CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

Embed Size (px)

Citation preview

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    1/59

    © 2013 ANSYS, Inc. 4-1 Release 14.5

    14. 5 Release

    Multiphase Flow Modeling

    in ANSYS CFX

    Interphase Momentum and

    Heat Transfer

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    2/59

    © 2013 ANSYS, Inc. 4-2 Release 14.5

    Overview

    • Interphase Momentum Transfer― Drag Force

    ― Non Drag Forces

    • Lift Force

    • Wall Lubrication Force

    • Virtual Mass Force• Turbulent Dispersion Force

    • Interphase Heat Transfer

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    3/59

    © 2013 ANSYS, Inc. 4-3 Release 14.5

    Interphase Momentum Transfer

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    4/59

    © 2013 ANSYS, Inc. 4-4 Release 14.5

    • The Multiphase equation is weighted by volume fraction rα and contains twoextra terms.

    • The term (ΓαβUβ- ΓβαUα) represents momentum transfer induced by interphasemass transfer .

    • The term Mαβ 

    represents the total interfacial force acting on phase α due to

    phase β. This may arise from several independent physical effects:

    = +

    + +

    +  

    where D : Interface drag force, L : Lift force, WL : Wall lubrication force

    VM : Virtual mass, TD : Turbulence dispersion force

    Momentum Equation

     

     P  P    N  N 

     M U U 

    r  pr r r t 

    11

     

    ][)()(

      

     

      

          

                            U U U U U 

     

    ][)()(   T  pt 

                          U U U U U   

    Single Phase

    Multiphase Phase

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    5/59

    © 2013 ANSYS, Inc. 4-5 Release 14.5

    Interphase Drag

    •  Consider gas bubbles rising through a liquid such as you might see in a

    bubble column or a glass of soda: 

    •  Expressions for the interphase drag are needed in order to solve themomentum equations for the two phases.

    • The bubbles rise through the liquid. This

    difference in velocities causes interphase

    drag or transfer of momentum between

    the phases:

     –  The bubbles are slowed  by the liquid.

     –  The liquid is accelerated  by the bubbles 

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    6/59

    © 2013 ANSYS, Inc. 4-6 Release 14.5

    Drag Force for Single Particle

    • Drag force exerted by a single particle of phase β on the continuous phase

    (α):

    where AP is the cross-sectional area of particle and is given by

    • Drag coefficient (CD) depends on particle Reynolds number (ReP) which is

    defined based on the relative speed (Uβ  – Uα) , the continuous phase

    properties, and the particle diameter (dP) :

    =| |

     

    A = π

    =

      | |( ) 

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    7/59

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    8/59© 2013 ANSYS, Inc. 4-8 Release 14.5

    Interphase Drag Modeling () 

    • The term  represents the drag force per unit volume exerted by dispersed

    phase (β) on continuous phase (α). It is modelled as function of relative speed(Uβ  – Uα) as :

    where constant cαβ is known as momentum transfer/exchange coefficient

    • Comparing with  with :

    =

       

    cαβ (UβUα) =

    3

    4

    CD

    dPrβ ρα|Uβ Uα|(Uβ Uα) 

    cαβ =

    3

    4

    CD

    dPrβ ρα|Uβ Uα| 

    cαβ =

    CD

    8Aαβρα|Uβ Uα | 

    Aαβ  (interfacial area density ) is

    related to volume fraction (rβ) and

    particle diameter (dP):  =

     

    (Particle Model)

    CD for particles, bubbles and

    drops is found using correlations

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    9/59© 2013 ANSYS, Inc. 4-9 Release 14.5

    Drag Models for Fluid Particles(Solid Spherical Particle & Drops)

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    10/59© 2013 ANSYS, Inc. 4-10 Release 14.5

    Spherical Particle Drag Regimes

    Stokes Transitional Newton Supercritical

    CD

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    11/59

    © 2013 ANSYS, Inc. 4-11 Release 14.5

    Spherical Particle Drag Regimes

    • Stokes –  0 < ReP < 0.2

     –  Viscous forces

     –  CD =

     

    • Transitional

     –  0.2 < ReP < 1  103

     –  Viscous and inertia forces

     –  CD =

      1 + 0.15.  

    (Schiller –Naumann)

    • Newton –  1  103 < ReP < 1  10

    5

     –  Mainly inertia forces

     –  Independent of particle Reynoldsnumber

     –  CD = 0.44 

    • Supercritical

     –  ReP > 1  105

     –  Transition from laminar to turbulent

    boundary layer

     –  Separation on particle surface

    further downstream

     –  Drag reduction

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    12/59

    © 2013 ANSYS, Inc. 4-12 Release 14.5

    Drag Correlations for Particles

    • CFX modifies the Schiller-Naumann drag law this to ensure the

    correct limiting behavior in the inertial regime by taking:

    CD = max

    24

    Re   1 + 0.15

    . , 0.44

    • Modified Schiller-Naumann drag law covers Stoke, Transitional

    and Newton drag regimes only

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    13/59

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    14/59

    © 2013 ANSYS, Inc. 4-14 Release 14.5

    • Bubble shapes depend on size, surface tension, particle Reynolds number,

    density difference, …

    • Small bubbles spherical bubble shape

    • Large bubbles ellipsoidal & spherical cap bubble shape

    Bubble Regimes

    Bubble size variation Ellipsoidal shape Spherical Cap

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    15/59

    © 2013 ANSYS, Inc. 4-15 Release 14.5

    Clift, Grace, Weber: Bubbles, Drops and

    Particles. Academic Press, 1978

    Bubble Regimes

    • Eotvos number:

     –  ratio of buoyancy force to surfacetension force

     

    •   Morton number:

     –  function of physical properties of fluid

    =

     

    • Reynolds number: –  ratio of inertia force to viscous force

    =| |

     

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    16/59

    © 2013 ANSYS, Inc. 4-16 Release 14.5

    Drag Correlations for Bubbles

    Regimes Ishii Zuber Grace

    SphericalRegime

    CD =24

    Re  1 + 0.15

    (Schiller-Naumann)

    CD =24

    Re  1 + 0.15

    (Schiller-Naumann)

    Ellipsoidal

    Regime =4

    3

    Δ

    ∞  =

    4

    3

    Δ

    ∞ 

    Drag coefficient is found by balance between buoyancy force and

    drag force

    ∞ = 2

    Δ

      ∞ =

      −.9  0.857

      = (, ) 

    Spherical

    Cap

    Regime

    =8

    3  =

    8

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    17/59

    © 2013 ANSYS, Inc. 4-17 Release 14.5

    • CFX automatically takes into account the bubble regime change by

    setting:

    CD = max [CD (sphere), min ( CD (ellipse), CD (cap) ) ]

    Automatic Regime Detection

    • Larger diameter bubbles

     –  the distorted bubble regime

    min ( CD (ellipse), CD (cap) ) > CD (sphere)

    CD  = min (CD (ellipse), CD (cap))

    • Smaller diameter bubbles:

     –  the viscous regime

    CD (sphere) > min ( CD (ellipse), CD (cap) )

    CD  = CD (sphere)

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    18/59

    © 2013 ANSYS, Inc. 4-18 Release 14.5

    correlation for spherical regime only

    Grace correlation

    Source: Grace & Weber, 1982 

    EQUIVALENT DIAMETER / mm 

       T   E   R   M   I   N   A   L   V   E   L   O   C   I   T   Y

       /  c  m   /  s

    Grace Correlation for Bubbles

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    19/59

    © 2013 ANSYS, Inc. 4-19 Release 14.5

    Non-Drag Forces

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    20/59

    © 2013 ANSYS, Inc. 4-20 Release 14.5

    Non-Drag Forces

    • The term Mαβ represents the total interfacial force acting on phase α due to phase β. It is sum of drag and non drag forces :

    = + + + +  

    =   +   +   +   +  

    • Such forces are fundamental to the physics of phase distribution inmultiphase flows. Implemented for Continuous-Dispersed Phase Pairs

    Only.

     

     P  P    N  N 

     M U U 

    r  pr r r 

    11

     

    ][)()(

      

     

      

          

                            U U U U U 

      Lift Wall

    LubricationVirtual

    MassTurbulent

    Dispersion

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    21/59

    © 2013 ANSYS, Inc. 4-21 Release 14.5

    • Transverse to flow direction

    • Physical mechanism: acts on particles, droplets and bubbles in

    shear flows

     –  due to liquid velocity gradients

     –  due to asymmetric wake

     – due to bubble shape changes

    • Significant for: –  Large continuous-dispersed phase density ratios, e.g. bubbly

    flows

     –  Large shear e.g. flow in pipes, where pipe diameter iscomparable to bubble diameter

    Lift Force

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    22/59

    © 2013 ANSYS, Inc. 4-22 Release 14.5

    • Lift coefficient CL=0.5 for inviscid flow around a sphere (Drew, Lahey,Auton et al.).

    • For viscous flow, CL varies from 0.01 to 0.15.• In general CL is correlated as a flow-regime dependent function of other

    non-dimensional variables:

    )Re ,Eo ,Re(  P  L L   C C   

    Formulation of Lift Force

    Particle Reynolds NumberVorticity Reynolds Number Eotvos number

    =| |

     Reω =

    × U d

    μ  Eo =

    gΔρd

    σ 

      ccd cd  Ld  L   U U U r C  F       

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    23/59

    © 2013 ANSYS, Inc. 4-23 Release 14.5

    • Small bubbles migrate towards the wall and large bubblesmigrate towards the core

    • Change of sign of CL due to change in bubble shape asbubble size increases

    • For small bubbles CL is function of ReP but for intermediateand large bubbles C

    L

     is function of Eo

    Lift force on small and large bubbles 

    largeellipsoidal

    bubble

    lift

    force

    smallspherical

    bubble

    lift

    force

    Lift coefficient for air-water system under atmospheric pressure and room

    temperature (Tomiyama, Tamai, et al) 

    CL

    fluid vel.

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    24/59

    © 2013 ANSYS, Inc. 4-24 Release 14.5

    Lift Force Formulations

    • Tomiyama Model

     – Well validated model for bubbly flow. – Takes into account change of sign of lift force due to change in bubble shape as

    bubble size increases.

    3 2

    min 0.288 tanh(0.121 Re ), ( ) 4

    ( ) 0.00105 0.0159 0.0204 0.474 4 10.0

    0.27 10.0

     P d d 

     L d d d d d 

     f Eo Eo

    C f Eo Eo Eo Eo Eo

     Eo

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0 2 4 6 8 10

    Bubble diameter [mm]

       L   i   f   t   F  o  r  c  e   C  o  e   f   f .

       C_

       L

       [  -   ]

    Tomiyama C_L (u_slip=0.01 m/s)

    Tomiyama C_L (u_slip=0.05 m/s)

    C_L (Tomiyama), 0

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    25/59

    © 2013 ANSYS, Inc. 4-25 Release 14.5

    Lift Force Formulations

    • Saffman Mei

     – Applicable to rigid spheres. – Generalises Saffman’s anaytical model to extend

    applicability to higher particle Reynolds numbers.

    • Legendre Magnaudet – Applicable to small spherical liquid droplets.

     – Takes account of induced circulation inside drops.

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    26/59

    © 2013 ANSYS, Inc. 4-26 Release 14.5

    Surface tension prevents bubbles from approaching solid

    walls very closely

    • Effect is modelled by a wall force, pushing bubbles

    away from walls

    • Results in near wall area of low gas void fraction

    wall lubr.

    force

    fluid vel.

    gas void fraction

    Wall Lubrication Force

    FWL = CWL r ρ  U   U

     nW 

    nW : unit normal pointing away from the wall

    CWL : Wall Lubrication coefficient

    Formulation :

    • Antal model : Good for fine mesh only

    • Tomiyama model : Restricted to pipe geometries.Works well for pipes

    • Frank model : Removes dependency of Tomiyama

    model on pipe diameter

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    27/59

    © 2013 ANSYS, Inc. 4-27 Release 14.5

    • For bubbly flow it important to use

    both lift and wall lubrication force topredict accurate flow field.

    • For vertical cocurrent upflow in a pipe,bubbles tend to be pushed towards the

    wall. In conjunction with the walllubrication force, gives a void fraction

    peak close to but away from the wall.

    • For vertical cocurrent downflow in a

    pipe, both lift and lubrication forces actaway from the wall leading to a large

    flat void fraction profile in the centre

    of the pipe (void coring).

    Lift Force + Wall Lubrication Force

    Vertical Cocurrent

    Upflow

    Vertical Cocurrent

    Downflow

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    28/59

    © 2013 ANSYS, Inc. 4-28 Release 14.5

    Virtual Mass Force

    • “Virtual Mass” effect occurs when dispersed phase accelerates relative to

    continuous phase• Due to viscous interaction, fluid particles have to accelerate

    some of the surrounding fluid. The inertia of this mass

    exerts a opposing force on the fluid particles

    • CVM=0.5 for inviscid flow around an isolated sphere.

    In general, CVM depends on shape and particle concentration.

    • Potentially significant for: – Large continuous-dispersed phase density ratios, e.g. bubbly flows

     – Transient Flows – can affect period of oscillating bubble plume.

     – Strongly Accelerating Flows e.g. bubbly flow through narrow constriction.

     

     

     

     

      Dt 

    U  D

     Dt 

    U  D

    C r  F   ccd d 

    VM cd 

    VM     

    Maliska and Paladino etal.

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    29/59

    © 2013 ANSYS, Inc. 4-29 Release 14.5

    Turbulent Dispersion Force

    • Leads to dispersion of dispersed phase from high volumefraction to low volume fraction due to turbulentfluctuations

    • Equalizes dispersed phase volume fraction• Formulation :

    • Favre Averaged Drag Model (Burns, et al.) –  Turbulent dispersion = action of turbulent eddies

    via interphase drag

     –  derivation via mass weighted (Favre) averaging ofthe drag term:

     –  cαβ : momentum transfer coefficient for the interface drag force

     –  νtc and σtc : turbulent viscosity and turbulent Schmidt number of  continuous phase

    turb.

    dispersion

    force

    fluid vel.

    gas void fraction

    FTD = CTD cαβ

     νt

    σt 

    r

    r

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    30/59

    © 2013 ANSYS, Inc. 4-30 Release 14.5

    2. Lopez de Bertodano Model

     –  kc : turbulent kinetic energy of continuous phase

     – 

    CTD = 0.1 to 0.5 good for medium sized bubbles in ellipsoidal flow regime. –  CTD up to 500 required for small bubbles.

    cccTD

    TD   r k C  F       

    Turbulent Dispersion Force

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    31/59

    © 2013 ANSYS, Inc. 4-31 Release 14.5

    Non-Drag Forces Validation

    • Bubbly flow in a vertical pipe• Forschungszentrum Dresden (FZD) MT-Loop test facility. 

     – Wiremesh sensor with 24x24 electrodes.

     – Database to test CFD predictions.

     – Length, L = 4 m, Inner Diameter, D = 51.2 mm.

    • Air-Water at atmospheric pressure, and 30 C.

    • Measurements carried out for stationary flows of various superficialvelocity ratios.

     – 10 different cross sections located between L/ D = 0.6 and 59.2 from gas

    injection. – Select test cases in bubbly flow regime with a near-wall peak in gas volume

    fraction.

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    32/59

    © 2013 ANSYS, Inc. 4-32 Release 14.5

    Bubbly Flow in Vertical Pipe NDF Validation

    Test d  p [mm]

    U l ,sup[m/s]

    U g,sup[m/s]

    017 4.8 0.405 0.0040

    019 4.8 1.017 0.0040

    038 4.3 0.225 0.0096

    039 4.5 0.405 0.0096

    040 4.6 0.641 0.0096

    041 4.5 1.017 0.0096

    042 3.6 1.611 0.0096

    074 4.5 1.017 0.0368

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    33/59

    © 2013 ANSYS, Inc. 4-33 Release 14.5

    Bubbly Flow in Vertical Pipe NDF Validation

    • SST turbulence model for continuous phase.

    • Sato model for particle induced turbulence.

    • Simple algebraic turbulence model for dispersed phase turbulence:

    • Grace model for drag force.

    • Tomiyama models for the lift and wall lubrication force.

    • FAD and Lopez de Berterdano (RPI Model) for the turbulencedispersion force.

    • Virtual Mass Force neglected.

               /t t    1  

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    34/59

    © 2013 ANSYS, Inc. 4-34 Release 14.5

    Bubbly Flow in Vertical Pipe Validation Data

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    35/59

    © 2013 ANSYS, Inc. 4-35 Release 14.5

    Bubbly Flow in Vertical Pipe Validation Data

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    36/59

    © 2013 ANSYS, Inc. 4-36 Release 14.5

    Mixture Model vs Particle Model 

    • In Particle Model user need to provide particle diameter (dp) which isused in calculation of

    • Interfacial Area Density

    • Interphase transfer term

    • Particle Model is used for

    • Gas-liquid bubbly flows

    • Droplet flows in gas or immiscible liquid

    • Fluid-particle flows

    • But for complex interfacial boundaries, gas-liquid flows with flow

    regime transition, Mixture model is used:

    • Plug flow

    • Slug flow

    • Annular flow

    • Churn flow 

    Mixture Model

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    37/59

    © 2013 ANSYS, Inc. 4-37 Release 14.5

    Mixture Model

    • Treats both phases symmetrically. It requires both phases to becontinuous.

    • Fluid properties are calculated as volume averaged mixtures

    • The term  represents the drag force per unit volume exerted

    by phase β on phase α.

    • dαβ (interfacial length scale) and CD (drag coefficient) are to be

    provided by user

      =

     

    =  | |( ) 

    ρα = rαρα + rβρβ 

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    38/59

    © 2013 ANSYS, Inc. 4-38 Release 14.5

    Free Surface Model

    • Similar to Mixture Model• Difference in the calculation of the Interfacial Area Density

      = || 

    =  | |( ) 

    ρα = rαρα + rβρβ 

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    39/59

    © 2013 ANSYS, Inc. 4-39 Release 14.5

    Interphase Heat Transfer

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    40/59

    © 2013 ANSYS, Inc. 4-40 Release 14.5

    • eα , λα , Tα : internal energy, thermal conductivity and temperature of phase α 

    • The Multiphase equation is weighted by volume fraction rα and contains two

    extra terms.• The term (Γαβeβ- Γβαeα) represents heat transfer induced by interphase mass

    transfer 

    • The term Q αβ  represents interphase heat transfer to phase α across interfaceswith phase β 

    Thermal Energy Equation

     

     P  P   N  N 

    Qee

    r r r r t 

    11

     

    :)()()(

      

     

      

          

                             U T  e U e 

     

    :)()()(                      U T  e U e   

    t Single Phase

    Multiphase Phase

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    41/59

    © 2013 ANSYS, Inc. 4-41 Release 14.5

    Interphase Heat Transfer

    • Q   is the heat transferred per unit time per unit volume, from    to  .

    •  A   is the interfacial area per unit volume

    • h  is the interfacial heat transfer coefficient (also known as overall heattransfer coefficient).

    • h  depends on Nusselt Number (Nu)

    Nu  = h  dp/c 

    where dp = particle diameter

    c = thermal conductivity of the continuous phase

    )(          T T  AhQ  

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    42/59

    © 2013 ANSYS, Inc. 4-42 Release 14.5

    Heat Transfer Rate Options

    •Specified overall heat transfer coefficient

    • Specified Nusselt number

    • Specified interphase heat transfer flux

    • Correlations for overall heat transfer coefficient• Two Resistance Model

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    43/59

    © 2013 ANSYS, Inc. 4-43 Release 14.5

    • Available for Continuous phase – Dispersed phase only (Particle Model)

    • The Nusselt number depends upon the surrounding fluid Prandtl number( Pr  = cpα µα/λα ) as well as the particle Reynolds number (ReP)

     –Ranz- Marshall (0 < ReP < 200, 0 < Pr  < 250)

     –Hughmark (0 < Pr  < 250)

    Correlations for Overall Heat Transfer

    Coefficient

    3.05.06.02   Pr  Re Nu  P 

    )06.776(,27.02

    )06.7760(,6.0233.062.0

    33.05.0

     P  P 

     P  P 

     Re Pr  Re Nu

     Re Pr  Re Nu

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    44/59

    © 2013 ANSYS, Inc. 4-44 Release 14.5

    • Available for both the particle and mixture models:

     –for Continuous phase  – Dispersed phase

     – for Continuous phase – Continuous phase

    • There are special situations where the use of an overall heat

    transfer coefficient is not sufficient to model the interphaseheat transfer process.

    • A more general class of models considers separate heat

    transfer processes either side of the phase interface.

    • This is achieved by using two heat transfer coefficients definedon each side of the phase interface.

    The Two Resistance Model

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    45/59

    © 2013 ANSYS, Inc. 4-45 Release 14.5

    • The heat flux from the interface to phase α and phase β 

    • Overall heat balance, qα + qβ = 0, this condition determines interfacialtemperature (Ts)

    • The overall heat transfer coefficient (h 

    • Fluid specific Nusselt Number

    Nuα   = h  d /  

    where d is the interfacial length scale for the mixture model (themean particle diameter for the Particle Model )

    The Two Resistance Model

    )(       T T hq  s   )(          T T hq  s  

       

          

    hh

    T hT hT  s

     

    )(-            T T  Ahqq          hhh

    11 

    1

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    46/59

    © 2013 ANSYS, Inc. 4-46 Release 14.5

    Heat Transfer Coefficient Options

    Continuous side (α )

    • Zero resistance

    • Specified heat transfer coefficient

    • Specified Nusselt number

    • Correlations :

    (available only for Particle Model)

     – Ranz-Marshall

     – Hughmark

    Continuous

      T 

        hT  ,

      T 

      T 

     sT T h         

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    47/59

    © 2013 ANSYS, Inc. 4-47 Release 14.5

    Heat Transfer Coefficient Options

    Dispersed side (β) 

    • Zero resistance

    • Specified heat transfer coefficient

    • Specified Nusselt number

    Continuous

           hT   ,

           hT   ,

           hT   ,

     T 

     sT T h          

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    48/59

    © 2013 ANSYS, Inc. 4-48 Release 14.5

    Distributing Boundary Heat Transfer

    • At wall and fluid-solidinterface boundaries, the heat

    transfer must be distributed

    between the individual phases

     – The default behavior is forthe partitioning to be based

    on the phasic volume

    fraction – It is possible to over-ride

    this default and directly set

    the contact area fraction for

    the individual phase

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    49/59

    © 2013 ANSYS, Inc. 4-49 Release 14.5

    Appendix

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    50/59

    © 2013 ANSYS, Inc. 4-50 Release 14.5

    Mixture Model

    • Gas-liquid flows with flow regime transition like plug flow, slugflow, annular flow, churn flow

    • Treats both phases symmetrically. It requires both phases to

    be continuous.

    • The term

     represents the drag force per unit volumeexerted by phase β on phase α.

    • dαβ (interfacial length scale) and CD (drag coefficient) are to be

    provided by user

      =

     

    =  | |( ) 

    ρα = rαρα + rβρβ 

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    51/59

    © 2013 ANSYS, Inc. 4-51 Release 14.5

    Terminalbubble

    rise

    velocity

    Terminal Rise Velocity for Bubbles

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    52/59

    © 2013 ANSYS, Inc. 4-52 Release 14.5

    Lift Force - Saffman Formulation

    • Applicable to dilute concentrations of spherical particles

    • Saffman (0

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    53/59

    © 2013 ANSYS, Inc. 4-53 Release 14.5

    Lift Force - Tomiyama Formulation

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0 2 4 6 8 10

    Bubble diameter [mm]

       L   i   f   t   F  o  r  c

      e   C  o  e   f   f .

       C_

       L

       [  -   ]

    Tomiyama C_L (u_slip=0.01 m/s)

    Tomiyama C_L (u_slip=0.05 m/s)

    C_L (Tomiyama), 0

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    54/59

    © 2013 ANSYS, Inc. 4-54 Release 14.5

    Wall Lubrication Force

    • Tomiyama Modification

     –  Like Tomiyama lift force, depends on Eotvos number, hence accounts for

    dependence of wall lubrication force on bubble shape.

     –  In conjunction with Tomiyama lift force, produces excellent results for bubble

    flow in vertical pipes.

     – However, requires pipe diameter (D) as input parameter, hence geometrydependent.

    • Frank Modification

     –  Generalises Tomiyama’s model to be geometry independent.

     –  Model constants calibrated and validated for bubbly flow in vertical pipes

    C WC = 10, C WD = 6.8, p = 1.7

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    55/59

    © 2013 ANSYS, Inc. 4-55 Release 14.5

    Virtual Mass Force Numerics

    • Virtual Mass Force

     – Proportional to difference in phasic accelerations.• Implementation in ANSYS CFX

     – Upwind linearisation of acceleration terms

     – May choose first order upwind, or upwind scheme compatible with chosenadvection discretisation (expert parameter)

     – Coupled implicit treatment of upwind acceleration terms. – Consistent account of VMF terms in Rhie-Chow interpolation.

     – Inclusion of VMF often improves convergence compared to no VMF

     – However, rarely alters converged results

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    56/59

    © 2013 ANSYS, Inc. 4-56 Release 14.5

    Virtual Mass Force Validation

    • Flow in the converging part of a converging diverging nozzle to evaluate the

    effect of flow curvature.

    • Drag is set to zero, there is no buoyancy.

    • As the flow accelerates a transverse pressure gradient is set up by thecontinuum, water, which accelerates the dilute disperse phase, air, towards

    the axis.

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    57/59

    © 2013 ANSYS, Inc. 4-57 Release 14.5

    Virtual Mass Force Validation

    z

    Particle Tracking Model solution

    (no Virtual Mass force)

    Eulerian Fluid Model Solution with

    Virtual Mass Force

    VMF

    Vi t l M F R b t

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    58/59

    © 2013 ANSYS, Inc. 4-58 Release 14.5

    Virtual Mass Force Robustness

    No VMF VMF, High Res diff. VMF, UDS diff.

  • 8/19/2019 CFX Multiphase 14.5 L03 Interphase Momentum Heat Transfer

    59/59

    GGI Conjugate Heat Transfer

    • Conjugate heat transfer with GGI fluid-solid interfaces has been available since

    the 12.0 release

     – Previously a feature matrix gap as 1:1 GGI connections were required for multiphaseflows with conjugate heat transfer to solids

     – Gives more flexibility in meshing as meshes in fluid and solid regionsare no longer required matched at interfaces

     – Conjugate Additional Variable transfer also supported

    • GGI numerics are often more robust and give better answers than 1:1 numericsfor CHT problems, and are often preferred

     – ‘Automatic’ mesh connections now use GGI numerics at fluid-solid interfaces andsolid-solid domain interfaces (connecting separate domains)

    e