54
Jaeger/Blalock 01/05/03 Microelectronic Circuit Design McGraw-Hill Chapter12 Operational Amplifier Applications Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock Chap 12 - 1 

Chap12-Operational Amplifier Applications

Embed Size (px)

Citation preview

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 1/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Chapter12

Operational Amplifier Applications

Microelectronic Circuit Design 

Richard C. Jaeger 

Travis N. Blalock 

Chap 12 - 1 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 2/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Chapter Goals

• Continue study of methods to determine transfer functions of circuits

containing op amps

• Introduction to active filters and switched capacitor circuits

• Explore digital-to-analog converter specifications and basic circuit

implementations

• Study analog-to-digital converter specifications and implementations

• Explore applications of op amps in nonlinear circuits, such as precision

rectifiers

• Provide examples of multivibrator circuits employing positivefeedback 

• Demonstrate use of ac analysis capability of SPICE

Chapter Goals

Chap 12 - 2 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 3/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

• Op amp is voltage follower with unity

gain over a wide range of frequencies.

• Uses positive feedback through C 1 at

frequencies above dc to realize

complex poles without inductors.

• Feedback network provides dc path

for amplifier’s input bias currents. 

The transfer function is:

 A LP ( s)Vo

( s)Vs( s)

G1G

2

C 1C 

2

 s2  sG

1G

2

C 1

G

1G

2

C 1C 2

Active Filters: Low-pass

(Transfer Function)

In standard form,

   A LP ( s) s2

 s2  s 

o

o2

 o 1

 R1 R

2C 

1C 

2  Q

C 1

C 2

 R1 R

2

 R1 R

2

Often, circuits are designed with

C 1 = C 2 = C .

Chap 12 - 3 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 4/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Active Filters: Low-pass

(Frequency Response)

For Q = 0.71, magnitude response is

maximally flat (Butterworth Filter:

Maximum bandwidth without peaking)

For Q >0 .71, response shows undesired

 peaking.

For Q < 0.71: Filter’s bandwidth

capability is wasted.

Sensitivity, represents fractional

change in parameter  P due to a given

fractional change in value of  Z.Sensitivity of  o with respect to R and

C is:

For <<  o, filter has unity gain.For >>  o, response exhibits

two-pole roll-off at 40dB/decade.

At =  o, gain of filter = Q.

Chap 12 - 4 

S  Z  P 

S  R o S C 

 o 1

2

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 5/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Active Filters: Low-pass (Example)

• Problem: Design second-order low-pass filter with maximally flatresponse.

• Given data:  f  H = 5 kHZ

• Analysis: C 1 = 2C 2 = 2C and R1 = R2 = R.

 R 1

2 oC   Q=

1

2

1/ oC  is the reactance of C at  o, R is 30% smaller than this value. Thus

impedance level of filter is set by C . If impedance level is too low, op amp

will not be able to supply current required to drive feedback network.

For a 0.01 mF capacitor at 5 kHz,

Final values: R1 = R2 = 2.26 k W,C 1 = 0.02 mF, C 2 = 0.01 mF

1

 oC 

1

104

 (108

)

3180 W

 R 3180W2

2250 W

Chap 12 - 5 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 6/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Active Filters: High-pass with Gain

(Transfer Function)

• Voltage follower in low-pass filter 

replaced by non-inverting amplifier 

with gain K , which gives an added

degree of freedom in design.

• dc paths for both op amp input bias

currents through R2 and feedback 

resistors.

 A HP 

( s) s2

 s2 s 

o

o2   

o 1

 RC 

Q R1

 R2

C 1C 

2

C 1C 2

(1 K ) R

2C 

2

 R1C 1

 

 

1

The transfer function is:

For  R1 = R2 = R and C 1 = C 2 = C ,

 o 1

 RC   Q=

1

3- K 

For  K = 3, Q is infinite; poles are on j  axis causing sinusoidal oscillations.

 K > 3 causes instability due to right-

half plane poles.31 K 

Chap 12 - 6 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 7/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Active Filters: High-pass with Gain

(Frequency Response)

• For Q = 0.71, magnitude response is maximally flat (Butterworth Filter 

response).

• Amplifier gain is constant for >  o, the lower cutoff frequency of 

the filter.

Chap 12 - 7 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 8/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Active Filters: Band-pass

(Transfer Function)

Gth

V th

s C 1C 

2

  G

th

 V 

1( s) sC 

1V 

o( s)

 A BP ( s) V o( s)

V th( s)

R3

 R1 R

3

 R2C 2 R

1C 

1

 s o s2  s

 o

o2

 o 1

 Rth R

2C 

1C 

2

  QR

2

 Rth

C 1C 

2

C 1C 

2

For C 1 = C 2 = C ,

 o 1

C Rth R

2

  QR

2

 Rth

  BW 2

 R2C 

Uses inverting op amp and its full loop gain

(ideally infinite).

 sC 2V1( s)Vo

( s) R

2

Chap 12 - 8 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 9/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Active Filters: Band-pass

(Frequency Response)

• Response peaks at  o and gain at center frequency is 2Q2

.• For <<  o or >>  o, filter response corresponds to single-pole

high-pass or low-pass filter changing at a rate of ±20dB/decade.

Chap 12 - 9 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 10/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Active Filters: Tow-Thomas Biquad

T ( s) a2 s2a

1 sa

0

 s2 s 

o

Q

 o2

General biquadratic transfer function

to represent low-pass, high-pass,

 band-pass, all-pass and notch filters:

In Tow-Thomas biquad, first op amp

is a multi-input integrator and third

op amp is simply an inverter.

V bp( s) 1

 sR1C 

V  s( s) 1

 sRC -V 

lp( s)

 

 

1

 sR2

C V 

bp( s)

V lp( s)

1

 sRC V 

bp( s)

 Abp

( s)  K s 

o

 s2  s oQ  o2

 K  R R

1

   o

1

 RC   Q

R2

 RBW

1

 R2

 Alp( s)  K 

 o2

 s2  s 

o

o

2

Thus, center frequency, Q 

and gain can each be

adjusted independently.

Chap 12 - 10 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 11/54

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 12/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Active Filters: Tow-Thomas Biquad

(Example)

• Problem: Design band-pass filter using Tow-Thomas circuit

• Given data:  f o = 5 kHZ, BW = 200 Hz, midband gain = 20

• Unknowns:  R, R1,  R2,  R3, C  

• Analysis:

Q f  o

 BW 10

 R 1

4000 C 29.4 k W   R

210 R294 k W   R

1

 R2

20 R

214.7 k W

Input resistance to the filter is set by R1.At the center frequency,

Also, first op amp must supply ac signal current to parallel combination of 

 R, R2, C . Second op amp must drive parallel combination of  R3 and C .

Third must drive R3 in parallel with R. If we choose C = 2700 pF,

 R3 can be chosen arbitrarily as long as it doesn’t load down second and

third op amps. R3 = 49.9 k W 

 X C 

1

 oC 

 R2 R1

Chap 12 - 12 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 13/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Magnitude Scaling

• Magnitude of filter impedances may all be increased or decreased by a

magnitude scaling factor  K  M , without changing  o or Q of the filter.

• To scale the magnitude of the impedance of the filter elements:

Applying magnitude scaling to low-pass filter:

 R'  K  M 

 R  C ' C 

 K  M 

    Z C 

' 1

 C '

 K  M 

Z C 

 o' 1

 K  M 

 R1

K  M 

 R2

  

C 1

 K  M 

C 2

 K  M 

1 R

1 R

2C 1C 2

 o  Q'

C 1

 K  M 

C 2

 K  M 

 K  M 

 R1

K  M 

 R2

 

 

 K  M 

 R1

 K  M 

 R2

C 1

C 2

 R1 R2 R

1 R

2Q

Chap 12 - 13 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 14/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Frequency Scaling

• Cutoff or center frequencies of filter may be scaled by a frequencyscaling factor  K  F without changing Q of the filter if each capacitor value is divided by K  F and resistor values are left unchanged.

Applying frequency scaling to low-pass filter:

 R'  R  C ' C 

 K  F 

 o

' 1

 R1 R

2C 1

 K  F 

C 2

 K  F 

 F 

 R1 R2C 1C 2

 K  F 

 o

  Q'

C 1

 K  F 

C 2

 K  F 

 R1 R

2

 R1 R2

C 1

C 2

 R1 R

2

 R1 R2

Q

Chap 12 - 14 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 15/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Switched-Capacitor Circuits

• Switched-capacitor (SC) circuits eliminate resistors in filters by

replacing them with capacitors and switches

• Resulting filters are discrete-time or sampled-data equivalents of 

the continuous-time filters discussed so far 

• Provide additional flexibility not readily available in continuous-

time form, such as inversion of signal polarity without using an

amplifier 

• SC circuits are compatible with high density MOS IC processes• SC circuits provide low-pass filters and CMOS ICs for signal

 processing and communications applications

Chap 12 - 15 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 16/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

SC Integrator 

During phase 1, input voltage is sampled and

output is constant. In phase 2, output changes

to reflect sampled information in phase 1.

Charge stored in phase 1 is:

Q1

C 1V 

V S 

vS 

n1 T 

Voltage stored on C 1 at

end of sampling interval

Change in charge stored

on C 2 in phase 2.Q

2C 

2v

O

vO

C 1

C 2

V S 

vO

nT  vO(n 1)T 

C 1

C 2

vS (n 1)T 

Output voltage at end of nth clock cycle is:

Chap 12 - 16 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 17/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Equivalence Between SC Integrator and

Continuous-Time Integrator 

Consider total charge Q s flowing from source vS through resistor  R during clock period T . For simplicity, assume vS is constant: vS = V S .

Equating this charge to charge stored on C 1

 f C  is clock frequency.

For a capacitance of 1 pF and a switching frequency of 100 kHz, theequivalent resistance is 10 MW,which is much larger than resistorsthat can be realized in ICs.

Q s  IT V  s R

 sV C T  R sV 

1

1

1

1C 

C  f  C 

T  R

Chap 12 - 17 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 18/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

 Noninverting SC Integrator 

In phase 1, input voltage is sampled and

output is constant. In phase 2, output

changes to reflect sampled information in

 phase 1.

vO

C 1C 

2

V S 

Chap 12 - 18 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 19/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Stray-Insensitive SC Circuits

In phase 1, source is connected to summing

 junction of op amp, charge C 1V  s is delivered to

C 2. Node 1 is driven by and node 2 is kept at

zero.

In phase 2, source is disconnected, output is

constant and C 1 is totally discharged. Any stray

capacitances at nodes 1 or 2 don’t introduce

errors into charge transfer process.

vO

C 1

C 2

V S 

Chap 12 - 19 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 20/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Switched-Capacitor Band-Pass Filter 

   Rth T C 

3

   R2 T C 

4

 o1

C 3C 

4

C 1C 2

f  C 

C 3C 

4

C 1C 2

  QC 

3

C 4

C 1C 

2

C 1C 

2

Center frequency is tunable just by changingclock frequency, Q is independent of frequency.

But, SC filters are sampled-data systems. Hence,

due to sampling theorem,

 f  f  

C 2

Chap 12 - 20 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 21/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Switched-Capacitor 

Tow-Thomas Biquad

• Ability of SC circuits to change polarities without an amplifier 

eliminate one op amp in the SC implementation.

Chap 12 - 21 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 22/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Digital-to-Analog (D/A) Converters

Fundamentals

• In a DAC, an n-bit binary input word (b1,b2,…bn) is combined withreference voltage V REF to give output of the DAC.

• Full-scale voltage V FS is related to V REF of the converter by V  FS = KV  REF  

where K determines converter gain commonly set to 1.

• V OS, the offset voltage of the converter characterizes the DAC outputwhen the digital input code is zero. Offset voltage is normally adjustedto zero.

• The smallest voltage change at DAC output occurs when the LSB bn in

the digital word changes from a 0 to 1 and is also called resolution.

• b1, the MSB has a weight of one-half V FS.

vO

V  FS (b

121b

222...b

n2n)V 

OS   b

i 1,0

 

V LSB

2nV  FS 

Chap 12 - 22 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 23/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

D/A Converter Specifications

Offset and Gain Errors

• Maximum output of ideal converter is

always 1 LSB smaller than V FS.

• For shown ideal DAC characteristic,

0.875 V FS corresponds to maximum

output code of 111. 

• Gain error of converter represents

deviation of slope of converter transfer 

function from that of corresponding

ideal DAC.

• Shown ideal DAC has been calibrated

so that V OS = 0 and 1 LSB is V FS /8.• Offset voltage is output of converter for 

zero binary input code.

Chap 12 - 23 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 24/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

D/A Converter Specifications

Linearity Errors

• Integral linearity error or linearityerror measures deviation of actualconverter output from straight line fittedto converter output voltages, specified asa fraction of LSB.

• Overall linearity error is magnitude of largest error that occurs.Good converter has linearity error<0.5 LSB

• Differential linearity error ismagnitude of maximum difference between each output step of converter and ideal step size of 1 LSB.

• Integral linearity error for a given binaryinput is the sum (integral) of differentiallinearity errors for inputs up through thegiven input.

Chap 12 - 24 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 25/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

D/A Converter Specifications

Monotonicity

• If the output of the DAC does not

increase in a monotonic manner if the

input code is increased, the DAC is

said to be non monotonic.

• It is possible for a monotonic

converter to have a differential

linearity error >1 LSB but, a non-

monotonic converter always has a

differential linearity error > 1 LSB

Chap 12 - 25 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 26/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Weighted-Resistor DAC

Drawbacks:

•  Need to have accurate resistor ratios over a wide range of resistor values.

• Switches in series withresistors require zero offsetvoltage and low on-resistance.

• Current drawn form referencevaries with input patterncausing change in voltage drop

in Thévenin equivalent sourceresistance of reference leadingto data-dependent errors calledsuperposition errors.

Binary input data controls the switches.

Successive resistors are progressively

weighted by a factor of 2 producing:

Linearity errors arise due to improper resistor 

ratios, op amp offset voltage adds to V OS of 

converter.

vO V REF(b121b222...bn2n)

Chap 12 - 26 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 27/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

R-2R Ladder 

• Avoids weighted-resistor DAC problem

of wide range of resistor values

• Well-suited to IC realization as itrequires matching of only two resistor 

values, R and 2 R

• The contribution of each

 bit is reduced by a factor 

of 2 going from MSB to

LSB

Drawbacks:

• Requires switches with

low on-resistance and zero

offset voltage

• Current drawn from

reference varies depending

on input data pattern

Chap 12 - 27 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 28/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Inverted R-2R Ladder 

• Currents in ladder and reference are independent of digital input

• Complementary currents are available at output of inverted ladder 

• Switches still need to have low on-resistance to minimize errors

Chap 12 - 28 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 29/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Inherently Monotonic DAC 

• Analog switch tree connects desired

tap to input of an op amp operating

as a voltage follower.

• Each tap on resistor network is

forced to produce voltage greater than or equal to the taps below it ,

forcing the output to increase

monotonically as the digital input

code increases.

• An 8-bit version requires 256equal-valued resistors, 510 switches

and additional decoding logic.

Chap 12 -

 29 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 30/54

Jaeger/Blalock 01/05/03

Microelectronic Circuit DesignMcGraw-Hill

Switched-Capacitor DACs

• Since circuits consist only of capacitors

and switches, static power dissipation

occurs only in the op amps.

• Dynamic switching losses occur.

• When switch changes state, current

impulses charge/discharge network 

capacitors, changing voltage on feedback 

capacitor by an amount corresponding to

 bit weight of switch that changed state.

• Circuits represent direct SC analogs of weighted-resistor and R-2R ladder 

DACs. Power consumption is very low.

Chap 12 -

 30 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 31/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

DACs in Bipolar Technology

Bipolar transistors aren’t good voltage switches due to their inherent offset voltage in

saturation, but they are very good current sources and switches.

• Currents switched into summing junction, supplied through R F , determine output voltage of theDAC.

• V  BE of current-source transistors must be same for proper weighting of current sources,

requiring equal current densities in the transistors. Thus, the area of each transistor is raised by

factor of 2 from LSB to MSB.

Chap 12 -

 31 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 32/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

DACs in Bipolar Technology (cont.)

Several methods can be used to overcome

 problems due to unmanageable transistor and

resistor ratios in bipolar implementations of 

DACs - splitting current sources into groups

with proper ladder termination; using an R-2 R ladder to generate weighted current sources;

driving the R-2 R ladder by equal-value

current sources.

Chap 12 -

 32 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 33/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

Reference Current Circuitry for Bipolar 

Implementations of DACs

An op amp is used to set the current

in the reference transistor.

Bipolar transistor and resistor ratio

matching determine currents in rest

of current-source network.

Chap 12 -

 33 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 34/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

Analog -to-Digital (A/D) Converters

Fundamentals

• ADC takes unknown continuous analog input signal, mostly voltagev X  and converts it into n-bit binary number, which is a binary fractionrepresenting ratio between unknown input voltage and full-scalevoltage

• For given output code, we know that value of input voltage lies withina 1-LSB quantization interval.

V  FS 

 KV REF

Quantization error occurs due to

initial underestimation and then

overestimation of input voltage by

output code.

Ideal ADC should pick values of bits

in binary word to minimizemagnitude of quantization error:

v  v

 X (b

121b

222 ...b

n2n )V 

 FS 

Chap 12 -

 34 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 35/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

A/D Converter Specifications

Offset and Gain Errors

• Differential linearity error is difference

 between actual code step width and ideal

step size of 1 LSB.

• ADC with differential linearity error<

1LSB has no missing codes.

• Gain error is deviation of slope of 

converter transfer function from that of 

corresponding ideal ADC.

• Shown ADC characteristic has offset

error of 0.5LSB first transition occurs at

a 0.5LSB higher voltage.• Good ADC is monotonic with linearity

error<0.5LSB and no missing codes over 

full temperature range.

• Integral linearity error or linearity

error is deviation of code transition

 points from their ideal positions.

• Integral linearity error is sum of 

differential linearity errors for individual

steps.

Chap 12 -

 35 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 36/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

A/D Conversion Techniques

• If v X > vREF, output voltage is high corresponding to logic 1.

• If v X < vREF, output voltage is high corresponding to logic 0.

vREF is time-dependent reference voltage, varied till unknown input is

determined within quantization error of converter.

Ideally ADC logic chooses bi so that

v X 

V  FS 

bi2i

i 1

n

V  FS 

2n 1

Chap 12 -

 36 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 37/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

Counting ADC

n-bit DAC used to generate any one of 2n outputs

 by applying appropriate digital input word. v X  

determined by sequentially comparing it to each

 possible DAC output.

•Maximum conversion time occurs for full-scale

input signal requiring 2n clock periods.

• Binary value in counter is smallest DAC voltage

larger than unknown input, not the DAC output

closest to unknown input.

• If input varies, binary output is accurate

representation of input signal value at the instantthe comparator changes state.

• Requires minimum amount of hardware,

inexpensive to implement. 

Chap 12 -

 37 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 38/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

Successive Approximation ADC

•Binary search used by SAL to determine v X .

•n-bit conversion needs n clock periods. Speed limited by

time taken by DAC output to settle within a fraction of an

LSB of V  FS and by comparator to respond to input signals

differing by small amounts.

•Slowly varying input signals not changing by more than

0.5 LSB (V  FS /2n+1 ) during conversion time (T T = nT C ) are

acceptable.

•For a sinusoidal input signal with p-p amplitude V  FS ,

•To avoid this frequency limitation, high speed sample-

and-hold circuit is used ahead of the successive

approximation ADC.

•Very popular ADC with fast conversion times, used in 8-

to 16- bit converters

 f  O

f  O

2n 2n 

Chap 12 -

 38 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 39/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

Single-Ramp (Single-Slope) ADC

•Reference voltage varies linearly with a well-

defines slope from slightly below 0 to above V  FS 

if K= V  FS / 2nT C .

•Maximum conversion time occurs for full-scale

input signal requiring 2n clock periods.•Counter output is value of v X at the time end-

of-conversion signal occurs.

•Ramp voltage can be generated using an

integrator connected to a constant reference

voltage.

•Dependence of ramp’s slope on RC productwhich is susceptible to changes due to

temperature variations or aging is a limitation of 

this ADC.

v X 

 KNT C 

v

 X 

V  FS 

2n

Chap 12 -

 39 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 40/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

Dual-Ramp (Dual-Slope) ADC

T 12nT C   T 2  NT C 

1

 RC v

 X (t )dt 

0

T 1

1

 RC V REF

(t )dt T 1

T 1

T 2

v

 X 

V REF

T 2

T 1

2n

•Absolute values of R and C don’t affect

operation.

•Digital output word gives average value of v X  

during first integration phase.

•Conversion time is given by:

•Can be used to get resolutions exceeding 20

 bits but at lower conversion rates.

T T 

(2n  N )T C 

2n 1T C 

Chap 12 -

 40 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 41/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

Dual-Ramp (Dual-Slope) ADC (cont.)

• Integrator in dual-ramp ADC has thenormalized transfer function shown.

• Sinusoidal inputs with frequencies thatare exact multiples of 1/T 1, have

integrals of zero and don’t appear atintegrator output. This property iscalled normal-mode rejection.

• Recent dual-slope ADCs include extraintegration phases for automatic offsetelimination.

• Triple ramp ADC uses coarse and finedown ramps to improve speed byfactor of 2n/ 2 for n-bit dual-rampconverter.

Chap 12 -

 41 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 42/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

Parallel or Flash ADC

• Unknown input simultaneously compared to 7

different reference voltages (3-bit converter).

Logic network encodes comparator outputs

into 3-bit binary output representing quantized

value of input voltage.

• Very high speed ( up to 108-109

conversions/sec) limited only by delays of 

comparators and logic network.

• Output continuously reflects input delayed by

comparator and logic network.

• Requires 2n-1 comparators and referencevoltages for n-bit conversion. Used for 

resolutions up to 10 bits.

Chap 12 - 42 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 43/54

Jaeger/Blalock 01/05/03 Microelectronic Circuit DesignMcGraw-Hill

Delta Sigma ADCs

Called oversampled because internal

ADC samples integrator output at 16 to

512 times Nyquist rate.Digital filter 

 produces higher resolution.

V  X 

 MT C 

 RC 

 V 

 REF 

 NT C 

 RC 

 V 

 REF 

( M  N )T C 

 RC 

 0

V  X 

V  REF 2m

 

 (2m

2 N ) If M = 2m 

 N/M is average value of binary bit

stream at output.LSB is V REF= 2m

Effective resolution is determined by the

time for which the output is averaged.

Converter operation is considerably

complex for time-varying input signals.

Feedback loop attempts to forceintegrator output to zero.

Chap 12 - 43 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 44/54

Jaeger/Blalock 

01/05/03

Microelectronic Circuit Design

McGraw-Hill

Delta Sigma ADCs: SC Implementation

• Continuous-time integrator can be replaced by

SC integrator for low-power operation.

• Charge proportional to input is added to

integrator output at each sample time and

charge given by CV REF is added or subtracted

at each sample depending on control sequence

applied to switches.

• Delta-Sigma ADCs are inherently linear due

to the 1-bit DAC.

• SC integrator suffers less from jitter than

continuous-time integrator as long as theclock interval is long enough for complete

charge transfer to occur 

Chap 12 - 44 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 45/54

Jaeger/Blalock 

01/05/03

Microelectronic Circuit Design

McGraw-Hill

 Nonlinear Circuit Applications:

Precision Half-Wave Rectifier 

• For vS > 0, vO = vS , i > 0, diode isforward-biased and feedback loop isclosed. Rectification is perfect even for small input voltages..

• For vS < 0,diode is cutoff, i = 0, vO = 0.

• Primary sources of error are gain error and offset error due to nonideal op amp.

• For negative input voltages, outputvoltage v1 is saturated at negative limit.Large negative voltages across input can

destroy unprotected op amps.• Response time of circuit is slowed down

due to slow recovery of internal circuitsfrom saturation.

vO is rectified replica of vS  

without loss of voltage drop as

in diode rectifier circuit.

Chap 12 - 45 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 46/54

Jaeger/Blalock 

01/05/03

Microelectronic Circuit Design

McGraw-Hill

 Nonlinear Circuit Applications: Non-

Saturating Precision Half-Wave Rectifier 

• For vS > 0, v1 is negative (one diode-

drop below zero), D2 is forward biased,

current in R2 is zero, vO = 0, D1 is

reverse biased. Feedback loop is closedthrough D2.

• For vS < 0, v1 is one diode-drop above

output voltage, diode D1 turns on, D2 is

off. Circuit behaves as inverting

amplifier with gain - R2

/ R1. Feedback 

loop is closed through D1 and R2.

Chap 12 - 46 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 47/54

Jaeger/Blalock 

01/05/03

Microelectronic Circuit Design

McGraw-Hill

 Nonlinear Circuit Applications: AC

Voltmeter 

Half-wave rectifier is combined

with low-pass filter to form basic

ac voltmeter.

For a sinusoidal input of amplitude

V  M and frequency  o, output is a

rectified sine wave given by its

Fourier series. If cutoff frequency

of low-pass filter  c <<  o, outputconsists primarily of dc voltage

component.

Voltmeter range can be adjusted

through the 4 resistors.

vO R

4

 R3

 R2

 R1

V  M  

 

Chap 12 - 47 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 48/54

Jaeger/Blalock 

01/05/03

Microelectronic Circuit Design

McGraw-Hill

Circuits with Positive Feedback 

Comparator 

• For inputs > V REF, output saturates at V CC .

• For inputs < V REF, output saturates at -V  EE .

• Amplifiers built for use as comparators can

handle saturation at the voltage extremes

without incurring excessive internal time

delays.

• For noisy inputs, multiple transitions may

occur as input signal crosses reference level.

Chap 12 - 48 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 49/54

Jaeger/Blalock 

01/05/03

Microelectronic Circuit Design

McGraw-Hill

Schmitt Trigger 

• Schmitt trigger uses positive feedback and

is bistable.

• For positive output voltages, V REF= bV CC .

For negative output voltages, V REF= -bV  EE .

Reference level changes when output

changes state.

• Voltage transfer characteristic exhibits

hysteresis and doesn’t respond to noise

voltage V n magnitude smaller than the

difference between the 2 threshold levels

set by the reference voltage

V n

 b V CC 

(V  EE 

)

 b (V 

CC V 

 EE )

Chap 12 - 49 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 50/54

Jaeger/Blalock 

01/05/03

Microelectronic Circuit Design

McGraw-Hill

Astable Multivibrator 

• Uses positive and negative

feedback to generate rectangular output.

• Output voltage switches

 periodically between V CC and -V  EE .

For symmetrical power supplies,

output of circuit is square wave with

 period T  

T T 1T 

22 RC ln

1 b 1 b 

Chap 12 - 50 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 51/54

Jaeger/Blalock 

01/05/03

Microelectronic Circuit Design

McGraw-Hill

Astable Multivibrator (cont.)

• Astable multivibrator can be used to generate square, triangular andsine wave outputs as shown at frequencies up to few MHz.

• Frequency is varied by changing R3 or C 3. C 3 is often changed in

decade steps.  R3 may be varied continuously using potentiometer.

Chap 12 - 51 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 52/54

Jaeger/Blalock 

01/05/03

Microelectronic Circuit Design

McGraw-Hill

Monostable Multivibrator or One Shot

• Operates with one stable state, generatessingle pulse of known duration on application

of trigger signal.•  D1 couples trigger signal into circuit,

clamping diode D2 limits negative voltageexcursion on capacitor C .

Chap 12 - 52 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 53/54

Jaeger/Blalock 

01/05/03

Microelectronic Circuit Design

McGraw-Hill

Monostable Multivibrator (cont.)

• Output of circuit consists of positive pulse with fixed duration T given by

• For well-defined pulse, circuit should not be triggered till voltages on all nodes

return to their quiescent steady-state values.

• Recovery time (return of circuit to state before trigger pulse was applied) is

given by:

T  RC ln

1V 

 D

V CC 

 

1 b 

T r  RC ln

1 b V 

CC 

V  EE 

 

1V 

 D

V  EE 

 

 

Chap 12 - 53 

7/27/2019 Chap12-Operational Amplifier Applications

http://slidepdf.com/reader/full/chap12-operational-amplifier-applications 54/54

Jaeger/Blalock Microelectronic Circuit Design

End of Chapter 12