85
1 The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Hydraulics - ECIV 3322 Water Distribution Systems Chapter 4

Chapter 4 Water Distribution Systems - site.iugaza.edu.pssite.iugaza.edu.ps/sghabayen/files/2012/02/ch4-part-2.pdf · Design of Water Distribution Systems ... •The equations to

Embed Size (px)

Citation preview

1

The Islamic University of Gaza

Faculty of Engineering

Civil Engineering Department

Hydraulics - ECIV 3322

Water Distribution Systems

Chapter 4

2

Introduction To deliver water to individual consumers with appropriate

quality, quantity, and pressure in a community setting requires

an extensive system of:

Pipes.

Storage reservoirs.

Pumps.

Other related accessories.

Distribution system: is used to describe collectively the

facilities used to supply water from its source to the point of

usage .

3

Methods of Supplying Water

• Depending on the topography relationship between the source of supply and the consumer, water can be transported by:

• Canals.

• Tunnels.

• Pipelines.

• The most common methods are:

• Gravity supply

• Pumped supply

• Combined supply

4

Gravity Supply

• The source of supply is at a sufficient elevation

above the distribution area (consumers). so that the desired pressure can be maintained

Source

(Reservoir) (Consumers)

Gravity-Supply System

HGL or EGL

5

Advantages of Gravity supply

• No energy costs.

• Simple operation (fewer mechanical parts,

independence of power supply, ….)

• Low maintenance costs.

• No sudden pressure changes

Source

HGL or EGL

6

Pumped Supply Used whenever:

• The source of water is lower than the area to which we need to

distribute water to (consumers)

• The source cannot maintain minimum pressure required.

pumps are used to develop the necessary head (pressure) to

distribute water to the consumer and storage reservoirs.

Source

(River/Reservoir)

(Consumers)

Pumped-Supply System

HGL or EGL

7

Source

(River/Reservoir)

(Consumers)

HGL or EGL

Disadvantages of pumped supply

Complicated operation and maintenance.

Dependent on reliable power supply.

Precautions have to be taken in order to enable permanent supply:

• Stock with spare parts

• Alternative source of power supply ….

8

Combined Supply

(pumped-storage supply)

• Both pumps and storage reservoirs are used.

• This system is usually used in the following cases:

1) When two sources of water are used to supply water:

Source (1)

Source (2)

City

Gravity

Pumping

HGL

HGL

Pumping station

9

Combined Supply (Continue) 2) In the pumped system sometimes a storage (elevated)

tank is connected to the system.

Elevated

tank

Source

Pipeline

High

consumption

Pumping station

• When the water consumption is low, the residual water is

pumped to the tank.

• When the consumption is high the water flows back to

the consumer area by gravity.

Low consumption

City

10

Combined Supply (Continue) 3) When the source is lower than the consumer area

Reservoir

Source

Pumping

Pumping Station

• A tank is constructed above the highest point in the area,

• Then the water is pumped from the source to the storage

tank (reservoir).

• And the hence the water is distributed from the reservoir

by gravity.

Gravity

City

HGL

HGL

11

Distribution Systems (Network Configurations )

• In laying the pipes through the distribution

area, the following configuration can be

distinguished:

1. Branching system (Tree)

2. Grid system (Looped)

3. Combined system

12

Branching System (tree system)

Branching System

Source

Submain

Main

pipe

Dead End

Advantages:

• Simple to design and build.

• Less expensive than other systems.

13

• The large number of dead ends which results in sedimentation

and bacterial growths.

• When repairs must be made to an individual line, service

connections beyond the point of repair will be without water

until the repairs are made.

• The pressure at the end of the line may become undesirably

low as additional extensions are made.

Source

Dead End

Disadvantages:

14

Grid System (Looped system)

Grid System

Advantages:

• The grid system overcomes all of the difficulties of

the branching system discussed before.

• No dead ends. (All of the pipes are interconnected).

• Water can reach a given point of withdrawal from

several directions.

15

Disadvantages:

• Hydraulically far more complicated than branching system (Determination of the pipe sizes is somewhat more complicated) .

• Expensive (consists of a large number of loops).

But, it is the most reliable and used system.

16

Combined System

• It is a combination of both Grid and Branching

systems

• This type is widely used all over the world.

Combined System

17

Design of Water Distribution

Systems

Main requirements :

• Satisfied quality and quantity standards

Additional requirements :

• To enable reliable operation during irregular situations (power

failure, fires..)

• To be economically and financially viable, ensuring income

for operation, maintenance and extension.

• To be flexible with respect to the future extensions.

A properly designed water distribution system should

fulfill the following requirements:

18

The design of water distribution systems must

undergo through different studies and steps:

Design Phases

Hydraulic Analysis

Preliminary Studies

Network Layout

19

Preliminary Studies:

4.3.A.1 Topographical Studies:

Must be performed before starting the actual design:

1. Contour lines (or controlling elevations).

2. Digital maps showing present (and future) houses,

streets, lots, and so on..

3. Location of water sources so to help locating

distribution reservoirs.

20

Water Demand Studies:

Water consumption is ordinarily divided into the

following categories:

Domestic demand.

Industrial and Commercial demand.

Agricultural demand.

Fire demand.

Leakage and Losses.

21

Domestic demand

• It is the amount of water used for Drinking, Cocking, Gardening, Car Washing, Bathing, Laundry, Dish Washing, and Toilet Flushing.

• The average water consumption is different from one population to another. In Gaza strip the average consumption is 70 L/capita/day which is very low compared with other countries. For example, it is 250 L/c/day in United States, and it is 180 L/c/day for population live in Cairo (Egypt).

• The average consumption may increase with the increase in standard of living.

• The water consumption varies hourly, daily, and monthly

22

How to predict the increase of population?

The total amount of water for domestic use is a function of:

Population increase

Geometric-increase model Use

P P r n 0 1( ) P0 = recent population

r = rate of population growth

n = design period in years

P = population at the end of the design period.

The total domestic demand can be estimated using:

Qdomestic = Qavg * P

23

Industrial and Commercial demand

• It is the amount of water needed for factories, offices,

and stores….

• Varies from one city to another and from one country

to another

• Hence should be studied for each case separately.

• However, it is sometimes taken as a percentage of the

domestic demand.

24

Agricultural demand

• It depends on the type of crops, soil, climate…

Fire demand

• To resist fire, the network should save a certain

amount of water.

• Many formulas can be used to estimate the amount of

water needed for fire.

25

Fire demand Formulas

)01.01(65 PPQF QF = fire demand l/s P = population in thousands

Q PF 53QF = fire demand l/s P = population in thousands

Q C AF 320*QF = fire demand flow m3/d

A = areas of all stories of the building

under consideration (m2 ) C = constant depending on the type of

construction;

The above formulas can be replaced with local ones

(Amounts of water needed for fire in these formulas are high).

26

Leakage and Losses

• This is “unaccounted for water” (UFW)

• It is attributable to:

Errors in meter readings

Unauthorized connections

Leaks in the distribution system

27

Design Criteria

Are the design limitations required to get the most efficient and economical water-distribution network

Velocity

Pressure

Average Water Consumption

28

Velocity

• Not be lower than 0.6 m/s to prevent

sedimentation

• Not be more than 3 m/s to prevent erosion and

high head losses.

• Commonly used values are 1 - 1.5 m/sec.

29

Pressure

• Pressure in municipal distribution systems ranges from 150-300 kPa in residential districts with structures of four stories or less and 400-500 kPa in commercial districts.

• Also, for fire hydrants the pressure should not be less than 150 kPa (15 m of water).

• In general for any node in the network the pressure should not be less than 25 m of water.

• Moreover, the maximum pressure should be limited to 70 m

of water

30

Pipe sizes • Lines which provide only domestic flow may be as small as 100 mm

(4 in) but should not exceed 400 m in length (if dead-ended) or 600 m if connected to the system at both ends.

• Lines as small as 50-75 mm (2-3 in) are sometimes used in small communities with length not to exceed 100 m (if dead-ended) or 200 m if connected at both ends.

• The size of the small distribution mains is seldom less than 150 mm (6 in) with cross mains located at intervals not more than 180 m.

• In high-value districts the minimum size is 200 mm (8 in) with cross-mains at the same maximum spacing. Major streets are provided with lines not less than 305 mm (12 in) in diameter.

31

Head Losses

• Optimum range is 1-4 m/km.

• Maximum head loss should not exceed 10

m/km.

32

Design Period for Water supply Components

• The economic design period of the components of a

distribution system depends on

• Their life.

• First cost.

• And the ease of expandability.

33

Average Water Consumption

• From the water demand (preliminary) studies,

estimate the average and peak water

consumption for the area.

34

Network Layout

• Next step is to estimate pipe sizes on the basis of water demand and local code requirements.

• The pipes are then drawn on a digital map (using AutoCAD, for example) starting from the water source.

• All the components (pipes, valves, fire hydrants) of the water network should be shown on the lines.

35

Pipe Networks

• A hydraulic model is useful for examining the impact of design and operation decisions.

• Simple systems, such as those discussed in last chapters can be solved using a hand calculator.

• However, more complex systems require more effort even for steady state conditions, but, as in simple systems, the flow and pressure-head distribution through a water distribution system must satisfy the laws of conservation of mass and energy.

36

• The equations to solve Pipe network must

satisfy the following condition:

• The net flow into any junction must be zero

• The net head loss a round any closed loop must

be zero. The HGL at each junction must have one

and only one elevation

• All head losses must satisfy the Moody and

minor-loss friction correlation

Pipe Networks

0Q

37

Node, Loop, and Pipes Node

Pipe

Loop

38

After completing all preliminary studies and

layout drawing of the network, one of the

methods of hydraulic analysis is used to

• Size the pipes and

• Assign the pressures and velocities

required.

Hydraulic Analysis

39

Hydraulic Analysis of Water Networks

• The solution to the problem is based on the same

basic hydraulic principles that govern simple and

compound pipes that were discussed previously.

• The following are the most common methods used to

analyze the Grid-system networks:

1. Hardy Cross method.

2. Sections method.

3. Circle method.

4. Computer programs (WaterCAD,Epanet, Loop, Alied...)

40

Hardy Cross Method

• This method is applicable to closed-loop pipe

networks (a complex set of pipes in parallel).

• It depends on the idea of head balance method

• Was originally devised by professor Hardy Cross.

41

Assumptions / Steps of this method:

1. Assume that the water is withdrawn from nodes only; not directly from pipes.

2. The discharge, Q , entering the system will have (+) value, and the discharge, Q , leaving the system will have (-) value.

3. Usually neglect minor losses since these will be small with respect to those in long pipes, i.e.; Or could be included as equivalent lengths in each pipe.

4. Assume flows for each individual pipe in the network.

5. At any junction (node), as done for pipes in parallel,

outin QQ Q 0or

42

6. Around any loop in the grid, the sum of head losses must

equal to zero:

– Conventionally, clockwise flows in a loop are considered (+) and

produce positive head losses; counterclockwise flows are then (-) and

produce negative head losses.

– This fact is called the head balance of each loop, and this can be valid

only if the assumed Q for each pipe, within the loop, is correct.

• The probability of initially guessing all flow rates correctly is

virtually null.

• Therefore, to balance the head around each loop, a flow rate

correction ( ) for each loop in the network should be

computed, and hence some iteration scheme is needed.

h floop

0

43

7. After finding the discharge correction, (one for each loop) , the assumed discharges Q0 are adjusted and another iteration is carried out until all corrections (values of ) become zero or negligible. At this point the condition of :

is satisfied.

Notes:

• The flows in pipes common to two loops are positive in one loop and negative in the other.

• When calculated corrections are applied, with careful attention to sign, pipes common to two loops receive both corrections.

h floop

0 0.

44

How to find the correction value ( )

WilliamHazenn

ManningDarcyn

kQh n

F

85.1

,2

)1(

)2( oQQ

....

2

1

2& 1

221

f

n

o

n

o

n

o

n

o

n Qnn

nQQkQkkQh

from

1

f n

o

n

o

n nQQkkQh

0

0

1

nn

o

n

loop

n

loop

F

nkQkQkQ

kQh

Neglect terms contains 2

For each loop

45

• Note that if Hazen Williams (which is generally used in this method) is

used to find the head losses, then

h k Qf 185.(n = 1.85) , then

h

h

Q

f

f185.

• If Darcy-Wiesbach is used to find the head losses, then

h k Qf 2

h

h

Q

f

f2

(n = 2) , then

o

F

F

n

o

n

o

Q

hn

h

nkQ

kQ

1

46

Example

D L pipe

150mm 305m 1

150mm 305m 2

200mm 610m 3

150mm 457m 4

200mm 153m 5

1

2 3 4

5

37.8 L/s

25.2 L/s

63 L/s

24

11.4

Solve the following pipe network using Hazen William Method CHW =100

47

24.0

64.085.1

28.01

o

F

F

Q

hn

h

1002.6

1000

0.71

L/s ,100

0.71

852.1

852.1

87.4

9

852.1

87.4852.1

852.1

87.4852.1

QKh

QD

Lh

Q

DC

Lh

inQCQDC

Lh

f

f

HW

f

HW

HW

f

57.0

43.085.1

45.02

o

F

F

Q

hn

h

1

2 3 4

5

12

21

2 loopin 2 pipefor

1 loopin 2 pipefor

48

15.0

64.085.1

18.01

o

F

F

Q

hn

h

09.042.085.1

07.01

o

F

F

Q

hn

h

1

2 3 4

5

12

21

2 loopin 2 pipefor

1 loopin 2 pipefor

49

Solve the following pipe

network using Hazen William

Method CHW =120

Example

50

Iteration 1

51

005075154851

531

022071101851

14

00604179851

840

01408638851

011

4

3

2

1

...

...

...

...

o

f

f

n

o

n

o

Q

hn

h

nkQ

kQΔ

1

1Iteration for

52

Iteration 2

53

Iteration 3

54

Example

• The figure below represents a simplified pipe network.

• Flows for the area have been disaggregated to the nodes, and a major fire flow has been added at node G.

• The water enters the system at node A.

• Pipe diameters and lengths are shown on the figure.

• Find the flow rate of water in each pipe using the Hazen-Williams equation with CHW = 100.

• Carry out calculations until the corrections are less then 0.2 m3/min.

55

56

57

58

59

60

61

62

63

64

General Notes

• Occasionally the assumed direction of flow will be incorrect. In such cases the method will produce corrections larger than the original flow and in subsequent calculations the direction will be reversed.

• Even when the initial flow assumptions are poor, the convergence will usually be rapid. Only in unusual cases will more than three iterations be necessary.

• The method is applicable to the design of new system or to evaluate the proposed changes in an existing system.

• The pressure calculation in the above example assumes points are at equal elevations. If they are not, the elevation difference must be includes in the calculation.

• The balanced network must then be reviewed to assure that the velocity and pressure criteria are satisfied. If some lines do not meet the suggested criteria, it would be necessary to increase the diameters of these pipes and repeat the calculations.

65

• Assigning clockwise flows and their associated head

losses are positive, the procedure is as follows:

Assume values of Q to satisfy Q = 0.

Calculate HL from Q using hf = K1Q2 .

If hf = 0, then the solution is correct.

If hf 0, then apply a correction factor, Q, to all

Q and repeat from step (2).

For practical purposes, the calculation is usually

terminated when hf < 0.01 m or Q < 1 L/s.

A reasonably efficient value of Q for rapid

convergence is given by;

QH

2

HQ

L

L

Summary

QH

2

HQ

L

L

66

Example

• The following example contains nodes with different

elevations and pressure heads.

• Neglecting minor loses in the pipes, determine:

• The flows in the pipes.

• The pressure heads at the nodes.

67

Assume T= 150C

68

Assume flows magnitude and direction

69

First Iteration

• Loop (1)

Pipe L

(m)

D

(m)

Q

(m3/s) f

hf

(m)

hf/Q

(m/m3/s)

AB 600 0.25 0.12 0.0157 11.48 95.64

BE 200 0.10 0.01 0.0205 3.38 338.06

EF 600 0.15 -0.06 0.0171 -40.25 670.77

FA 200 0.20 -0.10 0.0162 -8.34 83.42

S -33.73 1187.89

L/s20.14/sm01419.0)89.1187(2

73.33 3

70

First Iteration

• Loop (2)

Pipe L

(m)

D

(m)

Q

(m3/s) f

hf

(m)

hf/Q

(m/m3/s)

BC 600 0.15 0.05 0.0173 28.29 565.81

CD 200 0.10 0.01 0.0205 3.38 338.05

DE 600 0.15 -0.02 0.0189 -4.94 246.78

EB 200 0.10 -0.01 0.0205 -3.38 338.05

S 23.35 1488.7

L/s842.7/sm00784.0)7.1488(2

35.23 3

71

Second Iteration

• Loop (1)

Pipe L

(m)

D

(m)

Q

(m3/s) f

hf

(m)

hf/Q

(m/m3/s)

AB 600 0.25 0.1342 0.0156 14.27 106.08

BE 200 0.10 0.03204 0.0186 31.48 982.60

EF 600 0.15 -0.0458 0.0174 -23.89 521.61

FA 200 0.20 -0.0858 0.0163 -6.21 72.33

S 15.65 1682.62

L/s65.4/sm00465.0)62.1682(2

65.15 3

14.20

14.20

14.20 7.84 14.20

72

Second Iteration

• Loop (2)

Pipe L

(m)

D

(m)

Q

(m3/s) f

hf

(m)

hf/Q

(m/m3/s)

BC 600 0.15 0.04216 0.0176 20.37 483.24

CD 200 0.10 0.00216 0.0261 0.20 93.23

DE 600 0.15 -0.02784 0.0182 -9.22 331.23

EB 200 0.10 -0.03204 0.0186 -31.48 982.60

S -20.13 1890.60

L/s32.5/sm00532.0)3.1890(2

13.20 3

14.20 7.84

7.84

7.84

7.84

73

Third Iteration

• Loop (1)

Pipe L

(m)

D

(m)

Q

(m3/s) f

hf

(m)

hf/Q

(m/m3/s)

AB 600 0.25 0.1296 0.0156 13.30 102.67

BE 200 0.10 0.02207 0.0190 15.30 693.08

EF 600 0.15 -0.05045 0.0173 -28.78 570.54

FA 200 0.20 -0.09045 0.0163 -6.87 75.97

S -7.05 1442.26

L/s44.2/sm00244.0)26.1442(2

05.7 3

74

Third Iteration

• Loop (2)

Pipe L

(m)

D

(m)

Q

(m3/s) f

hf

(m)

hf/Q

(m/m3/s)

BC 600 0.15 0.04748 0.0174 25.61 539.30

CD 200 0.10 0.00748 0.0212 1.96 262.11

DE 600 0.15 -0.02252 0.0186 -6.17 274.07

EB 200 0.10 -0.02207 0.0190 -15.30 693.08

S 6.1 1768.56

L/s72.1/sm00172.0)56.1768(2

1.6 3

75

After applying Third correction

76

Velocity and Pressure Heads:

pipe Q

(l/s)

V

(m/s)

hf

(m)

AB 131.99 2.689 13.79

BE 26.23 3.340 21.35

FE 48.01 2.717 26.16

AF 88.01 2.801 6.52

BC 45.76 2.589 23.85

CD 5.76 0.733 1.21

ED 24.24 1.372 7.09

1.21 21.35

13.79 23.85

6.52

26.16 7.09

77

Velocity and Pressure Heads:

Node p/g+Z

(m)

Z

(m)

P/g

(m)

A 70 30 40

B 56.21 25 31.21

C 32.36 20 12.36

D 31.15 20 11.15

E 37.32 22 15.32

F 63.48 25 38.48

1.21 21.35

13.79 23.85

6.52

26.16 7.09

78

Example For the square loop shown, find the discharge in all the pipes.

All pipes are 1 km long and 300 mm in diameter, with a friction

factor of 0.0163. Assume that minor losses can be neglected.

79

•Solution:

Assume values of Q to satisfy continuity equations all at nodes.

The head loss is calculated using; HL = K1Q2

HL = hf + hLm

But minor losses can be neglected: hLm = 0

Thus HL = hf

Head loss can be calculated using the Darcy-Weisbach equation

g2

V

D

Lh

2

f

80

First trial

Since HL > 0.01 m, then correction has to be applied.

554'K

Q'KH

Q554H

3.0x4

Qx77.2

A

Q77.2H

81.9x2

Vx

3.0

1000x0163.0H

g2

V

D

LhH

2L

2L

22

2

2

2

L

2

L

2

fL

Pipe Q (L/s) HL (m) HL/Q

AB 60 2.0 0.033

BC 40 0.886 0.0222

CD 0 0 0

AD -40 -0.886 0.0222

S 2.00 0.0774

81

Second trial

Since HL ≈ 0.01 m, then it is OK.

Thus, the discharge in each pipe is as follows (to the nearest integer).

s/L92.120774.0x2

2

QH

2

HQ

L

L

Pipe Q (L/s) HL (m) HL/Q

AB 47.08 1.23 0.0261

BC 27.08 0.407 0.015

CD -12.92 -0.092 0.007

AD -52.92 -1.555 0.0294

S -0.0107 0.07775

Pipe Discharge

(L/s)

AB 47

BC 27

CD -13

AD -53

82

:قال اهلل تعالى

كر ذرجال ال تلهيهم تجارة وال بيع عن اهلل

83

حب الدنيا

اعمم أّن جمود العين من قسوة القمب،

وقسوة القمب من كثرة الذنوب، وكثرة الذنوب من نسيان الموت،

ونسيان الموت من طول األمل، وطول األمل من شدة الحرص،

وشدة الحرص من حب الدنيا، .خطيئة وحب الدنيا رأس كل

84

تهادوا تحابوا

ولى قّل سعرها ال تبخل بالهذية

فقيمتها معنىية اكثر من مادية

85

تقوى هللا مفتاح كل نجاح

“ومن يتق هللا يجعل له مخرجاً ويرزقه من حيث ال يحتسب”