58
Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

Embed Size (px)

Citation preview

Page 1: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

Chapter 3

Empirical Methods for Demand

Analysis

Michelo Hambayi

THE UNIVERSITY OF LUSAKA

Page 2: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-2

Table of Contents

• 3.1 Elasticity• 3.2 Regression Analysis• 3.3 Properties & Significance of Coefficients• 3.4 Regression Specification• 3.5 Forecasting

Page 3: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-3

Introduction

• Managerial Problem– Estimating the Effect of an iTunes Price Change– How can managers use the data to estimate the demand curve facing iTunes? How

can managers determine if a price increase is likely to raise revenue, even though the quantity demanded will fall?

• Solution Approach– Managers can use empirical methods to analyze economic relationships that affect a

firm’s demand.

• Empirical Methods– Elasticity measures the responsiveness of one variable, such as quantity demanded,

to a change in another variable, such a price. – Regression analysis is a method used to estimate a mathematical relationship

between a dependent variable, such as quantity demanded, and explanatory variables, such as price and income. This method requires identifying the properties and statistical significance of estimated coefficients, as well as model identification.

– Forecasting is the use of regression analysis to predict future values of important variables as sales or revenue.

Page 4: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-4

3.1 Elasticity

• Price Elasticity of Demand– The price elasticity of demand (or simply the elasticity of

demand or the demand elasticity) is the percentage change in quantity demanded, Q, divided by the percentage change in price, p.

• Arc Price Elasticity: ε = (∆Q⁄Avg Q)/(∆p/Avg p)– It is an elasticity that uses the average price and average

quantity as the denominator for percentage calculations.– In the formula (∆Q/Avg Q) is the percentage change in

quantity demanded and (∆p/Avg p) is the percentage change in price.

– Arc elasticity is based on a discrete change between two distinct price-quantity combinations on a demand curve.

Page 5: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-5

3.1 Elasticity

• Point Elasticity: ε = (∆Q /∆p) (p/Q)– Point elasticity measures the effect of a small change in

price on the quantity demanded.– In the formula, we are evaluating the elasticity at the point

(Q, p) and ∆Q/∆p is the ratio of the change in quantity to the change in price.

– Point elasticity is useful when the entire demand information is available.

• Point Elasticity with Calculus: ε = (∂Q /∂p)(p/Q)– To use calculus, the change in price becomes very small.– ∆p → 0, the ratio ∆Q/∆p converges to the derivative ∂Q/∂p

Page 6: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-6

3.1 Elasticity

• Elasticity Along the Demand Curve– If the shape of the linear demand curve is downward sloping, elasticity

varies along the demand curve. – The elasticity of demand is a more negative number the higher the price

and hence the smaller the quantity.– In Figure 3.1, a 1% increase in price causes a larger percentage fall in

quantity near the top (left) of the demand curve than near the bottom (right).

• Values of Elasticity Along a Linear Demand Curve– In Figure 3.1, the higher the price, the more elastic the demand curve.– The demand curve is perfectly inelastic (ε = 0) where the demand curve

hits the horizontal axis.– It is perfectly elastic where the demand curve hits the vertical axis, and

has unitary elasticity at the midpoint of the demand curve.

Page 7: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-7

3.1 Elasticity

Figure 3.1 The Elasticity of Demand Varies Along the Linear Avocado Demand Curve

Page 8: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-8

3.1 Elasticity

• Constant Elasticity Demand Form: Q = Apε

– Along a constant-elasticity demand curve, the elasticity of demand is the same at every price and equal to the exponent ε.

• Horizontal Demand Curves: ε = -∞ at every point– If the price increases even slightly, demand falls to zero. – The demand curve is perfectly elastic: a small increase in prices causes an

infinite drop in quantity.– Why would a good’s demand curve be horizontal? One reason is that

consumers view this good as identical to another good and do not care which one they buy.

• Vertical Demand Curves: ε = 0 at every point– If the price goes up, the quantity demanded is unchanged, so ∆Q=0.– The demand curve is perfectly inelastic.– A demand curve is vertical for essential goods—goods that people feel

they must have and will pay anything to get.

Page 9: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-9

3.1 Elasticity

• Other Elasticity: Income Elasticity, (∆Q/Q)/(∆Y/Y)– Income elasticity is the percentage change in the quantity demanded

divided by the percentage change in income Y.– Normal goods have positive income elasticity, such as avocados.– Inferior goods have negative income elasticity, such as instant soup.

• Other Elasticity: Cross-Price Elasticity, (∆Q/Q)/(∆po/po)– Cross-price elasticity is the percentage change in the quantity demanded

divided by the percentage change in the price of another good, po

– Complement goods have negative cross-price elasticity, such as cream and coffee.

– Substitute goods have positive cross-price elasticity, such as avocados and tomatoes.

Page 10: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-10

3.1 Elasticity

• Demand Elasticities over Time– The shape of a demand curve depends on the time period under consideration.– It is easy to substitute between products in the long run but not in the short

run.– A survey of hundreds of estimates of gasoline demand elasticities across many

countries (Espey, 1998) found that the average estimate of the short-run elasticity was –0.26, and the long-run elasticity was –0.58.

• Other Elasticities– The relationship between any two related variables can be summarized by an

elasticity.– A manager might be interested in the price elasticity of supply—which indicates

the percentage increase in quantity supplied arising from a 1% increase in price.

– Or, the elasticity of cost with respect to output, which shows the percentage increase in cost arising from a 1% increase in output.

– Or, during labor negotiations, the elasticity of output with respect to labor, which would show the percentage increase in output arising from a 1% increase in labor input, holding other inputs constant.

Page 11: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-11

3.1 Elasticity

• Estimating Demand Elasticities– Managers use price, income, and cross-price elasticities to set prices.– However, managers might need an estimate of the entire demand curve to have

demand elasticities before making any real price change. The tool needed is regression analysis.

• Calculation of Arc Elasticity– To calculate an arc elasticity, managers use data from before the price change and

after the price change. – By comparing quantities just before and just after a price change, managers can be

reasonably sure that other variables, such as income, have not changed appreciably.

• Calculation of Elasticity Using Regression Analysis– A manager might want an estimate of the demand elasticity before actually making

a price change to avoid a potentially expensive mistake.– A manager may fear a reaction by a rival firm in response to a pricing experiment,

so they would like to have demand elasticity in advance.– A manager would like to know the effect on demand of many possible price changes

rather than focusing on just one price change.

Page 12: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-12

3.1 Own price elasticity of demand: Further applications

Own price elasticity: A measure of the responsiveness of the quantity demanded of a good to a change in the price of that good;

Demand is elastic if the absolute value of the own price elasticity is greater than 1. Consumers are relatively responsive to price changes.

Demand is inelastic if the absolute value of the own price elasticity is less than 1. Consumers are relatively unresponsive to price changes.

Demand is unitary elastic if the absolute value of the own price elasticity is equal to 1. Consumers’ response and price change are in same proportion.

Ed approaches 0, demand is perfectly inelastic. Consumers are very insensitive to price change

Page 13: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-13

Determinants of price elasticity Demand

Various factors influence the price elasticity of demand. Here are some of them:

1. # of Substitutes: If a product can be easily substituted, its demand is elastic, like Gap's jeans. If a product cannot be substituted easily, its demand is inelastic, like gasoline.

2. Luxury Vs Necessity: Necessity's demand is usually inelastic because there are usually very few substitutes for necessities. Luxury product, such as leisure sail boats, are not needed in a daily bases. There are usually many substitutes for these products. So their demand is more elastic.

3. Price/Income Ratio: The larger the percentage of income spent on a good, the more elastic is its demand. A change in these products' price will be highly noticeable as they affect consumers' budget with a bigger magnitude. Consumers will respond by cutting back more on these product when price increases. On the other hand, the smaller the percentage of income spent on a good, the less elastic is its demand.

4. Time lag: The longer the time after the price change, the more elastic will be the demand. It is because consumers are given more time to carry out their actions. A 1-day sale usually generate less sales change per day as a sale lasted for 2 weeks.

Page 14: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-14

Relationship between price elasticity of Demand and Total revenue

Total Expenditure = P x Q Market demand measures the quantity (Q) at each price (P)

Total Expenditure = Total Revenue

Page 15: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-15

Page 16: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-16

Page 17: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-17

Page 18: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-18

Cross price elasticity of demand

Page 19: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-19

Income elasticity of demand

• Income elasticity: A measure of the responsiveness of the demand for a good to changes in consumer income; the percentage change in quantity demanded divided by the percentage change in income

• If the percentage change is not given in a problem, it can be computed using the following formula:

Ey = {(Q1-Q2) / [1/2 (Q1+Q2)] } / (Y1-Y2) / [1/2 (Y1 + Y2)] Characteristics:Ey > 1, Qd and income are directly related. This is a normal good and it is income elastic.0< Ey<1, Qd and income are directly related. This is a normal good and it is income inelastic.Ey < 0, Qd and income are inversely related. This is an inferior good.Ey approaches 0, Qd stays the same as income changes, indicating a necessity

Example:If income increased by 10%, the quantity demanded of a product increases by 5 %. Then the

coefficient for the income elasticity of demand for this product is::Ey = percentage change in Qx / percentage change in Y = (5%) / (10%) = 0.5 > 0, indicating this is a

normal good and it is income inelastic.

Page 20: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-20

Page 21: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-21

Importance of elasticity

• Relationship between changes in price and total revenue

• Importance in determining what goods to tax (tax revenue)

• Importance in analysing time lags in production• Influences the behaviour of a firm

Page 22: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-22

Price elasticity of supply

Page 23: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-23

A supply curve for which demand declines as quantity rises

Page 24: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-24

A supply curve for which price elasticity is unitary

Page 25: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-25

Determinants of supply elasticity

1. Flexibility of inputs2. Mobility of inputs3. Ability to produce substitute inputs4. Time

Page 26: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-26

Uses of elasticity

• Pricing. • Managing cash flows. • impact of changes in competitors’ prices. • Impact of economic booms and recessions. • Impact of advertising campaigns.

Page 27: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-27

Uses of elasticity

Example 1: Pricing and Cash Flows

•According to an FTC Report by Michael Ward, AT&T’s own price elasticity of demand for long distance services is -8.64. AT&T needs to boost revenues in order to meet it’s marketing goals.

•To accomplish this goal, should AT&T raise or lower it’s price?

Example 2: Quantifying the Change

•If AT&T lowered price by 3 percent, what would happen to the volume of long distance telephone calls routed through AT&

Example 3: Impact of a Change in a Competitor’s Price

•According to an FTC Report by Michael Ward, AT&T’s cross price elasticity of demand for long distance services is 9.06. If competitors reduced their prices by 4 percent, what would happen to the demand for AT&T services?

Page 28: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-28

Interpreting demand functions

• Mathematical representations of demand curves. Example:

• Law of demand holds (coefficient of Px is negative). • X and Y are substitutes (coefficient of Py is positive).

• X is an inferior good (coefficient of M is negative)

Page 29: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-29

Elasticities of linear demand functions

• If the demand function is linear and given by:

• Note that for a linear demand curve, value of elasticity depends on the particular price-quantity point at which it is calculated

Page 30: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-30

Elasticities of linear demand functions

• Example of a linear demand curve

Page 31: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-31

Elasticities of non-linear demand functions

Page 32: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-32

Graphical presentation of linear and non-linear demand curves

Page 33: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-33

3.2 Regression Analysis

A Demand Function Example

• Demand Function: Q = a + bp + e– Quantity is a function of price; quantity is on the left-hand side and the price on the

right-hand side; Q is the dependent variable and p is the explanatory variable– e is the random error– It is a linear demand (straight line).– If a manager surveys customers about how many units they will buy at various

prices, he is using data to estimate the demand function. – The estimated sign of b must be negative to reflect a demand function.

• Inverse Demand Function: p = g + hQ + e– Price is a function of quantity; price is on the left-hand side and the quantity on the

right-hand side; p is the dependent variable and Q is the explanatory variable– e is the random error– It is based on the previous demand function, so g = –a/b > 0 and h = 1/b < 0 and

has a specific linear form– If a manager surveys how much customers were willing to pay for various units of a

product or service, he would estimate the inverse demand equation.– The estimated sign of h must be negative to reflect an inverse demand function.

Page 34: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-34

3.2 Regression Analysis

Page 35: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-35

3.2 Regression Analysis

Multivariate Regression: p = g + hQ + iY + e• Multivariate Regression is a regression with two or more

explanatory variables, for instance p = g + hQ + iY + e• This is an inverse demand function that incorporates both

quantity and income as explanatory variables.• g, h, and i are coefficients to be estimated, and e is a random

error

Page 36: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-36

3.2 Regression Analysis

• Goodness of Fit and the R2 Statistic– The R2 (R-squared) statistic is a measure of the goodness

of fit of the regression line to the data.– The R2 statistic is the share of the dependent variable’s

variation that is explained by the regression.– The R2 statistic must lie between 0 and 1.– 1 indicates that 100% of the variation in the dependent

variable is explained by the regression.– Figure 3.5 shows a regression with R2 = 0.98 in panel a and

another with R2 = 0.54 in panel b. Data points in panel a are close to the linear estimated demand, while they are more widely scattered in panel b.

Page 37: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-37

3.3 Regression AnalysisFigure 3.5 Two Estimated Apple Pie Demand Curves with Different R2 Statistics

Page 38: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-38

3.3 Properties & Significance of Coefficients

• Key Questions When Estimating Coefficients– How close are the estimated coefficients of the demand equation

to the true values, for instance â respect to the true value a? – How are the estimates based on a sample reflecting the true

values of the entire population? – Are the sample estimates on target?

• Repeated Samples – We trust the regression results if the estimated coefficients were

the same or very close for regressions performed with repeated samples (different samples).

– However, it is costly, difficult, or impossible to gather repeated samples or sub-samples to assess the reliability of regression estimates.

– So, we focus on the properties of both estimating methods and estimated coefficients.

Page 39: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-39

3.3 Properties & Significance of Coefficients

• OLS Desirable Properties – Ordinary Least Squares (OLS) is an unbiased estimation

method under mild conditions. It produces an estimated coefficient, â, that equals the true coefficient, a, on average.

– OLS estimation method produces estimates that vary less than other relevant unbiased estimation methods under a wide range of conditions.

• Estimated Coefficients and Standard Error– Each estimated coefficient has an standard error.– The smaller the standard error of an estimated coefficient,

the smaller the expected variation in the estimates obtained from different samples.

– So, we use the standard error to evaluate the significance of estimated coefficients.

Page 40: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-40

3.3 Properties & Significance of Coefficients

A Focus Group Example

Page 41: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-41

3.3 Properties & Significance of Coefficients

• Confidence Intervals– A confidence interval provides a range of likely values for the true

value of a coefficient, centered on the estimated coefficient.– A 95% confidence interval is a range of coefficient values such

that there is a 95% probability that the true value of the coefficient lies in the specified interval.

• Simple Rule for Confidence Intervals– Rule: If the sample has more than 30 degrees of freedom, the

95% confidence interval is approximately the estimated coefficient minus/plus twice its estimated standard error.

– A more precise confidence interval depends on the estimated standard error of the coefficient and the number of degrees of freedom. The relevant number can be found in a t-statistic distribution table.

Page 42: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-42

3.3 Properties & Significance of Coefficients

• Hypothesis Testing– Suppose a firm’s manager runs a regression where the demand for the firm’s product is a function

of the product’s price and the prices charged by several possible rivals. – If the true coefficient on a rival’s price is 0, the manager can ignore that firm when making

decisions. – Thus, the manager wants to formally test the null hypothesis that the rival’s coefficient is 0.

• Testing Approach Using the t-statistic– One approach is to determine whether the 95% confidence interval for that coefficient includes

zero.– Equivalently, the manager can test the null hypothesis that the coefficient is zero using a t-

statistic. The t-statistic equals the estimated coefficient divided by its estimated standard error. That is, the t-statistic measures whether the estimated coefficient is large relative to the standard error.

• Statistically Significantly Different from Zero– In a large sample, if the t-statistic is greater than about two, we reject the null hypothesis that the

proposed explanatory variable has no effect at the 5% significance level or 95% confidence level.– Most analysts would just say the explanatory variable is statistically significant.

Page 43: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-43

3.4 Regression Specification

• Selecting Explanatory Variables– A regression analysis is valid only if the regression

equation is correctly specified.• Criteria for Regression Equation Specification

– It should include all the observable variables that are likely to have a meaningful effect on the dependent variable.

– It must closely approximate the true functional form.– The underlying assumptions about the error term should

be correct.– We use our understanding of causal relationships, including

those that derive from economic theory, to select explanatory variables.

Page 44: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-44

3.4 Regression Specification

• Selecting Variables, Mini Case: Y = a + bA + cL + dS + fX + e– The dependent variable, Y, is CEO compensation in 000 of dollars.– The explanatory variables are assets A, number of workers L, average

return on stocks S and CEO’s experience X.– OLS regression: Ŷ= –377 + 3.86A + 2.27L + 4.51S + 36.1X– t-statistics for the coefficients for A, L, S and X : 5.52, 4.48, 3.17 and 4.25.– Based on these t-statistics, all 4 variables are ‘statistically significant.’

• Statistically Significant vs. Economically Significant– Although all these variables are statistically significantly different than

zero, not all of them are economically significant.– For instance, S is statistically significant but its effect on CEO’s

compensation is very small: an increase in shareholder return of one percentage point would add less than $5 thousand per year to the CEO’s wage.

– So, S is statistically significant but economically not very important.

Page 45: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-45

3.4 Regression Specification

• Correlation and Causation– Two variables are correlated if they move together. The q demanded and p are

negatively correlated: p goes up, q goes down. This correlation is causal, changes in p directly affect q.

– However, correlation does not necessarily imply causation. For example, sales of gasoline and the incidence of sunburn are positively correlated, but one doesn’t cause the other.

– Thus, it is critical that we do not include explanatory variables that have only a spurious relationship to the dependent variable in a regression equation. In estimating gasoline demand we would include price, income, sunshine hours, but never sunburn incidence.

• Omitted Variables– These are the variables that are not included in the regression specification

because of lack of information. So, there is not too much a manager can do.– However, if one or more key explanatory variables are missing, then the resulting

coefficient estimates and hypothesis tests may be unreliable.– A low R2 may signal the presence of omitted variables, but it is theory and logic

that will determine what key variables are missing in the regression specification.

Page 46: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-46

3.4 Regression Specification

• Functional Form– We cannot assume that demand curves or other economic

relationships are always linear.– Choosing the correct functional form may be difficult. – One useful step, especially if there is only one explanatory

variable, is to plot the data and the estimated regression line for each functional form under consideration.

• Graphical Presentation– In Figure 3.6, the quadratic regression (Q = a + bA + cA2 +

e) in panel b fits better than the linear regression (Q = a + bA + e) in panel a.

Page 47: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-47

3.4 Regression Specification

Figure 3.6 The Effect of Advertising on Demand

Page 48: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-48

3.4 Regression Specification

• Extrapolation– Extrapolation seeks to forecast a variable as a

function of time.– Extrapolation starts with a series of observations

called time series. – The time series is smoothed in some way to

reveal the underlying pattern, and this pattern is then extrapolated into the future.

– Two linear smoothing techniques are trend line and seasonal variation.

– Not all time trends are linear.

Page 49: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-49

3.4 Regression Specification

• Trend Line: R = a + bt + e, where t is time– If this is the trend for Heinz Revenue, a and b are the coefficients

to be estimated.– The estimated trend line is R = 2,089 + 27.66t, with statistically

significant coefficients.– Heinz could forecast its sales in the first quarter of 2014, which is

quarter 37, as 2089 + (27.66 × 37) = $3.112 billion.

• Seasonal Variation: R = a + bt + c1D1 + c2D2 + c3D3 + e

– Heinz revenue data shows a quarterly trend that is captured with seasonal dummy variables, D1, D2, and D3.

– The new estimated trend is R = 2,094 + 27.97t + 93.8D1 – 125.3D2 – 8.60D3, with all coefficients statistically significant.

– The forecast value for the first quarter of 2014 is 2094 + (27.97 × 37) + (93.8 × 1) – (125.3 × 0) – (8.60 × 0) = $3.223 billion.

Page 50: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-50

3.5 Forecasting

• Theory-Based Econometric Forecasting – We estimated Heinz revenue with time trend and dummy

seasonal variables. However, revenue is determined in large part by the consumers’ demand curve, and the demand is affected by variables such as income, population, and advertising. Extrapolation (pure time series analysis) ignored these structural (causal) variables.

– Theory-based econometric forecasting methods incorporate both extrapolation and estimation of causal or explanatory economic relationships.

– We use these estimates to make conditional forecasts, where our forecast is based on specified values for the explanatory variables.

Page 51: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-51

Managerial Solution

• Managerial Problem– How can managers use the data to estimate the demand curve facing iTunes?

How can managers determine if a price increase is likely to raise revenue, even though the quantity demanded will fall?

• Solution– To generate data, authors asked a focus group of 20 Canadian college students

in 2008 how many songs they downloaded from iTunes when p was 99¢ and how many they would have downloaded at various other prices.

– The estimated linear demand curve is Q = 1024 – 413p.– The t-statistic is –12.8, so this coefficient for price is significantly different from

zero. The R2 statistic is 0.96, so the regression line fits the data closely.– Apple’s manager could use such an estimated demand curve to determine how

revenue (R = p × Q), varies with price. At p = 99¢, 615 songs were downloaded, so R1 = $609. When p = $1.24, the number of songs drop to 512, R2 = $635. Revenue increased by $26.

– If the general population has similar tastes to the focus group, then Apple’s revenue would increase if it raised its price to $1.24 per song.

Page 52: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-52

Figure 3.2 Vertical and Horizontal Demand Curves

Page 53: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-53

Table 3.1 Data Used to Estimate the Portland Fish Exchange Cod Demand Curve

Page 54: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-54

Figure 3.3 Observed Price-Quantity Data Points for the Portland Fish Exchange

Page 55: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-55

Figure 3.4 An Estimated Demand Curve for Cod at the Portland Fish Exchange

Page 56: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-56

Table 3.2 Regressions of Quantity on Advertising

Page 57: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-57

Figure 3.7 Heinz’s Quarterly Revenue: 2005–2012

Page 58: Chapter 3 Empirical Methods for Demand Analysis Michelo Hambayi THE UNIVERSITY OF LUSAKA

© 2014 Pearson Education, Inc. All rights reserved. 3-58

Figure 3.8 iTunes Focus Group Demand and Revenue Curves