectL.T. a be :Let

TnWVWVT

Pf:0))(dim( and }0{)( then one,-to-one is If TKerTKerT

)dim())(dim())(dim( WnTKernTrange onto. is ly,Consequent T

0) of rangedim())(dim( nnTnTKerone.-to-one is Therefore,T

nWTT )dim() of rangedim( then onto, is If

Elementary Linear Algebra: Section 6.2, p.383

Page 41: Chapter 6 Linear Transformations

41/78

Ex 11:

neither.or onto, one,-to-one is whether determine and ofrank andnullity theFind ,)(by given is : L.T. The

TTATRRT mn xx

100110021

)( Aa

001021

)( Ab

110

021)( Ac

000110021

)( Ad

Sol:

T:Rn→Rm dim(domain of T) rank(T) nullity(T) 1-1 onto

(a)T:R3→R3 3 3 0 Yes Yes(b)T:R2→R3 2 2 0 Yes No(c)T:R3→R2 3 2 1 No Yes(d)T:R3→R3 3 2 1 No No

Elementary Linear Algebra: Section 6.2, p.383

Page 42: Chapter 6 Linear Transformations

42/78

Isomorphism:

other.each toisomorphic be tosaid are and then , to from misomorphisan exists theresuch that

spaces vector are and if Moreover, m.isomorphisan called is onto and one toone is that :n nsformatiolinear traA

WVWVWV

WVT

Thm 6.9: (Isomorphic spaces and dimension)

Pf:.dimension has where, toisomorphic is that Assume nVWV

onto. and one toone is that : L.T. a exists There WVT one-to-one is T

nnTKerTTTKer

0))(dim() ofdomain dim() of rangedim(0))(dim(

Two finite-dimensional vector space V and W are isomorphic if and only if they are of the same dimension.

Elementary Linear Algebra: Section 6.2, p.384

Page 43: Chapter 6 Linear Transformations

43/78

.dimension haveboth and that Assume nWV

onto. is TnWT )dim() of rangedim(

nWV )dim()dim( Thus

. of basis a be , , ,let

and V, of basis a be , , ,Let

21

21

Wwwwvvv

n

n

nnvcvcvcV

2211

as drepresente becan in vector arbitrary an Then v

nnwcwcwcTWVT

2211)(follows. as : L.T. a definecan you and

v

It can be shown that this L.T. is both 1-1 and onto.Thus V and W are isomorphic.

Elementary Linear Algebra: Section 6.2, p.384

Page 44: Chapter 6 Linear Transformations

44/78

Ex 12: (Isomorphic vector spaces)

space-4)( 4 Ra

matrices 14 all of space )( 14 Mb

matrices 22 all of space )( 22 Mc

lessor 3 degree of spolynomial all of space )()( 3 xPd

) of subspace}(number real a is ),0 , , , ,{()( 54321 RxxxxxVe i

The following vector spaces are isomorphic to each other.

Elementary Linear Algebra: Section 6.2, p.385

Page 45: Chapter 6 Linear Transformations

45/78

Keywords in Section 6.2:

kernel of a linear transformation T: 線性轉換 T 的核空間 range of a linear transformation T: 線性轉換 T 的值域 rank of a linear transformation T: 線性轉換 T 的秩 nullity of a linear transformation T: 線性轉換 T 的核次數 one-to-one: 一對一 onto: 映成 isomorphism(one-to-one and onto): 同構 isomorphic space: 同構的空間

Page 46: Chapter 6 Linear Transformations

46/78

6.3 Matrices for Linear Transformations

)43,23,2(),,()1( 32321321321 xxxxxxxxxxxT

Three reasons for matrix representation of a linear transformation:

3

2

1

430231112

)()2(xxx

AT xx

It is simpler to write. It is simpler to read. It is more easily adapted for computer use.

Two representations of the linear transformation T:R3→R3 :

Elementary Linear Algebra: Section 6.3, p.387

Page 47: Chapter 6 Linear Transformations

47/78

Thm 6.10: (Standard matrix for a linear transformation)

such thaton ansformatilinear trt a be :Let mn RRT

,)( , ,)( ,)( 2

1

2

22

12

2

1

21

11

1

mn

n

n

n

mm a

aa

eT

a

aa

eT

a

aa

eT

)( tocorrespond columns sematrix who Then the ieTnnm

.for matrix standard thecalled isA .in every for )(such that is

TRAT nvvv

mnmm

n

n

n

aaa

aaaaaa

eTeTeTA

21

22221

11211

21 )()()(

Elementary Linear Algebra: Section 6.3, p.388

Page 48: Chapter 6 Linear Transformations

48/78

Pf:

nn

n

evevev

v

vv

22112

1

v

)()()( )()()(

)()(L.T. a is

2211

2211

2211

nn

nn

nn

eTveTveTvevTevTevT

evevevTTT

v

nmnmm

nn

nn

nmnmm

n

n

vavava

vavavavavava

v

vv

aaa

aaaaaa

A

2211

2222121

1212111

2

1

21

22221

11211

v

Elementary Linear Algebra: Section 6.3, p.388

Page 49: Chapter 6 Linear Transformations

49/78

)()()( 2211

2

1

2

22

12

2

1

21

11

1

nn

mn

n

n

n

mm

eTveTveTv

a

aa

v

a

aa

v

a

aa

v

nRAT in each for )( Therefore, vvv

Elementary Linear Algebra: Section 6.3, p.389

Page 50: Chapter 6 Linear Transformations

50/78

Ex 1: (Finding the standard matrix of a linear transformation)

by define : L.T. for thematrix standard theFind 23 RRT

)2 ,2(),,( yxyxzyxT Sol:

)2 ,1()0 ,0 ,1()( 1 TeT

)1 ,2()0 ,1 ,0()( 2 TeT

)0 ,0()1 ,0 ,0()( 3 TeT

21)

001

()( 1

TeT

12)

010

()( 2

TeT

00)

100

()( 3

TeT

Vector Notation Matrix Notation

Elementary Linear Algebra: Section 6.3, p.389

Page 51: Chapter 6 Linear Transformations

51/78

012021

)()()( 321 eTeTeTA

Note:

zyxzyxA 012

021 012021

yxyx

zyx

zyx

A 22

012021

)2,2(),,( i.e. yxyxzyxT

Check:

Elementary Linear Algebra: Section 6.3, p.389

Page 52: Chapter 6 Linear Transformations

52/78

Ex 2: (Finding the standard matrix of a linear transformation)

.for matrix standard theFind axis.- x theonto in point each

projectingby given is :n nsformatiolinear tra The2

22

TR

RRT

Sol:)0 ,(),( xyxT

00

01)1 ,0()0 ,1()()( 21 TTeTeTA

Notes: (1) The standard matrix for the zero transformation from Rn into Rm

is the mn zero matrix. (2) The standard matrix for the zero transformation from Rn into Rn

is the nn identity matrix In

Elementary Linear Algebra: Section 6.3, p.390

Page 53: Chapter 6 Linear Transformations

53/78

Composition of T1:Rn→Rm with T2:Rm→Rp :

nRTTT vvv )),(()( 12

112 ofdomain ofdomain , TTTTT

Thm 6.11: (Composition of linear transformations)

then, and matrices standardwith L.T. be : and :Let

21

21

AARRTRRT pmmn

L.T. a is )),(()(by defined ,:n compositio The(1) 12 vv TTTRRT pn

12product matrix by thegiven is for matrix standard The )2( AAATA

Elementary Linear Algebra: Section 6.3, p.391

Page 54: Chapter 6 Linear Transformations

54/78

Pf:

nscalar theany be clet and in vectorsbe and Let

L.T.) a is ((1)nR

T

vu

)for matrix standard theis )(2( 12 TAA

)()())(())(())()(())(()(

1212

11212

vuvuvuvuvuTTTTTT

TTTTTT

)())(())(())(()( 121212 vvvvv cTTcTcTTcTTcT

vvvvv )()())(()( 12121212 AAAAATTTT

Note:

1221 TTTT

Elementary Linear Algebra: Section 6.3, p.391

Page 55: Chapter 6 Linear Transformations

55/78

Ex 3: (The standard matrix of a composition)s.t. into from L.T. be and Let 33

21 RRTT

) ,0 ,2(),,(1 zxyxzyxT ) ,z ,(),,(2 yyxzyxT

,' and nscompositio for the matrices standard theFind

2112 TTTTTT Sol:

)for matrix standard( 101000012

11 TA

)for matrix standard( 010100011

22 TA

Elementary Linear Algebra: Section 6.3, p.392

Page 56: Chapter 6 Linear Transformations

56/78

12for matrix standard The TTT

21'for matrix standard The TTT

000101012

101000012

010100011

12 AAA

001000122

010100011

101000012

' 21AAA

Elementary Linear Algebra: Section 6.3, p.392

Page 57: Chapter 6 Linear Transformations

57/78

Inverse linear transformation:

in every for s.t. L.T. are : and : If 21nnnnn RRRTRRT v

))(( and ))(( 2112 vvvv TTTT

invertible be tosaid is and of inverse thecalled is Then 112 TTT

Note:

If the transformation T is invertible, then the inverse is unique and denoted by T–1 .

Elementary Linear Algebra: Section 6.3, p.392

Page 58: Chapter 6 Linear Transformations

58/78

Thm 6.12: (Existence of an inverse transformation)

.equivalent arecondition following Then the ,matrix standard with L.T. a be :Let ARRT nn

Note:

If T is invertible with standard matrix A, then the standard matrix for T–1 is A–1 .

(1) T is invertible.

(2) T is an isomorphism.

(3) A is invertible.

Elementary Linear Algebra: Section 6.3, p.393

Page 59: Chapter 6 Linear Transformations

59/78

Ex 4: (Finding the inverse of a linear transformation)

by defined is : L.T. The 33 RRT

)42 ,33 ,32(),,( 321321321321 xxxxxxxxxxxxT

Sol:

142133132

for matrix standard The

A

T

321

321

321

423332

xxxxxxxxx

100142010133001132

3IA

Show that T is invertible, and find its inverse.

Elementary Linear Algebra: Section 6.3, p.393

Page 60: Chapter 6 Linear Transformations

60/78

1..

326100101010011001

AIEJG

11 is for matrix standard theand invertible is Therefore ATT

326101011

1A

321

31

21

3

2

111

326326101011

)(xxx

xxxx

xxx

AT vv

)326 , ,(),,(

s,other wordIn

32131213211 xxxxxxxxxxT

Elementary Linear Algebra: Section 6.3, p.394

Page 61: Chapter 6 Linear Transformations

61/78

the matrix of T relative to the bases B and B':

)for basis (a },,,{')for basis (a },,,{

)L.T. a( :

21

21

WwwwBVvvvB

WVT

m

n

Thus, the matrix of T relative to the bases B and B' is

nmBnBB MvTvTvTA ''2'1 )(,,)(,)(

Elementary Linear Algebra: Section 6.3, p.394

Page 62: Chapter 6 Linear Transformations

62/78

Transformation matrix for nonstandard bases:

mn

n

n

Bn

m

B

m

B

a

aa

vT

a

aa

vT

a

aa

vT

2

1

'

2

22

12

'2

1

21

11

'1 )( ,,)( ,)(

},,,{ wherely,respective ,' and basis with spaces vector ldimensiona-finite be and Let

21 nvvvBBBWV

s.t. L.T. a is : If WVT

')( tocorrespond columns sematrix who then the BivTnnm

Elementary Linear Algebra: Section 6.3, p.395

Page 63: Chapter 6 Linear Transformations

63/78

.in every for ][)(such that is ' VAT BB vvv

mnmm

n

n

n

aaa

aaaaaa

eTeTeTA

21

22221

11211

21 )()()(

Elementary Linear Algebra: Section 6.3, p.395

Page 64: Chapter 6 Linear Transformations

64/78

Ex 5: (Finding a matrix relative to nonstandard bases)

by defined L.T. a be :Let 22 RRT )2 ,(),( 212121 xxxxxxT

)}1 ,0( ),0 ,1{(' and )}1 ,1( ),2 ,1{( basis the torelative ofmatrix theFind

BBT

Sol:

)1 ,0(3)0 ,1(0)3 ,0()1 ,1()1 ,0(0)0 ,1(3)0 ,3()2 ,1(

TT

30)1 ,1( ,

03)2 ,1( '' BB TT

' and torelative for matrix the BBT

3003)2 ,1()2 ,1( '' BB TTA

Elementary Linear Algebra: Section 6.3, p.395

Page 65: Chapter 6 Linear Transformations

65/78

Ex 6:

)1 ,2( where),( find tomatrix theuse 5, Examplein given : L.T. For the 22

vvT

ARRT

Sol:)1 ,1(1)2 ,1(1)1 ,2( v

1

1Bv

33

11

3003)( ' BB AT vv

)3 ,3()1 ,0(3)0 ,1(3)( vT )}1 ,0( ),0 ,1{('B

)}1 ,1( ),2 ,1{( B

)3 ,3()12(2) ,12()1 ,2( T

Check:

Elementary Linear Algebra: Section 6.3, p.395

Page 66: Chapter 6 Linear Transformations

66/78

Notes:

BTABBWV

basis the torelative ofmatrix thealled is matrix the ,' and wherecase special (1)In the

nBnBB

n

IvTvTvTA

BTVvvvB

VVT

100

010001

)(,,)(,)(

basis the torelative ofmatrix thefor basis a :},,,{

ionransformatidentity t the::)2(

21

21

Elementary Linear Algebra, Section 6.3, p.396

Page 67: Chapter 6 Linear Transformations

67/78

Keywords in Section 6.3:

standard matrix for T: T 的標準矩陣 composition of linear transformations: 線性轉換的合成 inverse linear transformation: 反線性轉換 matrix of T relative to the bases B and B' : T 對應於基底 B 到

B' 的矩陣 matrix of T relative to the basis B: T 對應於基底 B 的矩陣

Page 68: Chapter 6 Linear Transformations

68/78

6.4 Transition Matrices and Similarity

) of basis (a },,,{') of basis a ( },,,{

)L.T. a ( :

21

21

VwwwBVvvvB

VVT

n

n

) torelative ofmatrix ( )(,,)(,)( 21 BTvTvTvTA BnBB

)' torelative of(matrix )(,,)(,)(' ''2'1 BTwTwTwTA BnBB

) to' frommatrix n transitio( ,,, 21 BBwwwP BnBB

)' to frommatrix n transitio( ,,, ''2'11 BBvvvP BnBB

BBBB PP vvvv 1'' ,

'' ')(

)(

BB

BB

ATAT

vvvv

Elementary Linear Algebra: Section 6.4, p.399

Page 69: Chapter 6 Linear Transformations

69/78

Two ways to get from to :

'' )]([][' )direct)(1(

BB TA vv

'Bv ')( BT v

''1 )]([][

(indirect))2(

BB TAPP vv

APPA 1' direct

indirect

Elementary Linear Algebra: Section 6.4, pp.399-400

Page 70: Chapter 6 Linear Transformations

70/78

Ex 1: (Finding a matrix for a linear transformation)

Sol:

1

3)0 ,1( )1 ,1(1)0 ,1(3)1 ,2()0 ,1( 'BTT

22:for matrix theFind RRTA'

)3 ,22(),( 212121 xxxxxxT

)}1 ,1( ),0 ,1{(' basis the toreletive B

22)1 ,1( )1 ,1(2)0 ,1(2)2 ,0()1 ,1( 'BTT

2123)1 ,1()0 ,1(' '' BB TTA

'' )1 ,1()0 ,1(' I)( BB TTA

Elementary Linear Algebra: Section 6.4, p.400

Page 71: Chapter 6 Linear Transformations

71/78

)})1 ,0( ),0 ,1{( torelative ofmatrix ( for matrix standard II)( BTT

3122)1 ,0()0 ,1( TTA

1011

)1 ,1()0 ,1(

to' frommatrix transition

BBP

BB

1011

' to frommatrix transition

1P

BB

2123

1011

3122

1011

'

' relative ofmatrix

1APPA

BT

Elementary Linear Algebra: Section 6.4, p.400

Page 72: Chapter 6 Linear Transformations

72/78

Ex 2: (Finding a matrix for a linear transformation)

Sol:'. torelative ofmatrix theFind

. torelative :for matrix thebe 7372

let and

,for basis be )}2 ,2( ),2 ,1{(' and )}2 ,4( ),2 ,3{(Let

22

2

BT

BRRTA

RBB

1223

)2 ,2()2 ,1(: to' frommatrix transition BBPBB

3221

)2 ,4()2 ,3( :' to frommatrix transition ''1

BBPBB

3112

1223

7372

3221

'

:' torelative ofmatrix

1APPA

BT

Elementary Linear Algebra: Section 6.4, p.401

Page 73: Chapter 6 Linear Transformations

73/78

Ex 3: (Finding a matrix for a linear transformation)

Sol:

13

ismatrix coordinate whose vector for the,)( and)(、 find Ex.2,in given :n nsformatiolinear tra For the

'

'

22

B

BB

B

TTRRT

v

vvvv

5

713

1223

'BB P vv

14

2157

7372)( BB AT vv

07

1421

3221)()( 1

' BB TPT vv

07

13

3112

')( or '' BB AT vv

Elementary Linear Algebra: Section 6.4, p.401

Page 74: Chapter 6 Linear Transformations

74/78

Similar matrix:

For square matrices A and A‘ of order n, A‘ is said to be similar to A if there exist an invertible matrix P s.t. APPA 1'

Thm 6.13: (Properties of similar matrices)Let A, B, and C be square matrices of order n.Then the following properties are true.(1) A is similar to A.(2) If A is similar to B, then B is similar to A.(3) If A is similar to B and B is similar to C, then A is similar to C.

Pf:nn AIIA )1(

)(

)( )2(111

1111

PQBAQQBPAP

PBPPPPAPBPPA

Elementary Linear Algebra: Section 6.4, p.402

Page 75: Chapter 6 Linear Transformations

75/78

Ex 4: (Similar matrices)

similar are 2123

' and 3122

)(

AAa

1011

where,' because 1 PAPPA

similar are 3112

' and 7372

)(

AAb

1223

where,' because 1 PAPPA

Elementary Linear Algebra: Section 6.4, p.403

Page 76: Chapter 6 Linear Transformations

76/78

Ex 5: (A comparison of two matrices for a linear transformation)

basis. standard theto

relative :for matrix theis 200

013031

Suppose 33 RRTA

)}1 ,0 ,0( ),0 ,1 ,1( ),0 ,1 ,1{('basis the torelative for matrix theFind

BT

Sol:

100011011

)1 ,0 ,0()0 ,1 ,1()0 ,1 ,1(

matrix standard the to frommatrix n transitioThe

BBBP

B'

10000

21

21

21

21

1P

Elementary Linear Algebra: Section 6.4, p.403

Page 77: Chapter 6 Linear Transformations

77/78

200020004

100011011

200013031

10000

'

:' torelative ofmatrix

21

21

21

21

1APPA

BT

Elementary Linear Algebra: Section 6.4, p.403

Page 78: Chapter 6 Linear Transformations

78/78

Notes: Computational advantages of diagonal matrices:

nd

dd

D

00

0000

2

1

kn

k

k

k

d

dd

D

00

0000

)1( 2

1

DDT )2(

0 ,

00

0000

)3(1

1

1

1 2

1

i

d

d

d

dD

n

Elementary Linear Algebra: Section 6.4, p.404

Page 79: Chapter 6 Linear Transformations

79/78

Keywords in Section 6.4:

matrix of T relative to B: T 相對於 B 的矩陣 matrix of T relative to B' : T 相對於 B' 的矩陣 transition matrix from B' to B : 從 B' 到 B 的轉移矩陣 transition matrix from B to B' : 從 B 到 B' 的轉移矩陣 similar matrix: 相似矩陣