CH01 Introduction v2

  • View
    251

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 CH01 Introduction v2

    1/56

    Sol id St a t e So l id St a t e

    Eng ineer ing Eng ineer ing Chapter 1

    Introduction

    NCHU EE, Professor F. H. Wang,e-mail :[email protected]

    2011/9/16 NCHU, EE, Prof. F. H. Wang 2

    Many Processes used inMicroelectronics Technology

    In This Book:

    Unit I: Hot (or energetic) Processes

    Unit II: Pattern Transfer (Lithography)

    Unit III: Thin Films Deposition

    Unit IV: Process Integration

  • 8/3/2019 CH01 Introduction v2

    2/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 3

    Contents (I)

    Unit I: Hot (or energetic) Processes

    Diffusion

    Thermal Oxidation

    Ion Implantation

    Rapid Thermal Processing

    2011/9/16 NCHU, EE, Prof. F. H. Wang 4

    Contents (II)

    Unit II: Pattern Transfer

    Optical Lithography

    Photoresists

    Etching

  • 8/3/2019 CH01 Introduction v2

    3/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 5

    Contents (III)

    Unit III: Thin Films

    Physical Deposition: Evaporation and

    Sputtering (chapter 12)

    Chemical Vapor Deposition (chapter 13)

    2011/9/16 NCHU, EE, Prof. F. H. Wang 6

    Contents (VI)

    Unit IV: Process Integration

    Device Isolation, Contacts, and

    Metallization

    CMOS Technologies

    IC manufacturing

  • 8/3/2019 CH01 Introduction v2

    4/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 7

    Goal of this Course

    The goal of this course is to

    teach the fundamentals of

    Microelectronic Technology

    Emphasis will be placed on

    multidisciplinary

    understanding

    Desired Outcome:

    Provide the student with

    enough basic information

    2011/9/16 NCHU, EE, Prof. F. H. Wang 8

    Disciplines

    51

    2

    3

    4

  • 8/3/2019 CH01 Introduction v2

    5/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 9

    Introduction to Semiconductor

    Manufacturing Technology

    Chapter 1, Introduction

    2011/9/16 NCHU, EE, Prof. F. H. Wang 10

    Objective

    After taking this course, you will able to

    Use common semiconductor terminology

    Describe a basic IC fabrication sequence

    Briefly explain each process step

    Relate your job or products to

    semiconductor manufacturing process

  • 8/3/2019 CH01 Introduction v2

    6/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 11

    IC

    2011/9/16 NCHU, EE, Prof. F. H. Wang 12

    Introduction

    First Transistor, AT&T Bell Labs, 1947

    First Single Crystal Germanium, 1952 First Single Crystal Silicon, 1954

    First IC device, TI, 1958

    First IC product, Fairchild Camera, 1961

  • 8/3/2019 CH01 Introduction v2

    7/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 13

    First Transistor, Bell Lab, 1947

    Photo courtesy:

    AT&T Archive

    2011/9/16 NCHU, EE, Prof. F. H. Wang 14

    John Bardeen, William Shockley and Walter Brattain

    Photo courtesy: Lucent Technologies Inc.

    First Transistor and ItsInventors

  • 8/3/2019 CH01 Introduction v2

    8/56

    First IC Device Made by Jack

    Kilby of Texas Instrument in 1958

    Photo courtesy: Texas Instruments

    2011/9/16 NCHU, EE, Prof. F. H. Wang 16

    First Silicon IC Chip Made by RobertNoyce of Fairchild Camera in 1961

    Photo courtesy: Fairchild Semiconductor International

  • 8/3/2019 CH01 Introduction v2

    9/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 17

    2011/9/16 NCHU, EE, Prof. F. H. Wang 18

    2005 Top 10 SemiconductorCompany

    Company 2005(f) 2005Intel 351.36 15%

    Samsung 178.5 7.6%

    TI 104.5 4.4%

    Toshiba 93.06 4.0%

    ST() 88.25 3.8%Renesas() 88.01 3.7%Infineon 82.77 3.5%

    NEC 57.93 2.5%Hynix 57.3 2.4%

    AMD 56.87 2.4%

    Source:Gartner, 2005/12

  • 8/3/2019 CH01 Introduction v2

    10/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 19

    2005(1)Applied Materials623400(2)Tokyo Electron

    44

    5500(3)ASML Holding316 000

    (4)KLA-Tencor20500(5)Advantest196000(6)Nikon156600(7)Lam Research138200

    (8)Novellus Systems13200(9)Hitachi High-Technologies127700(10)Canon124700

    2011/9/16 NCHU, EE, Prof. F. H. Wang 20

    Silicon () and germanium () Compound semiconductors () SiGe, SiC

    GaAs, InP, etc.

  • 8/3/2019 CH01 Introduction v2

    11/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 21

    Classifications of Electronic

    Materials () Electrical/Computer engineers like to classify

    materials based on electrical behavior(insulatorsand conductors).

    Chemists or Materials Engineers/Scientists

    classify materials based on bond type(covalent,

    ionic, metallic, or van der Waals), orstructure

    (crystalline, polycrystalline, amorphous, etc...).

    2011/9/16 NCHU, EE, Prof. F. H. Wang 22

    Classifications of ElectronicMaterials (Chemistry)

    Materials Classified based on bond strength

  • 8/3/2019 CH01 Introduction v2

    12/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 23

    Classifications of Electronic

    Materials (EE)

    metals.

    insulators.

    semiconductors.

    2011/9/16 NCHU, EE, Prof. F. H. Wang 24

    Material Classifications based onBonding Method

  • 8/3/2019 CH01 Introduction v2

    13/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 25

    Material Classifications based on

    Bonding Method

    2011/9/16 NCHU, EE, Prof. F. H. Wang 26

    Type of Crystalline Solids

  • 8/3/2019 CH01 Introduction v2

    14/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 27

    P-typeDopant

    N-type Dopants Types of Semiconductors:

    Elemental: Silicon or Germanium (Si or Ge) Compound: Gallium Arsenide (GaAs), Indium Phosphide (InP),

    Silicon Carbide (SiC), CdS and many others

    Note that the sum of the valence adds to 8, a complete outer shell.

    I.E. 4+4,3+5, 2+6, etc...

    2011/9/16 NCHU, EE, Prof. F. H. Wang 28

    Silicon

  • 8/3/2019 CH01 Introduction v2

    15/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 29

    Group 4 Elements

    *Only has a measurable bandgap near 0K

    **Different bonding/Crystal Structure due to unfilled higher orbital states

    2011/9/16 NCHU, EE, Prof. F. H. Wang 30

    N()

    -

    Si Si Si

    Si

    SiSi

    Si

    Si

    As

    Valence band, Ev

    Eg = 1.1 eV

    Conducting band, Ec

    Ed~ 0.05 eV

  • 8/3/2019 CH01 Introduction v2

    16/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 31

    P()

    Valence band, Ev

    Eg = 1.1 eV

    Conducting band,Ec

    Ea ~ 0.05 eV

    Electron

    -

    Si Si Si

    Si

    SiSi

    Si

    Si

    B

    Hole

    2011/9/16 NCHU, EE, Prof. F. H. Wang 32

    Classifications of ElectronicMaterials Compound Semiconductors(): Offer high

    performance (optical characteristics, higher frequency,

    higher power) than elemental semiconductors.

    Binary: GaAs, SiC, etc...

    Ternary: AlxGa1-xAs, InxGa1-xN where 0

  • 8/3/2019 CH01 Introduction v2

    17/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 33

    Classifications of Electronic

    Materials

    Material Classifications based on Crystal Structure

    2011/9/16 NCHU, EE, Prof. F. H. Wang 34

    Classifications of CrystallineElectronic Materials

  • 8/3/2019 CH01 Introduction v2

    18/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 35

    Dopant concentration ()

    Resistivity

    ()P-type, Boron ()

    N-type,

    Phosphorus()

    2011/9/16 NCHU, EE, Prof. F. H. Wang 36

    (electrons) (holes)

    NP

  • 8/3/2019 CH01 Introduction v2

    19/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 37

    IC

    2011/9/16 NCHU, EE, Prof. F. H. Wang 38

    Resistor () Capacitor () Diode () Bipolar Transistor () MOS Transistor () Memory Device DRAM , SRAM , Non-volatile memory

    Optoelectronic Device TFTLCD, LED

  • 8/3/2019 CH01 Introduction v2

    20/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 39

    Resistor ()l h

    w

    wh

    lR

    :

    2011/9/16 NCHU, EE, Prof. F. H. Wang 40

    Capacitor ()

    d

    hlC h

    l

    d: Dielectric Constant()

    ex. DRAM () High-k

  • 8/3/2019 CH01 Introduction v2

    21/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 41

    Capacitor ()

    Si

    Poly SiOxide

    Poly 1

    Poly 2

    Dielectric Layer

    ()

    (flat) (stack) (trench)

    Poly

    Si Si

    2011/9/16 NCHU, EE, Prof. F. H. Wang 42

    Parasitic Capacitor ()I

    Metal, Dielectric,

    d

    w

    l

    (parasitic capacitor)

  • 8/3/2019 CH01 Introduction v2

    22/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 43

    Diode () P-N Junction

    (forward bias)V1 V2

    P2P1

    V1 > V2 , P1 > P2,current current

    V1 < V2 , no current P1 < P2, no current

    2011/9/16 NCHU, EE, Prof. F. H. Wang 44

    -(I-V curve)

    V

    I

    -I0

  • 8/3/2019 CH01 Introduction v2

    23/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 45

    Bipolar Transistor () PNP or NPN

    Switch () Amplifier () Analog circuit () Fast high power device

    ()

    2011/9/16 NCHU, EE, Prof. F. H. Wang 46

    NPN and PNP

    C

    E

    B N NP

    EB

    C

    E

    C

    B

    P PN

    EB

    C

  • 8/3/2019 CH01 Introduction v2

    24/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 47

    NPN

    Np n+

    P-substrate

    Electron flow

    n+

    n+ p+p+

    SiO2

    AlCuSi

    2011/9/16 NCHU, EE, Prof. F. H. Wang 48

    NPN

    P-substrate

    n+ Buried Layer

    n Epi

    p p

    Field

    oxideField

    oxide

    CVD

    oxide

    CVD

    oxide

    n+

    CVD

    oxide

    Poly

    CollectorEmitterBase

    Metal

    n+

    Field

    oxide

  • 8/3/2019 CH01 Introduction v2

    25/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 49

    MOS Transistor () Metal-oxide-semiconductor () Also called MOSFET (MOS Field Effect

    Transistor) ()

    2011/9/16 NCHU, EE, Prof. F. H. Wang 50

    NMOS

    +

    Metal Gate

    SiO2

    SourceDrain

    p-Sin+

    VD > 0VG > VT> 0

    + + + + + + +

    Electron flow

    Positive charges

    Negative chargesNo current

    n+SiO2

    Source Drainp-Sin+

    VDVG = 0

    n

    Metal Gate

    VG

    VDGround

  • 8/3/2019 CH01 Introduction v2

    26/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 51

    PMOS

    +

    Metal Gate

    SiO2

    Source Drainn-Sip

    +

    VD > 0VG < VT< 0

    + + + + + + +

    Hole flow

    Positive charges

    Negative charges

    No current

    p+SiO2

    Source Drainn-Si

    p+

    VDVG = 0

    p

    VG

    VDGround

    2011/9/16 NCHU, EE, Prof. F. H. Wang 52

    Devices with Different Substrates

    Bipolar

    MOSFET

    BiCMOS

    SiliconSilicon

    GaAs: up to 20 GHz device Light emission diode (LED)CompoundCompound

    Bipolar: high speed devicesSiliconSilicon--

    GermaniumGermanium

    Dominate IC

    industry

  • 8/3/2019 CH01 Introduction v2

    27/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 53

    Market of Semiconductor Products

    MOSFET

    100%

    50%

    1980 1990 2000

    Compound

    Bipolar

    88%

    8%4%

    2011/9/16 NCHU, EE, Prof. F. H. Wang 54

    Bipolar IC () Earliest IC chip

    1961, four bipolar transistors, $150.00 TV VCR Cellular phone, etc.

  • 8/3/2019 CH01 Introduction v2

    28/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 55

    PMOS and NMOS

    PMOS

    First MOS field effect transistor, 1960 Used for digital logic devices in the 1960s

    Replaced by NMOS after the mid-1970s

    NMOS

    Faster than PMOS

    Used for digital logic devices in 1970s and 1980s

    Replaced by CMOS after the 1980s

    2011/9/16 NCHU, EE, Prof. F. H. Wang 56

    CMOS (Complement MOSFET)

    80IC

  • 8/3/2019 CH01 Introduction v2

    29/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 57

    CMOS Inverter ()

    V in Vout

    Vdd

    Vss

    PMOS

    NMOSGate

    Gate

    Drain

    Drain

    Source

    Source

    2011/9/16 NCHU, EE, Prof. F. H. Wang 58

    BiCMOS (Bipolar + CMOS)

    CMOS Mainly in 1990s

    CMOS as logic circuit Bipolar for input/output Faster than CMOS

    1

  • 8/3/2019 CH01 Introduction v2

    30/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 59

    IC Chips

    Memory () Microprocessor () Application specific IC (ASIC)

    ()

    2011/9/16 NCHU, EE, Prof. F. H. Wang 60

    Memory Chips

    Volatile memory () Dynamic random access memory (DRAM)

    Static random access memory (SRAM)

    Non-volatile memory

    Erasable programmable read only memory

    (EPROM) () EEPROM

    FLASH Memory

  • 8/3/2019 CH01 Introduction v2

    31/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 61

    DRAM

    Word line ()

    Bit line () GNDNMOS

    Capacitor

    DRAM,EDO DRAMSDRAMDDR DRAMDirect RDAM

    DDR2 IC One transistorone capacitor

    2011/9/16 NCHU, EE, Prof. F. H. Wang 62

    DRAM DRAM

    NMOS(word line)NMOS /(bit line)

  • 8/3/2019 CH01 Introduction v2

    32/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 63

    DRAM

    2011/9/16 NCHU, EE, Prof. F. H. Wang 64

    SRAM

    SRAM(Cache Memory)

    DRAM

    Vcc

    select

    Bit Bit

  • 8/3/2019 CH01 Introduction v2

    33/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 65

    EPROM () Non-volatile memory

    (Memory ) 10 bios Floating gate () UV

    2011/9/16 NCHU, EE, Prof. F. H. Wang 66

    EPROM

    n+Gate

    OxideSource Drain

    p-Sin+

    VD

    VG

    Poly 1

    Poly 2Inter-poly

    Dielectric

    Passivation Dielectric

    ()

    Floating Gate

    Control Gate

  • 8/3/2019 CH01 Introduction v2

    34/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 67

    EPROM Programming

    n+GateOxideSource Drain

    p-Sin+

    Poly 2Inter-poly

    Dielectric

    Passivation

    Dielectric VD > 0VG>VT>0

    e- e- e- e- e- e-

    e-

    Electron

    Tunneling()

    Floating Gate

    Control Gate

    2011/9/16 NCHU, EE, Prof. F. H. Wang 68

    EPROM Erasing Process

    n+Gate

    Oxide Source Drainp-Si

    n+Floating Gate

    Poly 2 Control GateInter-poly

    Dielectric

    Passivation

    Dielectric

    e- e-

    UV light

    Electron

    Tunneling

  • 8/3/2019 CH01 Introduction v2

    35/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 69

    Flash Memory

    (NVRAM )

    10 (EEPROM )EEPROM (bite ) (Data) (DigitalCamera )EEPROM

    2011/9/16 NCHU, EE, Prof. F. H. Wang 70

    TFT-LCD

  • 8/3/2019 CH01 Introduction v2

    36/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 71

    Equivalent Circuits in TFT-LCD

    Display area

    CstClc

    Scan line (n)

    Scan line (n-1)

    Vcom

    Dataline

    TFT

    1 dot equivalent circuit

    LCD Monitor

    1024x768x3 dots

    LC layer

    storagecapacitor

    1 dot cross sectional view

    2011/9/16 NCHU, EE, Prof. F. H. Wang 72

    Amorphous-Si TFT

    Comparison of two-type a-Si TFT

  • 8/3/2019 CH01 Introduction v2

    37/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 73

    Poly-Si TFT

    N channel P channel Pixel

    Glass

    Buffer SiO2

    Gate

    Al

    ITO

    N+ P+

    1stinterlayer

    2nd interlayer

    N+ P+ N+ N+

    Gate Gate

    2011/9/16 NCHU, EE, Prof. F. H. Wang 74

    LED

  • 8/3/2019 CH01 Introduction v2

    38/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 75

    IC

    2011/9/16 NCHU, EE, Prof. F. H. Wang 76

    Development History

    First Transistor(), AT&T Bell Labs,1947

    First Single Crystal Germanium(), 1952 First Single Crystal Silicon(), 1954 First IC device, TI, 1958

    First IC product, Fairchild Camera, 1961

  • 8/3/2019 CH01 Introduction v2

    39/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 77

    Pioneers of Transistor

    The 1st Transistor, Bell Lab, 1947

    2011/9/16 NCHU, EE, Prof. F. H. Wang 78

    Grown Junction Technology

  • 8/3/2019 CH01 Introduction v2

    40/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 79

    Alloy Junction Technology

    2011/9/16 NCHU, EE, Prof. F. H. Wang 80

    Double Diffused Mesa Transistor

  • 8/3/2019 CH01 Introduction v2

    41/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 81

    Planar Process

    2011/9/16 NCHU, EE, Prof. F. H. Wang 82

    State-of-the-Art ICs1960 vs. 1990

    Photo courtesy: Fairchild Semiconductor International

  • 8/3/2019 CH01 Introduction v2

    42/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 83

    Wafer vs. Chip

    From Howe, Sodini: Microelectronics:An Integrated Approach,

    Prentice Hall

    2011/9/16 NCHU, EE, Prof. F. H. Wang 84

    IC Scales

    Integration level Abbreviation Number of devices on a chip

    Small Scale Integration SSI 2 to 50

    Medium Scale Integration MSI 50 to 5,000

    Large Scale Integration LSI 5,000 to 100,000

    Very Large Scale Integration VLSI 100,000 to 10,000,000

    Ultra Large Scale Integration ULSI 10,000,000 to 1,000,000,000

    Super Large Scale Integration SLSI over 1,000,000,000

  • 8/3/2019 CH01 Introduction v2

    43/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 85

    (Chip)

    2011/9/16 NCHU, EE, Prof. F. H. Wang 86

    Modern Electronics

    0.13 um

  • 8/3/2019 CH01 Introduction v2

    44/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 87

    Comparison : IC vs. Hair

    Modern devices

    have lateraldimensions that

    are only fractions

    of a micron (~0.1

    m) and vertical

    dimensions that

    may be only a fewatoms tall.

    2011/9/16 NCHU, EE, Prof. F. H. Wang 88

    Moores LawGorden Moore1964121980182010

  • 8/3/2019 CH01 Introduction v2

    45/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 89

    Advantages of Technology

    Scaling

    2011/9/16 NCHU, EE, Prof. F. H. Wang 90

    IC Technology Scaling

  • 8/3/2019 CH01 Introduction v2

    46/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 91

    Channel Length Scaling

    2011/9/16 NCHU, EE, Prof. F. H. Wang 92

    SIA Roadmap

  • 8/3/2019 CH01 Introduction v2

    47/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 93

    DRAM

    DRAM

    2011/9/16 NCHU, EE, Prof. F. H. Wang 94

    Minimum Feature Size

  • 8/3/2019 CH01 Introduction v2

    48/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 95

    Y= 28/32 = 87.5% Y= 2/6 = 33.3%

    Killer Defects()

    2011/9/16 NCHU, EE, Prof. F. H. Wang 96

    Power Density

  • 8/3/2019 CH01 Introduction v2

    49/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 97

    Process Flow: Key Issues

    Number and kinds of processes and how they

    are integrated together.

    Important Metrics: thermal budget, layout

    density, process cost (masks and steps)

    Leverage Points: self-aligned techniques,

    trench isolation, local interconnect,

    planarization

    2011/9/16 NCHU, EE, Prof. F. H. Wang 98

    Process Integration

    MOSIS is a low-cost prototyping and small-volume production service for VLSI circuit development.

  • 8/3/2019 CH01 Introduction v2

    50/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 99

    Processing Temperature

    2011/9/16 NCHU, EE, Prof. F. H. Wang 100

    Control ofConductivity is the Keyto Modern Electronic Devices

    Conductivity, , is material conducts electricity.

    Ohms Law: V=IR or J=E where J is current density

    and E is electric field. Semiconductors: Conductivity can be varied by several

    orders of magnitude.

    It is the ability to control conductivity that make

    semiconductors useful as current/voltage control

    elements. Current/Voltage control is the key to

    switches (digital logic including microprocessorsetc), amplifiers, LEDs, LASERs, photodetectors,

    etc...

  • 8/3/2019 CH01 Introduction v2

    51/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 101

    IC

    2011/9/16 NCHU, EE, Prof. F. H. Wang 102

    1960s: PMOS Process

    Bipolar dominated

    MOSFET Si substrate

    Diffusion for doping

    Boron diffuses faster in silicon

    PMOS

  • 8/3/2019 CH01 Introduction v2

    52/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 103

    Wafer Clean, Field Oxidation, and

    Photoresist Coating

    N-Silicon

    Native Oxide

    N-Silicon

    N-Silicon

    Field Oxide

    N-Silicon

    Primer

    Photoresist

    Field Oxide

    2011/9/16 NCHU, EE, Prof. F. H. Wang 104

    Photolithography and Etch

    N-Silicon

    Source/Drain Mask

    Photoresist

    Field Oxide

    N-Silicon

    Source/Drain Mask

    PR

    UV Light

    N-Silicon

    PR

    Field Oxide

    N-Silicon

    PR

    Field Oxide

  • 8/3/2019 CH01 Introduction v2

    53/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 105

    Source/drain Doping and Gate

    Oxidation

    N-Silicon

    Field Oxide

    N-Siliconp+ p+

    Field Oxide

    N-Siliconp+ p+

    Field Oxide

    N-Siliconp+ p+

    Gate Oxide Field Oxide

    2011/9/16 NCHU, EE, Prof. F. H. Wang 106

    Contact, Metallization, andPassivation

    N-Siliconp+ p+

    Gate Oxide Field Oxide

    N-Siliconp+ p+

    Gate Oxide Field OxideAlSi

    N-Siliconp+

    Gate Oxide Field Oxide

    p+

    N-Siliconp+

    Gate Oxide CVD Cap Oxide

    p+

  • 8/3/2019 CH01 Introduction v2

    54/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 107

    CMOS Inverter

    p-Si USGn-Si

    Bulk Si

    Polysilicon

    STI

    n+ Source/Drain p+ Source/DrainGate Oxide

    2011/9/16 NCHU, EE, Prof. F. H. Wang 108

    CMOS Chip with 2 Metal Layers

    P-type substrate

    p+p+N-well

    SiO2LOCOS

    BPSG

    AlCuSi

    Metal 2, AlCuSi

    Nitride

    Oxide

    USG dep/etch/dep

    Poly Si Gate

    IMD

    PMD

    PD2

    PD1

    p+ p+n+n+

  • 8/3/2019 CH01 Introduction v2

    55/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 109

    FSG

    Metal 4 Copper

    Passivation 1, USG

    Passivation 2, nitride

    Lead-tin

    alloy bump

    FSG

    CopperMetal 2

    FSG

    FSG

    CopperMetal 3

    FSG

    P-epi

    P-wafer

    N-wellP-well

    n+STI p+ p+USGn+PSG Tungsten

    FSG

    Cu Cu

    Tantalum

    barrier layer

    Nitride etch

    stop layer

    Nitride

    seal layer

    M 1

    Tungsten local

    Interconnection

    Tungsten plug

    PMD nitride

    barrier layer

    T/TiN barrier &

    adhesion layer

    Tantalum

    barrier layer

    CMOS Chip with 4 Metal Layers

    2011/9/16 NCHU, EE, Prof. F. H. Wang 110

    Actual Cross Section View

    Metal 2

    Metal 3

    Metal 4

    Metal 5

  • 8/3/2019 CH01 Introduction v2

    56/56

    2011/9/16 NCHU, EE, Prof. F. H. Wang 111

    Wafer Process Flow

    Materials

    Design

    Masks

    IC Fab

    Test

    Packaging

    Final Test

    Thermal

    Processes

    Photo-lithography

    Etch

    PR stripImplant

    PR strip

    Metallization CMP Dielectricdeposition

    Wafers

    Memo