21
Linear Schrödinger equations Nonlinear Schrödinger equations Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations Ch. Neuhauser and M. Thalhammer Department of Mathematics, University of Innsbruck Three days on Mathematical Models of Quantum uids Verona, Italy, 2009 Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

Embed Size (px)

Citation preview

Page 1: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 1/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Convergence of high-order time–splittingpseudospectral methods for Schrödinger equations

Ch. Neuhauser and M. Thalhammer

Department of Mathematics, University of Innsbruck

Three days on Mathematical Models of Quantum fluidsVerona, Italy, 2009

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Page 2: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 2/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Objectives

Gross–Pitaevskii equation (GPE). Nonlinear Schrödingerequation of the form

i ∂ t ψ(x , t ) =− 2

2m∆ + U (x ) + g |ψ(x , t )|2

ψ(x , t ) .

Numerical solution.Space discretisation based on pseudospectral methods.

Time discretisation based on exponential operator splittingmethods.

Aims.Convergence analysis for linear Schrödinger equations.

Comparison of high-order splitting methods regardingaccuracy, efficiency and conservation of geometric properties(particle number, energy).

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Page 3: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 3/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Evolutionary Schrödinger equationsExponential operator splittingConvergence analysis

Linear Schrödinger equations

Time–dependent Schrödinger equations. Normalised linearSchrödinger equation

i ∂ t ψ(x , t ) =−1

2∆ + 1

2 V H(x ) + W (x )

ψ(x , t )

with unbounded polynomial potential

V H(x ) =d 

 j =1

γ 4 j  x 2 j  , W (x ) =m∈Nd 

αmx m .

Characteristics.

Partial differential equation separable into two parts.

Solution for each part computable in an efficient way.

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Page 4: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 4/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Evolutionary Schrödinger equationsExponential operator splittingConvergence analysis

Abstract evolution equations

Abstract formulation. Interpret time-dependent linearSchrödinger equation as abstract evolution equation

u (t ) =

A + B 

u (t ) .

Numerical solution. Split right hand side into two parts

A = i12

∆− V H

, B  = −i W  .

Numerical method relies on solution of subproblems

v (t ) = A v (t )

v (0) = v 0 given

w (t ) = B w (t )

w (0) = w 0 given

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

E l i S h ödi i

Page 5: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 5/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Evolutionary Schrödinger equationsExponential operator splittingConvergence analysis

Exponential operator splitting methods

Problem class. Linear evolution equation

u (t ) = A u (t ) + B u (t ), t ≥ 0, u (0) given.

Compute numerical approximation u n ≈ u (t n) at time t n = n h.

Example method. Strang or symmetric Lie–Trotter splitting

u n+1 = eh2AehB 

eh2Au n,

see Trotter (1959) and Strang (1968).

Method class. Higher-order exponential operator splitting

methods of the form

u n+1 =s 

 j =1

ea j hA e

b  j hB u n

with coefficients a j , b  j  (1 ≤  j ≤ s ) .Ch. Neuhauser Convergence of time–splitting pseudospectral methods

E l ti S h ödi ti

Page 6: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 6/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Evolutionary Schrödinger equationsExponential operator splittingConvergence analysis

Assumptions and hypothesis

Problem class. Linear initial value problem

u (t ) = A u (t ) + B u (t ), t ≥ 0, u (0) given.

Assumptions

Purely imaginary eigenvalues. A : D (A) → L2

(Rd 

)generates C 0-group of contraction

etAL2←L2 = 1, ∀t ∈ R.

Real potential. B  : D (B ) → L2(Rd ) generates C 0-group of 

contraction etB L2←L2 = 1, ∀t ∈ R.

Particle number preservation. A + B  : D (A + B ) → L2(Rd )generates C 0-group of contraction

et (A+B )L2←L2 = 1, ∀t ∈ R .

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Evolutionary Schrödinger equations

Page 7: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 7/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Evolutionary Schrödinger equationsExponential operator splittingConvergence analysis

Assumptions and hypothesis

HypothesisCommutator bounds on weighted sobolev space D p +1 ⊂ L2(Rd )

k  j =1

ad

µ j 

A (B ) eτ  j A

v L2≤ C v D p +1

|µ| = p +1−k , 1 ≤ k ≤ p +1

where ad0A(B ) = B  and ad j 

A(B ) =

A , ad j −1A (B )

, j ≥ 1.

Reasonable assumptions for evolutionary Schrödinger equationwith polynomial potential B  = x m and

D p  =

v  =µ

v µH  µ ∈ L2(Rd ) :µ

µ + m p 

mp |v µ|

2 ≤ ∞

.

In particular for Lie splitting

A , B 

eτ 1Av L2 ≤ C v D 2 ,

eτ 2A

B eτ 1A

v L2 ≤ C v D 2 .

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Evolutionary Schrödinger equations

Page 8: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 8/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Evolutionary Schrödinger equationsExponential operator splittingConvergence analysis

Convergence result

Situation. Exponential operator splitting for linear evolutionarySchrödinger equation

u (t ) = A u (t ) + B u (t ) , t ≥ 0 , u (0) given ,

u n+1 =s 

 j =1

ea j hA e

b  j hB u n , n ≥ 0 , u 0 given.

Theorem (N., Thalhammer (2009))

Suppose that the coefficients of the exponential operator splitting

method satisfy the classical order conditions for p ≥ 1. Then,provided that u (0) ∈ D p +1, the following error estimate holds

u n − u (t n)L2 ≤ C u 0 − u (0)L2 + hp  max

0≤τ ≤t nu (τ )D p +1

.

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Evolutionary Schrödinger equations

Page 9: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 9/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Evolutionary Schrödinger equationsExponential operator splittingConvergence analysis

Do’s and Don’ts

Main tools.

Variation-of-constants formula for expansion of  exact solution

u (t ) = et (A+B )u 0 = e

tAu 0 +

 t 0

e(t −τ )AB u (τ )dτ .

Stepwise Taylor expansion of 

ehB  = I  + h B +

 1

0τ e(1−τ )hB B 2dτ 

Quadrature formulas, Taylor series expansions (commutatorbounds).

Don’ts.

Power series expansions of  etA =∞

k =0t k 

k ! Ak  and

etB  = ∞

k =0

t k 

k !B k .

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Li S h ödi iEvolutionary Schrödinger equations

Page 10: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 10/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Evolutionary Schrödinger equationsExponential operator splittingConvergence analysis

Local error estimate for Lie splitting

Expansion of exact solution. Variation-of-constant formula yields

u (h) = ehAu 0 +

 h0

e(h−τ 1)A B eτ 1A u 0 dτ 1 + R 2 .

Expansion of numerical solution. Stepwise expansion yields

u 1 =ehA u 0 + h e

hA B u 0 + R̂ 2L2 ,

with R̂ 2L2 + R 2L2 ≤ C h2 max0≤τ ≤h u (τ )D 2 .

Local error. Use rectangular rule for

u (h) − u 1L2 ≤ 

h

0e(h−τ 1)A B eτ 1A u 0 − e

hA B u 0L2 dτ 1+

C h2 max0≤τ ≤h

u (τ )D 2 .

and obtain finally u (h) − u 1L2 ≤ C h2

max0≤τ ≤h u (τ )D 2 .Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Li S h ödi tiGross–Pitaevskii equation

Page 11: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 11/21

Linear Schrödinger equationsNonlinear Schrödinger equations

qNumerical approximationLong-term integration of GPE

Gross–Pitaevskii equation

Gross–Pitaevskii equation (GPE). Normalised nonlinearSchrödinger equation

i ∂ t ψ(x , t ) =− 1

2 ∆ + V (x ) + ϑ|ψ(x , t )|2

ψ(x , t )

describes wave function of  Bose–Einstein condensate.Harmonic trap. Consider physicallyrelevant case of  harmonic potentialV (x ) = 1

2 V H (x ) = 12

d  j =1 γ 2 j  x 2 j  .

Geometric properties. Conserva-tion of  particle number ψ(·, t )L2

and energy −3

−2

−1

0

1

2

3

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x1

t

ψ(·, t )

= − 1

2∆ + V  + 1

2ϑψ(·, t )

2

ψ(·, t )

ψ(·, t )L2

.

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Linear Schrödinger equationsGross–Pitaevskii equation

Page 12: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 12/21

Linear Schrödinger equationsNonlinear Schrödinger equations

qNumerical approximationLong-term integration of GPE

Evolutionary Schrödinger equations

Abstract formulation. Interpret time-dependent nonlinearSchrödinger equation as abstract evolution equation

u (t ) =

A + B (u (t ))

u (t ) .

Numerical solution. Split right hand side into two parts

Hermite Fourier

A = i12

∆ − V H

A = i

12

∆B (u ) = −i ϑ|u |2 B (u ) = −i ( 1

2 V H + ϑ|u |2)

Numerical method relies on solutions of evolution equations

v (t ) = A v (t )

v (0) = v 0 given

w (t ) = B (w (t )) w (t )

w (0) = w 0 given

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Linear Schrödinger equationsGross–Pitaevskii equation

Page 13: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 13/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Numerical approximationLong-term integration of GPE

Pseudospectral methods

Hermite pseudospectral method.

Compute transformation matrices in a preprocessing step.

Hermite transform and inverse Hermite transform in 2D can

be realised by two matrix–matrix multiplications.

Complexity of Hermite transform in 2D is O (M 3).

Fourier pseudospectral method.

Use Fast Fourier Transformation (FFT).Complexity of FFT in 2D is O (log(M ) M 2).

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Linear Schrödinger equationsGross–Pitaevskii equation

Page 14: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 14/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Numerical approximationLong-term integration of GPE

Numerical experiment (CPU-time)

Computation time of spectral methods.

101

102

10−5

10−4

10−3

10−2

degree of freedom

   C   P   U   s

  e  c  o  n   d  s

 

Hermite 1D

Fourier 1D

101

102

10−5

10−4

10−3

10−2

10−1

degree of freedom

   C   P   U   s

  e  c  o  n   d  s

 

Hermite 2D

Fourier 2D

Figure: Computation time of the Hermite and Fourier spectral methodsin one (left picture) and two (right picture) space dimensions usingM  = 2i , 4 ≤ i ≤ 8, basis functions in each space direction.

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Linear Schrödinger equations Gross–Pitaevskii equationN i l i i

Page 15: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 15/21

Linear Schrödinger equationsNonlinear Schrödinger equations

Numerical approximationLong-term integration of GPE

Numerical experiment (spatial error)

10 25 50 100 250 50010

−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

degree of freedom

      e      r      r      o      r

 

ϑ = 1

ϑ = 10

ϑ = 100

ϑ = 1000

10 25 50 100 250 50010

−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

degree of freedom

      e      r      r      o      r

 

ϑ = 1

ϑ = 10

ϑ = 100

ϑ = 1000

Figure: Spatial error of the Hermite (left picture) and Fourier (rightpicture) spectral method for different values of the coupling constant ϑ.

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Linear Schrödinger equations Gross–Pitaevskii equationN i l i ti

Page 16: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 16/21

g qNonlinear Schrödinger equations

Numerical approximationLong-term integration of GPE

High-order exponential operator splitting methods

method order #compositionsMcLachlan McLachlan p = 2 s = 3

Strang Strang p = 2 s = 2

BM4-1 Blanes & Moan PRKS6 p = 4 s = 7

BM4-2 Blanes & Moan SRKNb 6

p = 4 s = 7

M4 McLachlan p = 4 s = 6

S4 Suzuki p = 4 s = 6

Y4 Yoshida p = 4 s = 4

BM6-1 Blanes & Moan PRKS10 p = 6 s = 11

BM6-2 Blanes & Moan SRKNb 11

p = 6 s = 12

BM6-3 Blanes & Moan SRKNa14

p = 6 s = 15

KL6 Kahan & Li p = 6 s = 10

S6 Suzuki p = 6 s = 26

Y6 Yoshida p = 6 s = 8

Table: Splitting methods of order p  involving s  compositions.

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Linear Schrödinger equations Gross–Pitaevskii equationNumerical approximation

Page 17: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 17/21

g qNonlinear Schrödinger equations

Numerical approximationLong-term integration of GPE

Numerical experiment (long-term integration)

Numerical experiment (Caliari, N., Thalhammer (2009)).Illustrates the accuracy of  time–splitting Hermite and Fourierpseudospectral methods for the GPE

i ∂ t ψ(x , t ) =− 1

2∆ + V (x ) + |ψ(x , t )|2

ψ(x , t )

involving the potential V (x ) =12 (x 

21 + x 

22 ).

Choose the ground statesolution of the GPEinvolving the potentialV (x ) = x 21 + x 22 as initial

value.Compute a referencesolution at T  = 400(128× 128 basis functions,

217

time steps).

−3

−2

−1

0

1

2

3

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x1

t

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Linear Schrödinger equations Gross–Pitaevskii equationNumerical approximation

Page 18: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 18/21

Nonlinear Schrödinger equationsNumerical approximationLong-term integration of GPE

Numerical experiment (long-term integration)

Numerical experiment. Illustrates the temporal order of  Hermiteand Fourier pseudospectral splitting methods for the GPE

i ∂ t ψ(x , t ) =− 1

2∆ + V (x ) + |ψ(x , t )|2

ψ(x , t ) .

Compute numerical approximations by time-splitting spectralmethods with 2i , 6 ≤ i ≤ 8, basis functions in each spacedirection and 2i , 6 ≤ i ≤ 15, time steps.

Compute numerical approximations by standard explicitRunge–Kutta methods of order four.

Compute error in discrete L2-norm.

Measure the particle number and energy conservation.

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Linear Schrödinger equationsN l S h d

Gross–Pitaevskii equationNumerical approximation

Page 19: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 19/21

Nonlinear Schrödinger equationsNumerical approximationLong-term integration of GPE

Numerical experiment (long-term integration)

tol. method d.o.f. #transf. ∆pn ∆E 

< 10−2 Hermite 2 32 × 32 16384 2.6 · 10−11 4.2 · 10−6

< 10−2 Fourier 2 64 × 64 32768 3.6 · 10−13 1.6 · 10−6

< 10−2 Hermite 4 32 × 32 6144 9.7 · 10−12 1.1 · 10−5

< 10−2 Fourier 4 64 × 64 12288 1.7 · 10−13 9.1 · 10−7

< 10−2 Hermite 6 32 × 32 14337 2.3 · 10−11 3.2 · 10−8

< 10−2 Fourier 6 64 × 64 7169 1.1 · 10−13 6.8 · 10−6

< 10−2 Hermite rk4 32 × 32 65532 2.1 · 10−5 1.2 · 10−4

< 10−2

Fourier rk4 64 × 64 524284 6.4 · 10−10

3.7 · 10−9

< 10−2 Hermite ode45 32 × 32 208376 2.6 · 10−8 1.5 · 10−7

< 10−2 Fourier ode45 64 × 64 1132436 5.6 · 10−12 3.1 · 10−11

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Linear Schrödinger equationsN li S h ödi ti

Gross–Pitaevskii equationNumerical approximation

Page 20: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 20/21

Nonlinear Schrödinger equationsNumerical approximationLong-term integration of GPE

Observations

The number of required Hermite basis functions resp.transforms are (in general) smaller than the number of Fourier

basis functions resp. transforms.

Splitting methods outperform explicit Runge–Kutta methods.

The splitting methods of order four and six by Blanes andMoan are superior to the second order Strang splitting.

Ch. Neuhauser Convergence of time–splitting pseudospectral methods

Linear Schrödinger equationsNonlinear Schrödinger eq ations

Gross–Pitaevskii equationNumerical approximation

Page 21: Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

8/3/2019 Ch. Neuhauser and M. Thalhammer- Convergence of high-order time–splitting pseudospectral methods for Schrödinger equations

http://slidepdf.com/reader/full/ch-neuhauser-and-m-thalhammer-convergence-of-high-order-timesplitting 21/21

Nonlinear Schrödinger equationspp

Long-term integration of GPE

Conclusion and future work

Contents. High accuracy discretisations by time-splittingpseudospectral methods.

Convergence analysis for linear evolutionary Schrödingerequations.

Comparison of time-splitting methods regarding accuracy,efficiency, and geometric properties.

Future work.

Provide convergence analysis of high-order time-splitting

pseudospectral methods for nonlinear Schrödinger equations.Study other basis functions, well adapted for a certainpotential.

Ch. Neuhauser Convergence of time–splitting pseudospectral methods