72
Electronics I - PN Junction [email protected] 1 p++ n N A >> N D A K Chapter 3 Fall 2017

Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) [email protected] 2 • When N-type and P-type dopants are introduced

  • Upload
    others

  • View
    11

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

ElectronicsI- PNJunction

[email protected] 1

p++ n

NA >>ND

A K

Chapter3

Fall2017

Page 2: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNJunction(Diode)

[email protected] 2

• WhenN-typeandP-typedopantsareintroducedside-by-sideinasemiconductor,aPNjunctionoradiodeisformed.

source:RazaviJUNCTION

Page 3: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

DiodeI/Vcharacteristics• Ourgoalistofindoutthecurrent-voltagecharacteristicsofthe

device

• Diodeoperationregions:– Equilibrium=opencircuitterminals=nobias– Forwardbias– Reversebias– (Breakdown)

[email protected] 3

D

DEquilibrium

D

D

“smoke”

ΦB

Page 4: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNJunctioninEquilibrium(noBiasapplied)

• Becauseeachsideofthejunctioncontainsanexcessofholesorelectronscomparedtotheotherside,thereexistsalargeconcentrationgradient.Therefore,adiffusioncurrent flowsacrossthejunctionfromeachside.

[email protected] 4source:Razavi

nn0

pn0 np0

pp0+ND < NA

nn0≈ND

pn0≈ni2/ND

pp0≈NA

np0≈ni2/NA

Page 5: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNjunctioninEquilibrium(nobiasapplied)• Diffusionacrossthejunctioncausesalotofelectronsandholestorecombineleavinga

depletionregioninproximityofthejunction• Thefixedionsleftbehindcreateanelectricfield• TheelectricfieldopposesthediffusionofholesintheNregionandfreeelectronsintheP

region• Oncetheelectricfieldisstrongenoughtostopthediffusioncurrentsthejunctionreaches

equilibrium– A“barrier”opposingdiffusionforms

5

−−−−−−−−−−−−−−−−−−

++++++++++++++++++++++++++++++++++++

−−

++

++

FreeElectrons

PositiveDonorIons

NegativeAcceptorIons

FreeHoles

DepletionRegion

PNND <NA

Page 6: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Depletionapproximation• WhathappensinsidethePNjunctioninequilibriumisnotquiteasblackandwhiteasdepicted

[email protected] 6

ρ(x) = q p0 (x)− n0 (x)+ ND − NA( )

• OntheN-sideofthetransitionregion(0<x<xn0),sincetherearenoacceptors(NA =0)andtheholeconcentrationisnegligible(p0 ≈0)

• Sincen0(x)<ND ontheN-sideofthetransition(andevenmoresoontheP-sideofthetransition)thereisaroll-offinelectronconcentration

ρ(x) = q p0 (x)− n0 (x)+ ND − NA( ) ≈ q −n0 (x)+ ND( )

source:Howe&Sodini

Page 7: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Depletionapproximation

[email protected] 7

• Thedepletionapproximation assumesthatthemobilecarriers(nandp)aresmallinnumbercomparedtothedonorandacceptorionconcentrations(ND andNA)inthedepletionregion(SCR),andthedeviceischarge-neutralelsewhere(QNR)

• Depletionapproximation

– NA >>pp henceρ ≈−qNA for−xp ≤x≤0– ND >>nn henceρ ≈qND for0≤x≤xn– Thechargedensityisnegligibleinthebulkregions;thatisρ ≈0forx>xn andx<−xp

• OntheP-sideofthetransitionregion(−xp <x<0),sincetherearenodonors(ND =0)andtheelectronsconcentrationisnegligible(n0 ≈0)

• Sincep0(x)<NA ontheP-sideofthetransitionregion(andevenmoresoontheN-sideofthetransition)thereisaroll-offinholeconcentration

ρ(x) = q p0 (x)− n0 (x)+ ND − NA( ) ≈ q p0 (x)− NA( )

source:Howe&Sodini

Thatis,therearenofreemobilechargesindepletionregion

Page 8: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Onemoretime…

• aa

[email protected] 8

source:Sodini

(P-side)

(N-side)=0

=0 ≈0(minoritycarriers)

≈0(minoritycarriers)

Na >>p0(depletionapproximation)

Nd >>n0(depletionapproximation)

P-type N-type

NOTE:fortheexampleinthispictureNA<ND

Page 9: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Depletionapproximation

[email protected] 9

Depletionapproximationmeansweassumethechargedensityineachtransitionregiontobeuniform

Chargedensity

x

qND

−qNA

+

source:G.W.Neudeck

Page 10: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNjunctioninEquilibrium(nobiasapplied)

• Sincethecircuitisopennocurrentsexists• Thereforeinequilibriumthedriftcurrents

resultingfromtheelectricfieldgeneratedbythefixedionsinthedepletionregionmustexactlycancelthediffusioncurrents

• Thismustholdforbothtypesofchargecarriers:Jn =Jp =0

• Let’stakeoneofthetwoequationsandtrytosolveit:

10

−−−−−−−−−−−−−−−−−−

++++++++++++++++++++++++++++++++++++

−−

++

++

FreeElectrons

PositiveDonorIons

NegativeAcceptorIons

FreeHoles

DepletionRegion

PN

ND <NA

Jp = 0 = pqµpEx − qDpdpdx

Jn = 0 = nqµnEx + qDndndx

0

nn0pn0

pp0

np0

JUNCTIONx

xp0−xn0−pµp

dVdx

= Dpdpdx

pqµpEx = qDpdpdx

Ex = − dVdx

Page 11: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Built-involtage(equilibrium)

[email protected] 11

−pµpdVdx

= Dpdpdx

− dVV (−xn0)

V (xp0)∫ =

Dp

µp

dppp(−xn0)

p(xp0)∫

V (−xn0 )−V (xp0 ) =VT lnpp0pn0

ΦB =VT lnNA

ni2 / ND

!

ΦB =VT lnNAND

ni2

nn0pn0

pp0

np0

xxp0−xn0

PN

++−−

Ex

0

ΦB+ −

++ −−

ExampleFindbuiltinvoltageofasiliconPNjunctionatroomtemperatureandwithNA ≈1018 andND ≈1017

ΦB ≅ 26mV × ln10181017

1020≅ 26mV × ln(10)× Log10

10181017

1020≅

≅ 60mV ×15≅ 900mV

depletionregion

Page 12: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNJunctioninequilibrium(nobiasapplied)

[email protected] 12

−−−−−−−−−−−−−−−−−−

++++++++++++++++++++++++++++++++++++

−−−−

++

++

DepletionRegion

PN

+

• SomeofthethermallygeneratedholesintheNregion(minoritycarrier)movestowardthejunctionandreachtheedgeofthedepletionregion.There,theyexperiencethestrongelectricforcepresentindepletionregion,andgetsweptallthewayintothePregion(wheretheybecomemajoritycarriers).

• Thesamehappenforthethermallygeneratedminoritycarriers (freeelectrons)inthePregion.

• Atequilibriumtheflowofcarrierssweptbytheelectricfield(drift)andtheflowofcarriersduethegradientincarriersconcentration(diffusion)cancelout

ID =Idiff – Idrift =0

Ex

IdriftIdiff+ −ΦB

PN ID

−−−−−−

+++++++++

VD

Page 13: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

WidthoftheDepletionregioninequilibrium

13

−−−−−−−−−−−−

++++++++++++++++++++++++

−−−−

++

++

PN

−xn0 +xp00E

metalcontact

AK

metalcontact

−xn0 +xp0x

concentration[cm−3]pp0=NA

np0≈ni2/NA

nn0=ND

pn0≈ni2/ND

W=Xd0

IdriftIdiff

−xn0 x+xp0

ρ =chargedensity[Cb/cm−3]

−qNA

+qND

|Q−|=qNAAxp0|Q+|=qNDAxn0

Page 14: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

WidthoftheDepletionregioninequilibrium

[email protected] 14

−xn0 x+xp0

ρ =chargedensity[Cb/cm−3]

−qNA

+qND

|Q−|=qNAAxp0|Q+|=qNDAxn0

Chargeconservation:

|Q+ |= |Q− | !QJ 0

"AqNDxn0 = AqNAxp0"

NDxn0 = NAxp0E(x)

x−xn0 +xp0

E(0) =

−qNAxp0ε si

= −qNDxn0ε si

! Emax

PoissonEquation:dEdx

= ρε si

!

dE = ρε sidx Aslongasweknowhowtocompute

theareaofarectanglewearefinewiththemath!!!Permittivityofcrystallinesilicon:

εsi ≈11.7×8.85×10−12F/mεr ε0

Page 15: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

• Let’sgofromtheelectricfieldtothevoltage

[email protected] 15

WidthoftheDepletionregioninequilibrium

−E(x)

x−xp0 +xn0

qNAxp0ε si

= qNDxn0ε si

E(x) = − dΦ0

dx⇔ − E(x) ⋅dx = dΦ0

Φ0(x)

xArea“red”triangle

12qNDxn0

2

ε siArea“blue”triangle=

Area“blue”triangle

12qNAxp0

2

ε siArea“red”triangle=

0

Aswemoveinthexdirection(from–xp0 toxn)theareaunder–E(x)keepsgrowing

NOTE: forconvenienceIflippedtheorientationofthep-sideandthen-sidewithrespecttothexdirectionsothenameofthedepletionregion’sedgeatthep-sidebecomes–xp0 andthenameofthedepletionregion’sedgeatthen-sidebecomes+xn0

ΦB=Φ0 (xn0)−Φ0(−xp0)

ΦB =12qNAxp0

2

ε si+ 12qNDxn0

2

ε si

ΦB+−

E

− ++

parabolaN

parabolaP

source:Howe&Sodini

Page 16: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Metal-SemiconductorContactPotential

• Atfirstglancewouldseemstrangethatthepotentialdropsatthecontactswouldhavetoadduptothebuiltinpotentialofthejunction.Werethisisnotthecase,KVLwouldimplythatcurrentwouldflowinthermalequilibriumwhenaresistorisconnectedacrossthemetalcontactstothepandnregion.Thisconclusionviolateourbasicunderstandingofthemeaningofequilibrium:namelythenetcurrentmustbezeroinequilibrium

[email protected] 16

source:Howe&Sodini

Page 17: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

[email protected] 17

WidthoftheDepletionregioninequilibrium

W = xp0 + xn0W = xn0 1+

ND

NA

⎛⎝⎜

⎞⎠⎟= xn0

NA + ND

NA

⎛⎝⎜

⎞⎠⎟

W = xp0 1+NA

ND

⎛⎝⎜

⎞⎠⎟= xp0

NA + ND

ND

⎛⎝⎜

⎞⎠⎟NAxp0 = NDxn0

Chargeneutrality:

xn0 =WNA

NA + ND

⎛⎝⎜

⎞⎠⎟

xp0 =WND

NA + ND

⎛⎝⎜

⎞⎠⎟

ΦB =qNA

2ε sixp0

2 + qND

2ε sixn0

2 ΦB =qNA

2ε siW 2 ND

NA + ND

⎛⎝⎜

⎞⎠⎟

2

+ qND

2ε siW 2 NA

NA + ND

⎛⎝⎜

⎞⎠⎟

2

ΦB =q2ε si

W 2 NAND2 + NDNA

2

NA + ND( )2W 2 = 2ε si

qΦB

NA + ND( )2NAND

2 + NDNA2 =

2ε siq

ΦBNA + ND( )2

NAND (ND + NA )

W = 2ε si

qΦB

NA + ND

NAND

! Xdo xn0 =2ε siq

ΦB

NA + ND( )NAND

NA2

(NA + ND )2 = 2ε si

qΦB

NA

ND (NA + ND )

xp0 =2ε siq

ΦBND

NA(NA + ND )

Page 18: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Chargeoneithersideofthedepletionregion(inequilibrium)

[email protected] 18

QJ 0 ! |Q+ |= |Q− |= AqNDxn0

xn0 x−xp0

ρ =chargedensity[Cb/cm−3]

−qNA

+qND

|Q−|=qNAAxp0

|Q+|=qNDAxn0QJ 0 = AqNDW

NA

NA + ND

= Aq NAND

NA + ND

W

QJ 0 = AqNAND

NA + ND

2ε siq

ΦBNA + ND

NAND

= A 2ε siqNAND

NA + ND

ΦB

JunctionCharge

xn0 =WNA

NA + ND

⎛⎝⎜

⎞⎠⎟

xp0 =WND

NA + ND

⎛⎝⎜

⎞⎠⎟

=xn0

=W=Xd0

Page 19: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

EffectofbiasvoltageonthePNJunction

[email protected] 19

source:Streetman

ΦB

Φp

Φn ΦJ=ΦB−VF

ΦJ=ΦB+VR

VF=VD VR=−VD

+VD− +VD−

+VD=0−

IdiffIdrift

IdiffIdrift Idrift

Idiff

ID =0 ID>0 ID<0

ID =Idiff −Idrift

Thedriftcurrenthasthesamedirection oftheelectricfield(anditisproportionaltoit)

(a) Opencircuit(b)ForwardBias(c)ReverseBias(Equilibrium)

Jp,drift = pqµpEJn,drift = nqµnE

ΦB ΦJ ΦJ

Page 20: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNJunctionunderReverseBias

• TheexternalvoltageVR isdirectedfromtheNsidetothePside(sameasΦB),thereforetheelectricfield(ER)duetothebiasVR enhancesthebuiltinfieldE.ThedepletionregionWiswidened

• Sincethe“barrier”potentialriseshigherthaninequilibriumitgetsharderforthemajoritycarrierstocrossthejunctionandeasierfortheminoritycarriertobeswept(drifted)acrossthejunction.

• Thecurrentcarriedunderreversebiasisnegligibletheminoritycarriersaretoofew!!

[email protected] 20

VR=−VD VR=−VD

ID

−ΦB + −ΦB +

source:Millman &Halkias

source:Razavi

Equilibrium(opencircuit)

ReverseBias

+ ΦB −E

E

ER

+ ΦJ − ΦJ =ΦB +VR

Page 21: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNjunctionunderreversebias

[email protected] 21

KVL:VD +Φmn +ΦJ +Φmn =0

ΦJ=−VD −Φmn −Φmp =ΦB−VD

=ΦBpotentialbarrierinequilibrium

potentialbarrierinnon-equilibrium

source:Howe&Sodini

Page 22: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNjunctionunderreversebias

22

Example:

PNjunctionunderreversebiasesVD=−2.4VandVD=−6.4V

AssumingthepotentialbarrierinequilibriumisΦB =0.8V

AsthePNjunctiongetsmorereversebiased• thedepletionregion Xd =xp +xn becomes

wider• thepotentialbarrier becomesstronger

(a)chargedensity(b)electricfield(c)potential

source:Howe&Sodini

Page 23: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

ApplicationofReverseBiasedPNJunction:VoltageDependentcapacitor

• AreversebiasedPNjunctioncanbeusedasacapacitor.ByvaryingVR,thedepletionwidthchanges,andsodoesthecapacitanceassociated.ThereforeareversebiasedPNjunctioncanbeseenasavoltage-dependentcapacitor.

[email protected] 23

Varactor

p

n

Qualitativelywe seethatifVR goesupthenCJ goesdownsource:Razavi

Page 24: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

CapacitanceofReverseBiasedDiode

[email protected] 24

Xd @VD= 2ε si

qΦB −VD( )NA + ND

NAND

= 2ε siq

ΦB 1−VDΦB

⎛⎝⎜

⎞⎠⎟NA + ND

NAND

= Xd0 1−VDΦB

CJ @VD= ε si ⋅AXd @VD

= qε si2

NAND

NA + ND( )1

ΦB −VD( ) =qε si2

NAND

NA + ND( )1ΦB

11−VD /ΦB( ) =

= CJ01−VD /ΦB

widthofdepletionregioninequilibrium

CJ0=junctioncapacitanceatzerobias(inequilibrium)

= CJ0 = ε siAXdo

careful:capperunitarea

Page 25: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Junctioncapacitanceofreversebiaseddiode

[email protected] 25

CJ0

VR=−VD VD=VF

ReverseVoltage ForwardVoltage

CJsource:StreetmanCJ (VD ) =

CJ0

1− VDΦB

⎛⎝⎜

⎞⎠⎟

M = CJ0

1+ VRΦB

⎛⎝⎜

⎞⎠⎟

M

• M=0.5fortheabruptPNjunctionwemodeled

• TypicalvaluesforMrangefrom0.3to0.5

• SPICEusesVJ(orPB)todenotethebuiltinvoltageinequilibrium(ΦB)

Thejunctioncapacitanceisnonlinear

Page 26: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

[email protected] 26

QJ @VD= A 2ε siq

NAND

NA + ND

ΦB −VD( ) = A 2ε siqNAND

NA + ND

ΦB 1−VDΦB

⎛⎝⎜

⎞⎠⎟=QJ 0 1−

VDΦB

=

=QJ 0 1+VRΦB

chargestoredineithersideofthedepletionregioninequilibrium

Junctioncapacitanceofreversebiaseddiode

• TherelationbetweenchargeQJ andvoltage(VR=−VD) acrossthediodeisnotlinear• ItisdifficulttodefineacapacitancethatchangeswheneverVR changes

source:Sedra &Smith

P

VP

QJ = A 2ε siqNAND

NA + ND

ΦB +VR( ) = ς ΦB +VR

= ς

2 ΦB 1+VRΦB

⎛⎝⎜

⎞⎠⎟

= CJO

1+ VRΦB

CJ @VP= dQJ

dVR VR=VP

= ddVR

ς ΦB +VR( )@VP

= ς2 ΦB +VR @VP

=

@VP @VP

squarerootlaw

𝐶"|@%&=1𝐴𝑑𝑄"𝑑𝑉-

./01/&

/A

=23

/A

/A

Page 27: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

[email protected] 27

Junctioncapacitanceofreversebiaseddiode

source:Sedra &Smith

P

VP

CJ @VP= dQJ

dVR VR=VP

≠ QJ (VR )VR VR=VP

Importantresulttorememberwhenusingnonlineardevices

/A

Page 28: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Applicationofareversebiaseddiode

[email protected] 28

LCfres

121p

=

source:Razavi

Page 29: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNJunctioninForwardBias

[email protected] 29

ID

VD=VF VD=VF

−ΦB + −ΦB +

source:Millman &Halkias

• Theelectricfield(EF)duetothebias(VF)isoppositetothebuiltinfieldE.ThedepletionregionWisshortened

• Sincethe“barrier”potentialbecomeslowerthaninequilibriumitgetseasierforthemajoritycarrierstodiffusethroughthejunctionandharderfortheminoritycarriertobeswept(drifted)acrossthejunction.

• Themajoritycarriersarealot,soweexpectaconsiderablecurrentflow:ID =Idiff −Idrift

Equilibrium(opencircuit)

+ ΦB −

+ ΦJ −ForwardBias

EFE

ΦJ =ΦB −VF

source:Razavi

p-nID

Page 30: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Diode’sCurrent/VoltageCharacteristic

[email protected] 30

ID = IS (eVDVT −1)

≈−IS

NOTE:Consider|VD/VT|≈2.3exp(2.3)≈9.97≈10

exp(−2.3)≈0.1

AtroomtemperatureVD =2.3× VT≈59.8mV≈60mV

source:Razavi

source:Streetman

−I(drift)

ID

VD

VD

ID

ID = I(drift) eqVDKT −1

⎝⎜

⎠⎟

verysteep!

Page 31: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Diode’sCurrent/VoltageCharacteristic

31

• HowcanwequantifytheI/Vbehaviorofthediode?• Weneedtolookathowelectronsandholesmoveundertheeffectofthebias

voltage• Inequilibrium:

• WithanexternalbiasvoltageappliedthesituationissimilarbutnowthepotentialbarrierisΦB – VD insteadofonlyΦB

ΦB =VT lnpp0pn0

⇔ pn0 = pp0 ⋅e−ΦB /VT ⇔ pn0 =

pp0eΦB /VT

holesatxn0holesat−xp0

−xp0 andxn0aretheedgesofthedepletionregioninequilibrium

pn = pp ⋅eVD /VT

eΦB /VT

holesatxnholesat−xp

−xp andxn aretheedgesofthedepletionregionwithnonzerobias

x

−Wp −xp 0 xn Wn

WP WN

P-side N-side

+ +−

−VD GNDA K

quasi-neutralregion

quasi-neutralregion

LawoftheJunction

np = nn ⋅eVD /VT

eΦB /VT

electrons at−xp

electronsatxnTheLawoftheJunctionrelatestheminoritycarrierconcentrationononesideofthejunctiontothemajoritycarrierconcentrationontheothersideofthejunction

np0 =nn0eΦB /VT

electronsat−xp0

electronsatxn0

Page 32: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Diode’sCurrent/VoltageCharacteristic

[email protected] 32

• WhenweapplyaforwardbiasVDthepotentialbarrierisreducedfromΦB toΦB−VD.Thisreducesthedriftfieldandupsetsthebalancebetweendiffusionanddriftthatexistsatzerobias.

• ElectronscannowdiffusefromtheNside(wheretheyaremajoritycarriers)tothePside(wheretheybecomeminoritycarriers).Similarly,holesdiffusefromthePsideintotheNside.Thismigrationofcarriersfromonesidetotheotheriscalledinjection.

• Asaresultofinjection,moreelectronsarenowpresentat–xp andmoreholesappearatxn thanwhenthebarrierwashigher

– Thereisanexcessofminoritycarriersattheedgesofthedepletionregion

• Let’smakesomesimplifyingassumptionstohelpquantifyingpn(xn),pp(−xp),nn(xn)andnp(xp)

– Thereiselectricfieldonlyinthespacechargeregion(thatisbetween–xp andxn).Theregionsfrom–Wp to–xp (a.k.a.Pbulkregion)andfromxn toWn (a.k.a.Nbulkregion)arequasi-neutral(itisliketheywereperfectconductorsandinperfectconductorsthereisnoelectricfieldinside)

Page 33: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Diode’sCurrent/VoltageCharacteristic

[email protected] 33

• Therequirementthatthebulkregionsoneithersideremaincharge-neutralevenunderappliedbias(remember:E(x)=ρ(x)/ε,sonofieldmeansnochargedensity)impliesthatanyincreasesintheminoritycarriersduetoinjectionmustbecounterbalancedbyinanincreaseofmajoritycarriers

– OnthePsideρ(x=−xp)=0impliesthat:

– OntheNsideρ(x=xn)=0impliesthat:

• Assumingthelevelofinjectionislowwecanneglecttheslightincreaseinmajoritycarrierconcentrationduetocarrierinjectionandwrite:

pp (−xp ) = NA + np (−xp ) ≈ pp0 + np (−xp )

nn (xn ) = ND + pn (xn ) ≈ nn0 + pn (xn )

pp (−xp ) ≈ pp0 ≈ NA nn (xn ) ≈ nn0 ≈ ND

np (−xp ) << pp0 pn (xn ) << nn0

Page 34: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

MinorityandMajoritycarriersconcentrationsinaforwardbiaseddiode

• ConcentrationsHowe&Sodini

[email protected] 34

xpn0np0

Quasi-neutralitydemandsthatateverypointinthequasi-neutralregions:excessminoritycarrierconcentration=excessmajoritycarriersconcentration

source:Howe

&Sodini

Page 35: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

[email protected] 35

MinorityandMajoritycarriersconcentrationsinaforwardbiaseddiode

Quasi-neutralitydemandsthatateverypointinthequasi-neutralregions:excessminoritycarrierconcentration=excessmajoritycarriersconcentration

NOTE:atthispointwedidnotputmuchthinkingintheprofileoftheminoritycarriersdiffusingintheQNRs,howeverifweassumethediffusionoccursoverashortdistancewecanapproximatethecurveswithstraightlines!

0−xp−Wp

p(−xp)

pp-QNR

Na

qPp

qNp

n(−xp)ni2

Na

x

source:Sodini

n

Page 36: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

• UnderthelowinjectionconditionwecanapproximatetheLawoftheJunctionasfollows:

[email protected] 36

pn (xn ) =pp (−xp )eΦB /VT

⋅eVD /VT ≈pp0eΦB /VT

⋅eVD /VT = pn0 ⋅eVD /VT

np (−xp ) =nn (xn )eΦB /VT

⋅eVD /VT ≈ nn0eΦB /VT

⋅eVD /VT = np0 ⋅eVD /VT

pn (xn ) ≈ pn0 ⋅eVD /VT ≈ ni

2

ND

⋅eVD /VT

np (−xp ) ≈ np0 ⋅eVD /VT ≈ ni

2

NA

⋅eVD /VT

Theconcentrationofminoritycarriersattheedgesofthespacechargeregionareanexponentialfunctionoftheappliedbias

Diode’sCurrent/VoltageCharacteristic

source:G.W.Neudeck

Page 37: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

MinoritycarriersinaforwardbiasedPNjunction

• Theexcessconcentrationofminoritycarriersattheedgesis:

• Astheinjectedcarriersdiffusethroughthequasi-neutralregionstheyrecombinewiththemajoritycarriersandeventuallydisappear.Theexcessminoritycarriersdecayexponentiallywithdistance,andthedecayconstantiscalleddiffusionlengthL.

[email protected] 37

Δnp ! np0 ⋅e

VD /VT − np0 = np0 1− eVD /VT( )

Δpn ! pn0 ⋅eVD /VT − pn0 = pn0 1− e

VD /VT( )

np (x) = Δnpe(x+xp )Ln

pn (x) = Δpne−(x−xn )

Lp

source:Sedra &Smith p+ n

Itcanbeshownthroughthecurrentcontinuityequationthatunderthelowinjectionconditiontheconcentration’sprofileoftheminoritycarriersdiffusinginthequasineutralregionsisexponential

Page 38: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

MinoritycarrierconcentrationsEquilibriumvs.ForwardBias

[email protected] 38

source:G.W.Neudeck

Page 39: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Aside(asimpletricktosimplifythemath)

[email protected] 39

• Changetheaxisselectionforthebulkregionsasfollows:

• Thiswaywecanwritetheminoritycarriersconcentrationsasfollows:np(x '') = Δnpe

−x ''Ln

pn (x ') = Δpne−x 'Lp

x '' ! 0'' ≡ −xpx ' ! 0' ≡ xn

Ln = Dnτ nLp = Dpτ p

source:G.W.Neudeck

source:G.W.Neudeck

Ln =Diffusionlengthforelectrons[m]Lp =Diffusionlengthforholes[m]Dn =Diffusioncoefficientforelectron[m2/s]Dp =Diffusioncoefficientforholes[m2/s]τn =meanlifetimeforelectrons[s]τp =meanlifetimeforholes[s]

VA = voltage applied ≡VD

Page 40: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PhysicalinterpretationofL,D,andτ

• PhysicallyLp andLn representstheaveragedistanceminoritycarrierscandiffuseintoa“sea”ofmajoritycarriersbeforebeingannihilated

• Physicallyτp andτn representstheaveragetimeminoritycarrierscandiffuseintoa“sea”ofmajoritycarriersbeforebeingannihilated

• PhysicallytheDp andDn representstheeasewithwhichholesandelectronsdiffuse

[email protected] 40

Lp !xΔpn (x)

0

∫ dx

Δpn (x)0

∫ dx

Ln !xΔnp (x)

0

∫ dx

Δnp (x)0

∫ dx

Dp ! µp

KTq

Dn ! µnKTq

Page 41: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNJunctioncurrent• Thecurrentthatflowsthroughany“transverse”sectionxmustbethe

sameandisformedbybothholesandelectrons

• Ifwelookatthecurrentthroughasectionxinthequasi-neutralregions,sinceinthequasi-neutralregionsthereisnoelectricfieldtherewillbenodrift

[email protected] 41

J(x) = Jn (x)+ Jp (x)Jn (x) = Jn,drift (x)+ Jn,diff (x)Jp (x) = Jp,drift (x)+ Jp,diff (x)

Jn (x) = Jn,diff (x) = qDn

dnp (x)dx

= q Dn

Lnnp0 e

VD /VT −1( )e(x+xp )/Lp for −Wp ≤ x ≤ −xp

J p (x) = Jp,diff (x) = −qDpdpn (x)dx

= qDp

Lp

pn0 eVD /VT −1( )e−(x−xn )/Lp for xn ≤ x ≤Wn

injectedelectronsdiffusingonP-side(minoritycarriers)

injectedholesdiffusingonN-side (minoritycarriers)

+(x+xp)/Ln

Page 42: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNJunctioncurrents• Theeasiersectionsforevaluatingthediffusioncurrentsaretheedgesofthespace

chargeregion(x=−xp andx=xn)

• Thetotalcurrentthroughasectionofthediodecanbefoundasfollows:

• Ifwemakethesimplifyingassumptionthatthereisnorecombination-generationinthespace-chargeregion,thismeansthattheelectrons/holescurrentatx=−xp andatx=xn donotchangeinthespace-chargeregionandthereforewecanwrite:

[email protected] 42

Jn (−xp ) = Jn,diff (−xp ) = qDn

Lnnp0 e

VD /VT −1( )

Jp (xn ) = Jp,diff (xn ) = qDp

Lp

pn0 eVD /VT −1( )

J = Jn (−xp )+ Jp (−xp ) = Jn (xn )+ Jp (xn )

Jn (−xp ) = Jn (xn )Jp (xn ) = Jp (−xp )

Wedonotknowhavethisvalue(yet)!

Wedonotknowhavethisvalue(yet)!

Page 43: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

PNJunctioncurrent• Thereforewecanaddtogetherthediffusioncurrentsatx=−xp andx=xn

43

J = Jn (−xp )+ Jp (xn ) = qDn

Lnnp0 e

VD /VT −1( ) + q Dp

Lp

pn0 eVD /VT −1( )

J = q Dn

Lnnp0 + q

Dp

Lp

pn0⎛

⎝⎜⎞

⎠⎟eVD /VT −1( )

ID = J × A = In,diff + I p,diff = Aq Dn

Lnnp0 + Aq

Dp

Lp

pn0⎛

⎝⎜⎞

⎠⎟eVD /VT −1( )

ID = Aq Dn

Lnni2

NA

+Dp

Lp

ni2

ND

⎝⎜⎞

⎠⎟eVD /VT −1( ) = IS eVD /VT −1( )

scalecurrent(a.k.a.saturationcurrent)

Page 44: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Minorityconcentrationsforaforwardbiasedshortbasediode

• Ifthediodeisshorttheexponentialdecayscanbeapproximatedwithstraightlines

[email protected] 44

−xp 0xn

np0

pn0

−Wp Wn

VDA GNDK

WidthNWidthP

x

ID = AqDn

WidthPnp0 +

Dp

WidthNpn0

⎝⎜

⎠⎟ eVD /VT −1( ) = IS eVD /VT −1( )

dnpdx

≈np(−xp )− n(−Wp )

WidthP=np0e

VD /VT − np0WidthP

dpndx

≈pn (xn )− pn (Wn )

−WidthN= −

pn0eVD /VT − pn0WidthN

Page 45: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Currentdensitiesintheforwardbiascase

[email protected] 45

source:G.W.Neudeck

NomatterwhichsectionxweconsiderJpandJn mustaddtothesametotalvalueJ

Page 46: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

AssumptionsusedtoderivetheIdealdiodeequation

• Depletionapproximation(indepletionregion:NA >>pp0(x),ND >>nn0(x))• Negligiblefieldsinthequasineutralregions(QNR).Thismeansthatthe

appliedvoltageVD isdroppedentirelyacrossthespacechargeregion(SCR)

• Quasi-neutralregionsthataresolongthattheinjectedcarriersallrecombinebeforereachingtheendcontacts

• Lowlevelsofinjection• Norecombination-generationinthespace-chargeregion.Thismeans

thattheelectroncurrentandtheholecurrentareconstantinthespace-chargeregion(thatisJn(−xp)=Jn(xn)andJp(xn)=Jp(−xp))

• Realdiodesmaydeviateconsiderablyfromtheidealequation.

46ID = I*S (e

VDnVT −1)

n =emissioncoefficient(a.k.a.idealityfactor)Typicallytheidealityfactornvariesfrom1to2

Page 47: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Idealdiode

[email protected] 47

ID

ISVD VD

log10|ID|

IS

y = log10 IS ⋅eVDVT

⎝⎜⎜

⎠⎟⎟= log10 IS( )+ log10 (e) ⋅

VDVT

≈ log10 IS( )+ 0.43VDVT

x =VD

dydx

≈0.43VT

at room temperature (300K ) :VT0.43

≈26mV0.43

≈60mV10

source:Sodini

every60mVthecurrentchangesbyadecade

Page 48: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Deviationsfromtheidealdiode

[email protected] 48source:Hu

IdealwithIS

VDIODE (V)

Page 49: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Idealdiodeequation• Althoughwederivedtheidealdiodeequationbysubjectingthediodetoa

forwardbias,thestepsfollowedcanalsobeappliedforthecaseofreversebias(theonlydifferenceisthatnowVD <0).

• Theequationworksforbothforwardandreverseregion.

[email protected] 49

ID

VD

ID = IS eVD /VT −1( )

source:Streetman ≈ ISeVD /VT

≈ −IS

Page 50: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Minorityconcentrationsforreversebiaseddiode

• Inforwardbias,minoritycarriersareinjectedintoquasi-neutralregions• Inreversebias,minoritycarriersareextracted(sweptaway)fromthequasi-

neutral regions• Inreversebiasthereisaverysmallamountofcarriersavailableforextraction

– ID saturatestosmallvalue

[email protected] 50

Minority-carrierdensitydistributionasafunctionofthedistancefromthejunction.(a)Forwardbiasedjunction(b)Reversebiasedjunction(Thedepletionregionisassumedsosmallrelativetothediffusionlengththatisnotindicatedinthefigure)

source:Millman &Halkias

Page 51: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

MinoritycarrierconcentrationsEquilibriumvs.ReverseBias

[email protected] 51

source:G.W.Neudeck

Page 52: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Small-signalequivalentmodelfordiode

• Examinetheeffectofasmallsignaloverlappingthebias:

[email protected] 52Figure 4.14 Development of the diode small-signal model.source:Sedra &Smith

vD (t) ≡VD + vd (t)

iD = IS evDVT −1

⎝⎜⎜

⎠⎟⎟= IS e

VD+vdVT −1

⎝⎜⎜

⎠⎟⎟

iD ≅ iD VD+diDdvD VD

(vD −VD ) = ID +diDdvD VD

vd

iD isafunctionofvD:

Q ≡ (ID,VD )

diDdvD VD

=ddvD

IS evDVT −1

⎝⎜⎜

⎠⎟⎟

⎣⎢⎢

⎦⎥⎥VD

=ISe

VDVT

VT=ISe

VDVT + IS − ISVT

=

=ID + ISVT

iD − ID ≅ gdvd ⇔ id ≅ gdvd

≡ gd

*AppliedTaylor

*

Page 53: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Small-signalequivalentmodelfordiode

• Fromasmallsignalpointofviewthediodebehavesasa(nonlinear)resistanceofvalue:

• rdiode dependsonbias:

• Inforwardbias:Inreversebias:

• Undertheassumptionthatthesignaloverlappingthebiasissmallthei-vrelationshipofthediodecanbelinearized:

[email protected] 53Figure 4.14 Development of the diode small-signal model.source:Sedra &Smith

rdiode =1gd=

VTID + IS

iD ≅ ID + gdvd = ID + idvD =VD + vd

gd =ID + ISVT

gd ≈IDVT

gd ≈ 0

rdiode =1/gd

Page 54: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Small-signalequivalentmodelfordiode• Besideshavingcurrentflowingthroughit(resistivebehavior)thediode

alsoexhibitchargedisplacementmechanismsthatcanbemodeledasacapacitivebehavior

• Thechargeresponsetothevoltageappliedacrossthediodeisnon-linear

• Aslongasthevoltagesignalsuperimposedtothebiasvoltageissmall,therelationshipbetweenchargeandvoltagecanbelinearized.

• Completesmallsignalmodelfordiode

[email protected] 54

vD =VD + vd ≡Cdiode

qD ≈QD VD+dqDdvD VD

(vD −VD ) =QD VD+Cdiode ⋅ vd

rdiode Cdiode

Page 55: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

[email protected] 55

CapacitiveeffectsinthePNjunction• Diodeshavetwocapacitiveeffects

• But…pleasecareful:therearewaytoomanyletters“D”:

– depletioncapacitance=junctioncapacitance=CJ– diffusioncapacitance=storagecapacitance=CS– Cdiode =CJ+CS

• Wealreadyknowquiteabitaboutthejunctioncap.thatdevelopswhenthediodeisinreversebias(…butwhataboutforwardbias?)

• Sofarwedidnoteventhinkabouttheexistenceofstorage(diffusion)capacitance

• Weneedtodigmoreintothecapacitiveeffects…

Cdiode

A

K

CJ

A

K

CS

Page 56: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

JunctionCapacitance

[email protected] 56BehaviorofjunctioncapacitanceasafunctionofbiasvoltageVD

(Chawla-Gummel)

≡ΦB≡ΦB

2

SPICE

≈ 2×CJ 0

ForHandCalculation

source:Gray,Hurst,LewisandMeyer

Page 57: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

JunctionCapacitance• Earlier,wederivedthecapacitanceassociatedwithdepletionregion

(junctioncapacitance)forareversebiased diodeas:

• UndersignificantforwardbiasVD >ΦB/2theapproximationthattherearenomobilecarriersinthedepletionregionbecomesinvalid(thiswasthebasicassumptionbehindthederivation!!)

• Therefore,underforwardbias acommonapproximationistotakethevalueofCJ atVD =ΦB/2(orbeingslightlymorepessimistic)

[email protected] 57

Cj VD=

CJO

1− VDΦB

CJO = zero-biasjunctioncapacitance = A εsiq2⋅NAND

NA + ND

⋅1ΦB

Cj VD=ΦB2=

CJO1−1/ 2

= 2 ×CJO ≈ 2×CJO

Page 58: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Diffusioncapacitance• Thediffusioncapacitanceisduetochargecarrierstorage

occurringinQNRs(tomaintainquasi-neutrality)

[email protected] 58

0−xp−Wp

p(−xp)

pp-QNR

Na

qPp

qNp

n(−xp)ni2

Na

x

Majority(+)

Minority(−)

Majority(−)

Minority(+)

qPn =qA2

Wn − xn( ) ni2

Nd

eVDVT −

ni2

Nd

⎝⎜⎜

⎠⎟⎟= −qNn

n(−xp ) =ni2

Na

eVDVT

WhathappentothemajoritycarriersintheQNRs?

minoritycarrierschargeinQNRs?

p(xn ) =ni2

Nd

eVDVT

Let’scomputechargeinminoritycarriers“triangles”:

qNp = −qA2

Wp − xp( ) ni2

Na

eVDVT −

ni2

Na

⎝⎜⎜

⎠⎟⎟= −qPp

Quasi-neutralitydemandsthatateverypointinthequasi-neutralregions:excessminoritycarrierconcentration=excessmajoritycarriersconcentration

n

Page 59: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Diffusioncapacitance• Let’sexaminewhathappenwhenweapplyasmallincreasein

voltage(vD=VD+vd=VD+ΔvD)

[email protected] 59

SmallincreaseinVD

SmallincreaseinqPn

SmallincreaseinqNn

Behavesasacapacitorofcapacitance:

n(xn)[forVD+vd]n(xn)[forVD]

n

pp(xn)[forVD+vd]

p(xn)[forVD]Cdn =

dqPndvD vD=VD

=qA2

Wn − xn( ) ni2

Nd

1VTeVDVT

Page 60: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

• Ifwerecalltheequationoftheshort-basediode:

• usingsomemathmanipulationwecanrewritethediffusioncapacitanceofthen-QSRregionasafunctionoftheportionofdiodecurrentduetotheholesinn-QNR(ID,p) :

• Wedefinetransittime oftheholesthroughthen-QNRtheaveragetimeforaholetodiffusethroughN-QNR:

[email protected] 60

Cdn =qA2

Wn − xn( ) ni2

Nd

1VTeVDVT

Wn − xn( )Wn − xn( )

Dp

Dp

=1VT

Wn − xn( )2

2Dp

qAWn − xn( )Dp

ni2

Nd

eVDVT ≅

1VT

Wn − xn( )2

2Dp

ID,p

ID = AqDn

WP − xp

ni2

Na

+Dp

WN − xn

ni2

Nd

⎝⎜⎜

⎠⎟⎟ e

VD /VT −1( ) = ID,n (−xp )+ ID,p(xn )

Diffusioncapacitance

τTp ≡Wn − xn( )2

2Dp

Page 61: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

• Theninsummary:• Aside:

– wealreadyhadanamefortheaveragetimeittakesaholetodiffusethroughann-region.Itisthehole’slifetimeτp

– Infact,ifwecomputetheamountofexcesschargegivenbytheholesinn-QSRaccurately(seeslide39):

[email protected] 61

Diffusioncapacitance

τ p =Lp2

Dp

Cdn ≅ τTpID,pVT

qPn = qA pn (x ')0

∫ ⋅dx ' = qA Δpne−x 'Lp

0

∫ ⋅dx ' = qA pn0 eVD /VT −1( )e

−x 'Lp

0

∫ dx ' =

= qApn0 eVD /VT −1( ) e

−x 'Lp

0

∫ dx ' = qApn0 eVD /VT −1( )Lp

Page 62: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

– Therefore:

– Similarlyfortheexcesschargeandcapacitanceinthep-QNR

– Thetotalexcesschargestoredandtheassociatedtotalcapacitanceis:

[email protected] 62

Diffusioncapacitance τ p ≡Lp2

Dp

Cdn =dqPndvD vD=VD

= qA ni2

Nd

Lp

VTeVD /VT =

Lp2

Dp

1VTqA ni

2

Nd

Dp

Lp

eVD /VT ≈ τ pID,pVT

qNp = −qA np(x '')0

∫ ⋅dx '' = −qA Δnpe−x ''Ln

0

∫ ⋅dx '' = −qAnp0 eVD /VT −1( )Ln

Cdp =−dqNpdvD vD=VD

=dqNpdvD vD=VD

=Ln2

Dn

1VTqA ni

2

Na

Dn

LneVD /VT ≈ τn

ID,nVT

qS = qPn + qNp = τ pID,p +τnID,n

Note:Theincrementinstoredelectronchargeisnegative,butresultsfromelectronsthatareinjectedfromthecathode(N-side)totheanode(P-SIDE)

CS =dqS

dvD vD=VD

=Cdn +Cdp ≈ τnID.nVT

+τ pID. pVT

Note:Theincrementinthestoredholechargecomesfrominjected holesfromtheP-SIDE(anode)totheN-side(cathode)

Page 63: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Diffusioncapacitance

[email protected] 63

0−xp−Wp

p(−xp)forVD

pp-QNR

Na

−dqNp n(−xp)forVD

ni2

Na

x

n

p(−xp)forVD+vd+dqPp

n(−xp)forVD+vd

n(xn)[forVD+vd]n(xn)[forVD]

n

pp(xn)[forVD+vd]

p(xn)[forVD]

−dqNn

+dqPn

Page 64: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Diffusioncapacitance:physicalintuition

• IfwehadlookedmorecarefullyattheexpressionsofthechargestoredintheQNRsratherthanimmediatelystartingtocrunchequationswewouldhavenoticedthat:

• Therefore,thestoredchargeqS,isproportionaltothediode’scurrentID,whichisalsoproportionaltoexp(VD/VT)−1

• Theconstantofproportionalityiscalledcharge-storagetimeortransittime

[email protected] 64

−qNp = qPp ∝ eVDVT −1

⎝⎜⎜

⎠⎟⎟

qPn = −qNn ∝ eVDVT −1

⎝⎜⎜

⎠⎟⎟

qS = qPn + qNp ∝ eVDVT −1

⎝⎜⎜

⎠⎟⎟∝ ID ⇔ qS = τT ID

CS ≅ τTIDVT

≅ τTgd =τTrdiode

Page 65: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

• Thereisaverysimpleexplanationtothisproportionality,ID istherateofminoritychargeinjectionintothediode.

• Insteadystate.Thisratemustbeequaltotherateofchargerecombination,whichisqS/τT

• Inaone-sidedjunctionthetransittimeτT istherecombinationlifetimeonthelighter-dopingside,wheremostofthechargeinjectionandrecombinationtakeplace

• Ingeneral,τT isanaverageoftherecombinationlifetimesontheN-sideandP-side

• Inanyevent,ID andqS aresimplylinkedthroughachargestoragetimeτT(a.k.a. τS)

[email protected] 65

Diffusioncapacitance:physicalintuition

Page 66: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Example

• NA >>ND– N-sideismorelightlydopedthantheP-side– DiffusionofminoritycarriersonN-sidedominates

– Theexcesschargestoredis:

– Andfinally:

[email protected] 66

Diffusioncapacitance:physicalintuition

ID ≈ ID,p(xn ) ≈ qADp

Lp

pn0eVDVT = qA

Dp

Lp

ni2

Nd

eVDVT

τ p ≡ hole lifetime ≡Lp2

Dp

τ S ≈ τ p

CS ≈ τ pIDVT

≈ τ p × gD

qS ≈ qPn ≈ τ pID,p(xn ) ≈ τ pID

Page 67: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

BiasDependenceofCJ andCS• CJ (associatedwith

chargemodulationindepletionregion)dominatesinreversebiasandsmallforwardbias

• CS (associatedwithchargestorageinQNRstomaintainquasi-neutrality)dominatesinstrongforwardbias

[email protected] 67source:Sodini

Cdiode

Cdiode

CS

CJ

VdiodeCS ∝ e

VDVT

CJ ∝1

ΦB −VD

Page 68: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

source:Sedra &Smith

Summary:B=5×1015cm−3K−3/2

ni =1×1010cm−3

Eg =1.12eV

Page 69: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

Summary:

source:Sedra &Smith

Page 70: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

TheFiveSemiconductorEquations• Poisson’sEquation:

• Electroncurrentdensity:

• Holecurrentdensity:

• Continuityofelectrons:

• Continuityofholes:

[email protected] 70

d 2Φdx2

= − ρε= − q

εp − n + ND − NA( ) E(x) = − dΦ

dxGauss ' Law

Jn = qµnE + qDndndx

Jp = qµpE − qDpdpdx

∂n∂t

= 1q∂Jn∂x

+ Gn − Rn( )

∂p∂t

= 1q∂Jp∂x

+ Gp − Rp( )

d 2Φdx2

= − dEdx

= − ρε

Page 71: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

SPICEDiodemodel

[email protected] 71

source:Antognetti &Massobrio

CJ(0)τT

ΦB

Page 72: Chapter 3 Electronics I -PN Junctionweb02.gonzaga.edu/.../EE303/HO/ch3_pnjunction.pptx.pdfPN Junction (Diode) talarico@gonzaga.edu 2 • When N-type and P-type dopants are introduced

SPICEcharacteristicofdiode

[email protected] 72SPICEsource:Antognetti &Massobrio

Example:D1 1 2 diode_1N4004.model diode_1N4004 D (IS=18.8n RS=0 BV=400 + IBV=5.00u CJO=30 M=0.333 N=2)

D2 3 4 idealmod_d.model idealmod_d D + IS=10f+ n = 0.01 + IBV=0.1n * By default BV = inf

GeneralSxntax:D[name] <anode_node> <cathode_node> <modelname>.model <modelname> D (<paramX>=<valueX> <paramY>=<valueY> ...)