5
C h a p t e r 1 2 F i r e a n d E x p l o s i o n H a z a r d s o f F i n e P o w d e r s 1 2 . 1 I n t r o d u c t i o n E x p l o s i o n - F l a m m a b l e g a s : f u e l c o n c e n t r a t i o n , l o c a l h e a t t r a n s f e r c o n d i t i o n s , o x y g e n c o n c e n t r a t i o n , i n i t i a l t e m p e r a t u r e - D u s t s : + p a r t i c l e s i z e d i s t r i b u t i o n , m o i s t u r e c o n t e n t * P o w d e r s - H i g h s u r f a c e a r e a / s m a l l s i z e ( s m a l l h e a t c a p a c i t y ) C o m b u s t i b l e p o w d e r s c a n b e e x p l o s i b l e e . g . a g r i c u l t u r a l / c h e m i c a l / c o a l / f o o d s t u f f s / m e t a l s / p h a r m a c e u t i c a l s / p l a s t i c s / w o o d w o r k i n g - O r g a n i c d u s t : h e a t i n g e m i s s i o n o f c o m b u s t i b l e g a s e s e x p l o s i o n - M e t a l s : p r o t e c t i v e o x i d e f i l m s b r e a k i n g b y s u d d e n h e a t i n g 1 2 . 2 C o m b u s t i o n F u n d a m e n t a l s ( 1 ) F l a m e s - F l a m m a b l e m a t e r i a l s + o x y g e n + i g n i t i o n s o u r c e - S t a t i o n a r y f l a m e v s . e x p l o s i o n f l a m e a c c o r d i n g t o t h e b e h a v i o r o f f l a m e f r o n t ( 2 ) E x p l o s i o n a n d D e t o n a t i o n - G e n e r a t i o n o f g a s e o u s c o m b u s t i o n p r o d u c t s r a p i d g a s e x p a n s i o n o r r a p i d p r e s s u r e i n c r e a s e - D e t o n a t i o n v s . d e f l a g r a t i o n D e t e r m i n e d b y f l a m e s p e e d ( < o r > s p e e d o f s o u n d ) w h i c h i s

Chapter 12 Fire and Explosion Hazards of Fine …...Chapter 12 Fire and Explosion Hazards of Fine Powders 12.1 Introduction Explosion - Flammable gas: fuel concentration, local heat

  • Upload
    others

  • View
    34

  • Download
    0

Embed Size (px)

Citation preview

Chapter 12 Fire and Explosion Hazards of Fine

Powders

12.1 Introduction

Explosion

- Flammable gas: fuel concentration, local heat transfer conditions,

oxygen concentration, initial temperature

- Dusts: + particle size distribution, moisture content

* Powders - High surface area / small size (small heat capacity)

Combustible powders → can be explosible

e.g. agricultural/chemical/coal/foodstuffs/metals/

pharmaceuticals/plastics/woodworking

- Organic dust :

heating → emission of combustible gases → explosion

- Metals :

protective oxide films → breaking by sudden heating

12.2 Combustion Fundamentals

(1) Flames

- Flammable materials + oxygen + ignition source

- Stationary flame vs. explosion flame

according to the behavior of flame front

(2) Explosion and Detonation

- Generation of gaseous combustion products

→ rapid gas expansion or

→ rapid pressure increase

- Detonation vs.deflagration

Determined by flame speed (< or > speed of sound) which is

governed by heat of combustion

degree of turbulence

ignition energy

* Primary vs. secondary explosion

compression wave of small explosion → increase in resuspending

particles

∵ Compression wave precedes the flame.

(3) Ignition - Simple Analysis for Ignition

Energy balance for fuel-air mixture:

Q input+ (- ΔH )[Z exp (- ERT )]Cρm, fuel=

Heat input Heat generated

V [C ρm, fuelC p, fuel+(1-C)ρm airC p, air]

dTdt

+ hA (T-T s), J/s

heat accumulation heat dissipated

where C: volumetric concentration of fuel

ρ : molar density

V: volume of fuel-and-air mixture element

A: surface area of the element

* Figure 12.1

T B→ Ignition temperature

Explosion → "Runaway" reaction

Figure 12.2 Effect of heat input

Figure 12.3 Autoignition(spontaneous ignition)

(4) Flammability Limits

- Upper and lower flammability limit, C fL, C fU

in volume % fuel

- Minimum oxygen for combustion

For C 3H 8 C fL= 2.2% by volume,

MOC= C fL⋅[moles O 2

moles fuel ] Stoich = 2.2⋅5= 11% O 2 by volume

Worked Example 12.1

Worked Example 12.2

12.3 Combustion in Dust Clouds

(1) Fundamental to Specific to Dust Cloud Explosion

(- Δ H )[Z exp (- ERT ) ]Cρ m, fuel

(- ΔH )rV → (-ΔH )r''S⋅( surface fuelvolume fuel )= (-ΔH )r''S⋅6x

* Particle size : very important

- Dispersion

- Surface area for reaction

- Specific heat of reaction

- Heat up rate

(2) Characteristics of Dust Explosion

little data on powder properties

- Minimum dust concentration

- Minimum oxygen for combustion (MOC)

- Minimum ignition temperature

- Minimum ignition energy

- Maximum explosion pressure

- Maximum rate of pressure rise

( dpdt )maxV 1/3 = K ST

As close as possible to plant conditions

Table 12.1

Table 11.2 - Explosion class ( K ST)

(3) Apparatus for Determination of Dust Explosion Characteristics

- Ignition source

- Dust dispersion

- Vertical tube apparatus Figure 12.4

(max.dust concentration, min. energy for ignition, MOC)

- Sphere apparatus Figure 12.5

(max. explosion pressure and max. rate of pressure rise)

- Godbert-Greenwald furnace apparatus (min. ignition temperature)

12.4 Control of the Hazard

(1) Introduction

- Change the process to eliminate the dust

- Design the plant to withstand the pressure generated by any

explosion

- Remove the oxygen to below MOC

- Add moisture to the dust

- Add diluent powder to the dust

(2) Ignition Sources

Flames / Smouldering / hot surfaces / welding and cutting /

friction and impact / electric spark / spontaneous heating

(3) Venting

- Simple and inexpensive method

Figure 12.6

Worked Example 12.3

(4) Suppression

- Discharging a quantity of inert gas and inert powder into the vessel

* Suppression systems

Automatic venting/advance inerting/automatic shutdown

(5) Inerting

- N2 and CO2

- Oxygen concentration < MOC

(6) Minimize Dust Cloud Formation

- Use of dense phase conveying

- Use cyclone and filters instead of settling vessels

- Dot not allow the powder stream to fall freely through the air

(7) Containment