52
C.E.P.A. VALLECAS Matemáticas Nivel II 1 REPASO de NÚMEROS NATURALES Y ENTEROS Los números naturales se pueden representar en una recta ordenados de menor a mayor. Sobre una recta señalamos un punto, que marcamos con el número cero. A la derecha del cero, y con las mismas separaciones, situamos de menor a mayor los números naturales siguientes: 1, 2, 3... El sistema de numeración que utilizamos actualmente es el Sistema de numeración decimal que fue introducido en Europa por los árabes, en el siglo XI, procedente de la India donde se desarrolló desde el siglo VI a.C. Tiene dos propiedades: a) Es decimal porque está formado por diez símbolos o cifras: 0,1,2,3,4,5,6,7,8,9 b) Es un sistema de numeración posicional porque el valor de una cifra depende de la posición que tenga la cifra en ese número. Unidad de millón Centena de millar Decena de millar Unidad de millar Centena Decena Unidad UMM CM DM UM C D U OPERACIONES CON NÚMEROS NATURALES. SUMA : La suma de números naturales es siempre otro número natural. Los términos de la suma se denominan sumandos y el resultado es la suma RESTA : La resta de números naturales no siempre es otro número natural. Los términos de la resta se denominan minuendo sustraendo = resta Ejemplos: 38 14 = 24 que también es otro número natural. pero 12 15 = 3 que no es un número natural.( es un número entero) MULTIPLICACIÓN: La multiplicación o producto de dos números naturales es siempre un número natural. Los números que intervienen se llaman factores y el resultado se llama producto Una multiplicación se puede interpretar como una suma de sumandos iguales. Ejemplo: 6·4 quiere decir seis veces el cuatro. 6·4 = 4 + 4 + 4+ 4+ 4+ 4 = 24 DIVISIÓN: Al dividir dos números naturales no siempre resulta un número natural Ejemplo 10 : 2 = 5 que es un número natural 4 : 5 = 0,80 que no es un número natural, sino es un número racional. Los términos de la división son Dividendo divisor 50 3 resto cociente 5 15 NÚMEROS NATURALES El conjunto de todos los números naturales lo simbolizaremos con una N, y son los que sirven para contar y ordenar: N = { 0, 1, 2, 3, 4, 5, ....... …….. ,64, 65, 66, …. ...... ., .... }

C.E.P.A. VALLECAS Matemáticas Nivel II REPASO de NÚMEROS NATURALES Y ENTEROS NÚMEROS NATURALES · Los números naturales se pueden representar en una recta ordenados de menor a

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    1

    REPASO de NÚMEROS NATURALES Y ENTEROS

    Los números naturales se pueden representar en una recta ordenados de menor a mayor.

    Sobre una recta señalamos un punto, que marcamos con el número cero. A la derecha

    del cero, y con las mismas separaciones, situamos de menor a mayor los números

    naturales siguientes: 1, 2,

    3...

    El sistema de numeración que utilizamos actualmente es el Sistema de numeración decimal que fue introducido en Europa por los árabes, en el siglo XI, procedente de la India donde se desarrolló desde el siglo VI a.C.

    Tiene dos propiedades:

    a) Es decimal porque está formado por diez símbolos o cifras: 0,1,2,3,4,5,6,7,8,9

    b) Es un sistema de numeración posicional porque el valor de una cifra depende de la posición que tenga la cifra en ese número.

    Unidad de millón

    Centena de millar

    Decena de millar

    Unidad de millar

    Centena Decena Unidad

    UMM CM DM UM C D U

    OPERACIONES CON NÚMEROS NATURALES.

    SUMA: La suma de números naturales es siempre otro número natural. Los términos de la suma se denominan sumandos y el resultado es la suma RESTA: La resta de números naturales no siempre es otro número natural.

    Los términos de la resta se denominan minuendo – sustraendo = resta

    Ejemplos: 38 –14 = 24 que también es otro número natural. pero 12 – 15 = –3 que no es un número natural.( es un número entero)

    MULTIPLICACIÓN: La multiplicación o producto de dos números naturales es siempre un número natural.

    Los números que intervienen se llaman factores y el resultado se llama producto

    Una multiplicación se puede interpretar como una suma de sumandos iguales. Ejemplo: 6·4 quiere decir seis veces el cuatro. 6·4 = 4 + 4 + 4+ 4+ 4+ 4 = 24

    DIVISIÓN: Al dividir dos números naturales no siempre resulta un número natural

    Ejemplo 10 : 2 = 5 que es un número natural 4 : 5 = 0,80 que no es un número natural, sino es un número racional. Los términos de la división son

    Dividendo divisor 50 3

    resto cociente 5 15

    NÚMEROS NATURALES

    El conjunto de todos los números naturales lo simbolizaremos con una N, y son los que sirven para contar y ordenar:

    N = { 0, 1, 2, 3, 4, 5, ....... …….. ,64, 65, 66, …....... ., .... }

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    2

    O P E R A C I O N E S C O M B I N A D A S Para resolver operaciones combinadas hay que seguir un orden:

    Operaciones combinadas SIN PARÉNTESIS:

    1º) Realizar las multiplicaciones y divisiones en el orden en que aparecen de izquierda a derecha

    2º) Realizar las sumas y restas tal como aparecen de izquierda a derecha

    Ejemplo 1 (sin paréntesis) : 3 · 2 − 5 + 4 · 3 − 8 + 1 0 : 2 · 3 =

    Realizamos primero las multiplicaciones 6 − 5 + 12 − 8 + 15 =

    Efectuamos las sumas y restas. = 20

    1.- Resuelve : a) 2·3 + 7 = b) 3 + 8·2 = c) 20:4·2 – 6·3:9=

    d) 5+10:5–12:3 –1= e) 7 + 3·2– 45:5 + 4 = f) 7· 4 + 35: 7 =

    g) 4·5:2 + 9·1 = h) 15: 3·2 – 3·2= i) 10 –10:2 + 15:3 + 4·4=

    j) 21:3·4 –2+ 9·4 +12·1 = k) 18 + 3:3·2 – 9·2 – 2 = l) 9·9 – 70 + 2·8 =

    Operaciones combinadas CON PARÉNTESIS:

    1º) Se eliminan los paréntesis, realizando las operaciones de dentro del mismo.

    Ejemplo: 2· (12 − 5 ) + ( 4 +16) : 4 =

    Primero las operaciones entre paréntesis 2 · 7 + 20 : 4 =

    Realizamos las multiplicaciones y divisiones 14 + 5 =

    Efectuamos las sumas y restas. = 19

    2.- Resuelve:

    a) 12: (3–1)= b) 15·2:(17 – 12)= c) (2·4 + 12)·(6 − 4) = d) 14 – 32:(9·3 – 19) = e) (4+8):3 –2 + (3+5)·3= f) 8 · (13–5 ·2 ) + 6 ·7 : (9–3 )=

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    3

    g) 3·9 + (6+ 5 –3) – 12:4 = h) (3+6):3 + 24:(4+2)= i) 3·(50 – 8·5) + (4·5 –2·7) =

    j) 5·(10:2·1) – (20–8):2 = k) 3+5 – 4: (6·3 – 4·4)= l) 23 – 10:5·(37– 4·7) =

    Operaciones combinadas CON CORCHETES Y PARÉNTESIS:

    Se resuelven primero los paréntesis y luego los corchetes Ejemplo : 4 · [3 + (8 − 2 · 3 ) ] +9 =

    1º Operamos los productos y/o cocientes dentro de los paréntesis. 4· [3 + ( 8 − 6 ) ] + 9=

    2º Realizamos las sumas y restas de los paréntesis. 4 · [3 + 2 ] +9=

    3º Operamos para quitar corchetes. 4 ·5 + 9 =

    4º Efectuamos el resto de operaciones por orden. 20 + 9= 29

    . 3.- Resuelve :

    a) [30 − (8 − 10 : 2 )] b) 4 + 2·[3 + 2 – (4 – 1)] = c) 2·(15 – 2) – [11 – (7 – 3)] = d) [6 – 3·(5 –3)+ 7]·2+10 = e) 28 : [ 3 + 8 : ( 3 – 1 )] = f) 3+5 · [ (3+2 ·6 :3 )–2 ] = g) 14 – [8 + 2· (5 –2) – 5 – ( 4 – 6:2 )] = h) [15 − (8 −10 : 2 )] · [1 + (3 · 2 − 4 )] − 3 =

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    4

    N Ú M E R OS E N T E R OS

    Muchas veces nos resulta necesario utilizar números negativos, por ejemplo en saldos negativos

    de cuentas, temperaturas bajo cero, etc.

    Los números enteros negativos junto con los enteros positivos (que son los naturales) y el cero forman el

    llamado conjunto de los números enteros que

    se representa por la letra Z:

    Z= { ..., –5, – 4, –3, –2, –1, 0, 1, 2, 3, 4, 5, . .

    Representación de los números enteros

    1. En una recta horizontal, se toma un punto cualquiera que se señala como cero.

    2. A su derecha y a distancias iguales se van señalando los números positivos: 1, 2, 3,...

    3. A la izquierda del cero y a distancias iguales que las anteriores, se van señalando los números

    negativos: − 1, −2, −3,...

    Valor absoluto de un número entero

    El valor absoluto de un número entero es el número natural que resulta al suprimir su signo.

    El valor absoluto lo escribiremos entre barras verticales.

    Ejemplos: |−5| = 5 |5| = 5

    4.- Escribe el valor absoluto de los siguientes números enteros.: 4 , −9 , −34 , 70 , −1 .

    Criterios para ordenar los números enteros:

    1. Todo número negativo es menor que cero. −7 < 0

    2. Todo número positivo es mayor que cero. 4 > 0

    3. De dos enteros positivos, es mayor el que tiene mayor valor absoluto. 10 > 7 |10| > |7|

    4. De dos enteros negativos es mayor el que tiene menor valor absoluto. −7 > −10 |−7| < |−10|

    5.- Ordena los siguientes números de menor a mayor usando el símbolo que significa “menor que”:

    a) 5, −8, 4, −2, 3, 0, 7, −12 b) −13, 12, − 4, 7, −15, 0 c) −200, −1000 , −30 , −120 ,

    6.- Ordena los siguientes números enteros de mayor a menor usando el símbolo correspondiente:

    a) 56, − 89 , 54 , −88 , − 55 , − 56 , −90 , 55 , − 54 b) −120 , − 121, − 123 , − 109 , − 119,

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    5

    7.- Escribe el signo < o > entre cada pareja de números a) – 7 . . . .– 2 ; b) – 12 . . . . 20 ; c) 1 . . . .– 3

    d) – 8. . . – 11; e) – 1 . . . 4 ; f) 9. . . –9 ; g) 2. . . 6 ; h) i)

    OPERACIONES CON NÚMEROS ENTEROS SUMA Y RESTA Cuando se suman o restan dos números enteros,

    si los dos tienen el MISMO SIGNO, se suman sus valores absolutos y se pone el signo común

    si los dos tienen DISTINTO SIGNO, se restan sus valores absolutos y se pone el signo del mayor.

    8.- Realiza las siguientes operaciones:

    a1) 1 + 3 = a2) 1 – 3 = a3) –1 + 3 =

    b1) – 1 – 3 = b2) – 4 +3 = b3) – 7 – 2 =

    c1) –2 – 1 = c2) – 1 + 4 = c3) –3 + 4 =

    d1) 8 + 11 = d2) 20 – 12 = d3) 15 – 10 =

    e1) – 3 – 8 = e2) – 7 + 8 = e3) –5 + 4 =

    f1) –3 – 5 = f2) – 6 – 3 = f3) 12 + 4 =

    g1) 10 – 20 = g2) 9 – 6 = g3) –10+12 =

    h1) 16 – 20 = h2) 9 – 11 = h3) –30 + 15 =

    i1) –14 + 10 = i2) – 18 + 24 = i3) – 40 + 50 =

    j1) – 8+18= j2) 7– 17= j3) 7– 12 =

    k1) 5 – 2 + 3= k2) – 3 – 2 +1 = k3) 4 – 4 + 3 =

    l1) 1 + 8 – 9 = l2) – 5 + 7 – 4 = l3) – 4 – 6 – 5=

    m1) 3 – 8 + 9= m2) 5 + 7 – 2 = m3) 11 – 4 – 8 =

    n1) –10 – 20 + 50= n2) 10 – 20 +30 = n3) 10 – 40 + 80 =

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    6

    Cuando un signo menos está delante de un paréntesis, al quitar éste, se cambia de signo a lo que está dentro.

    9.- Calcula:

    a1) 12 – (+ 6) = a2) 9 + (–11) =

    b1) – 8 – (+10) = b2) –25 – (+17) =

    c1) – 6 + (–9) = c2) – 5 – (–10) =

    d1) 56 – (+ 4) = d2) 34 – (– 10) =

    e1) 5 – (– 4) = e2) – 100 + (– 40) =

    f1) – 6 – (–9) = f2) 5 + (–10) =

    g1) –13 + (– 7) = g2) –3 – (– 17) =

    10.- Calcula:

    a) – (– 2 + 6) + ( 9 – 4 ) = b) 3 – 4 + 6 – (–2 +1– 5 ) – 7 =

    c) – 5 – 4 – (3 + 2) + 1 – (7– 9) = d) – 4 – 3 – [ ( 6 + 5 – 1) + 2 – 7] + 8 =

    e) – 22 + [12 – (8 – 14 ) ] + 2 = f) 7 + [– 4– (– 2 – 3) + 5 ] – 1=

    g) 15 – [ 4 – (– 6 + 2 ) + 3 ] – 1 = h) 15 – [5+ 7– (– 6–2)] –2 =

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    7

    MULTIPLICACIÓN Y DIVISIÓN

    La MULTIPLICACIÓN de dos números enteros sigue las siguientes reglas:

    si son del mismo signo, el resultado queda positivo,

    si son de distinto signo, el resultado es negativo. Ver el esquema

    11.- Calcula:

    a1) (+ 2) · (+5) = a2) (– 2) ·(–5) = a3) (–2) · (+ 5) =

    b1) (+2) ·(– 5) = b2) (+ 3) · (–4) = b3) (–4) · (+5) =

    c1) (+7) · (+4) = c2) (– 6) ·(–5) = c3) (–3) · (– 4) =

    d1) (–5) ·(– 3) = d2) (+ 4) · (–5) = d3) (–11) · 2 =

    e1) (– 6) · (+ 3) = e2) (– 7) · (+3 )= e3) (+ 3) · (–7) =

    f1) (–5) ·(– 8) = f2) (+7) · (+ 8) = f3) (– 8) · (– 9) =

    g1) (–6) ·(– 8) = g2) (+7) · (– 6) = g3) (– 6) · (+ 9) =

    La DIVISIÓN de dos números enteros tiene las mismas reglas que la multiplicación:

    si son del mismo signo, el resultado es positivo,

    si son de distinto signo, el resultado es negativo. Ver el esquema

    12.- Calcula:

    a1) (+ 6) : (+2) = a2) (+8) : (– 4) = a3) (–16) : 4 =

    b1) (–10) : (+2 ) = b2) (+ 3) : (–3) = b3) (+18) : (–2) =

    c1) (–16) : (–4) = c2) (– 24) : (+ 4) = c3) (–40) : (+8) =

    d1) (+8 ): (+4) = d2) (+18) : (+3) = d3) (–16) : (+4) =

    e1) (–20) : 5 = e2) (+ 30 : (–3) = e3) (+18) : (–9) =

    f1) (–36) : (–4) = f2) (– 24) : (–8) = f3) (–72) : (+8) =

    + : + = +

    : = +

    + : =

    : + =

    + · + = +

    · = +

    + · =

    · + =

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    8

    OPERACIONES COMBINADAS: tienen las mismas reglas que para los números naturales

    13.- Calcula:

    a) 4 – 8:2 = b) – 3 + 5 ·2 =

    c) 28 : 4 ·2 – 2 · 3 = d) 7 + 5·3 – 2 =

    e) 10 – 4 9 :7 – 1 · 4 = f) 6 · 4 – 8 ·2 : 4 =

    g) 3 9 :3 – 4 · 2 = h) 1 2 :2 · 3 – 4 0 :2 =

    i) 2 1 : 3 · 2 + 5 : 5 – 4 · 9 : 1 2 = j ) 7 · 4 : 2 – 4 5 :9 · 7 =

    14.- Resuelve:

    a) (5 + 4)·2 – 5 ·3 = b) 10 – 2·(8 – 16 : 4) = c ) 14 : ( 2 – 4 ) +7 – ( – 4 ) = d) 2 5 : (7 – 1 4 :7) – 2 · ( 6 – 3 ·2)=

    e) ( 64 :8 + 3 ·4) : ( 2 + 2 · 4) = f) ( 54 : 6 – 3 ·2) : 3 =

    g) 10 – 2 · (18 – 2 · 5 – 6 : 2 – 8 ) = h) ( 30 :5 – 3 ·8) : 3 –1 0=

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    9

    M ÚLTIPLOS Y D IV ISORES

    De cualquier número natural o entero existen múltiplos y divisores

    Haremos un repaso de éstos, de las reglas de divisibilidad, de los números primos y compuestos y

    de la descomposición en factores primos.

    Todo ello para saber calcular el Mínimo Común Múltiplo de varios números para resolver ecuaciones con denominadores

    MÚLTIPLOS de un número

    Decimos que un número es múltiplo de otro si lo contiene un número entero de veces.

    Ejemplo 15 es múltiplo de 5 ya que 15 es tres veces 5

    Obtención de múltiplos :

    Los múltiplos de un número se obtienen al multiplicar dicho número por todos los números naturales salvo el 0.

    Ejemplo: Multiplos de 3 3·1 = 3 3·2 = 6 Mult.(3)={3,6,9,12,.......} 3·3 = 9 3·4 = 12

    En el ejemplo anterior el 15 se obtiene al multiplicar 5·3

    15.- a) Obtener los diez primeros múltiplos de 4. . . . . . . . . . .

    b) ¿Cuáles de los siguientes números son múltiplos de 6? 33, 54, 9, 68, 6, 42, 53, 65, 36, 3.

    DIVISORES de un número Los divisores de un número natural son aquellos números que se pueden dividir entre él siendo el resto 0.

    Ejemplo: “el número 7 es divisor de 364”; ya que al dividir 364 entre 7 el

    resto es 0, es decir la división es exacta También se dice que 364 es divisible por 7 Para saber si un número es divisor de otro solo tienes que hacer la división y comprobar si el resto es cero.

    Ejemplo: El número 9 no es divisor de 74, o el número 74 no es divisible por 9, ya que el resto de la división no es 0.

    Ser divisor es lo recíproco a ser múltiplo.

    Ejemplo: Si 15 es múltiplo de 5, entonces 5 es divisor de 15. Cada número tiene una cantidad finita de divisores.

    Observa que “un número tiene infinitos múltiplos pero solo unos cuantos divisores- ”.

    16.- a) Escribe los divisores de 10 . . . . . . . . . . . . y los múltiplos de 10 . . . . . . . . . . etc.

    b) Escribe los divisores de 12 . . . . . . . . . . . . y los múltiplos de 12 . . . . . . . . . . etc.

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    10

    17.- a) Escribe los divisores de 36. . . . . . . . . . b) ¿Cuáles de los siguientes números son divisores de 48? 4, 7, 6, 35, 10, 8, 24, 1, 3, 17, 21, 12. c) Un número tiene infinitos múltiplos y solo unos cuantos divisores ¿verdadero o falso? d) Escribe los múltiplos de 8 . . . . . . . . . . . . . . . . . . . . etc. y los divisores de 8 . . . . . . .

    Obtención de divisores: Para calcular los divisores de un número, vamos dividiendo dicho

    número entre otros más pequeños o iguales que él. En los casos en que la división resulte exacta,

    tanto el cociente como el divisor serán divisores de dicho número.

    Ejemplo Divisores de 24: Divisores de 24 son todos los números por los que el 24 es divisible

    24: 24 =1 24:12 =2 24: 6 = 4 24: 4 = 6 24: 3 = 8 24: 2 =12 24: 1= 24

    Div (24) = {1, 2, 3, 4, 6, 8 12, 24}

    R E G L A S D E D I V I S I B I L I D A D :

    Son unas reglas que nos permiten averiguar si un número es divisible por otro (el divisor) sin necesidad de efectuar la división. Vamos a ver algunas de estas reglas:

    Un número es divisible por 2 si acaba en cero o en cifra par.

    Ejemplo: 534 y el 430

    Un número es divisible por 3 cuando la suma de sus cifras es múltiplo de 3.

    Ejemplo: el 681 es divisible entre 3 ya que si sumas sus cifras: 6 + 8 + 1 = 15 y el 15 es múltiplo de 3.

    Un número es divisible por 5 si acaba en 0 o en 5.

    Ejemplo: el 675 y el 980

    Un número es divisible por 11 cuando la diferencia de la suma de las cifras del lugar par y la suma de las cifras del lugar impar da 0 o un múltiplo de 11 ( 0, 11, 22 , 33, etc). (La resta se hace en el sentido que sea posible).

    Ejemplo: 96.855 es divisible entre 11 ya que si sumamos las cifras de lugar impar 5+8+9=22 y las de lugar par 5+ 6=11 y luego restamos 22–11=11, que es múltiplo de 11.

    18.- Aplica los criterios de divisibilidad para averiguar cuáles de los siguientes números:

    189 , 2.304, 512 , 172, 3.454 , 72 , 45 , 403 , 24.519 , 29 , 300 , 121 , 35 , 700 .

    a) son divisibles por 2 . . . . . . . . . . . . . . . . b) son divisibles por 3 . . . . . . . . . . . . . . . .

    c) son divisibles por 5 . . . . . . . . . . . . . . . . d) son divisibles por 11. . . . . . . . e) son primos

    19.- Subraya entre estos números los que son divisibles por 3 (sin hacer la división):

    111, 246, 2.205, 5.581, 1.234 , 8.621 , 727, 600 , 1.257 , 550 , 237 , 94 .

    NÚMEROS PRIMOS Un número primo es aquel que sólo tiene dos divisores: él mismo y la unidad.

    20.- Escribe los números primos menores que 25.

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    11

    NÚMEROS COMPUESTOS Un número compuesto es él que posee más de dos divisores. Es decir se puede dividir por sí mismo, por la unidad y por otros números.

    Ejemplo: 12, 72, 144.

    DESCOMPOSICIÓN DE UN NÚMERO EN FACTORES PRIMOS Descomponer un número en factores primos es expresarlo como una multiplicación en la que todos los factores son números primos. Si algún factor se repite se expresa en forma de potencia.

    En la práctica, para descomponer un número compuesto en factores primos, lo dividimos por el menor número primo por el que sea divisible y repetimos este proceso con los cocientes obtenidos hasta llegar a un cociente igual a 1.

    Para realizar las divisiones utilizaremos una barra vertical, a la derecha escribimos los divisores primos y a la izquierda los cocientes . Ejemplos: 90 2 45 3 15 3 5 5 1

    21.- Descompón en factores primos los siguientes números:

    a) 30 b) 72 c) 168 d) 198

    72 = 168 = 198 =

    22.- Descompón en factores primos:

    a) 32 b) 180 c) 225 d) 468 e)165

    32= . . . . 180 = . . . . 225 = . . . . 468 = . . . . 165 = . . . .

    90 = 2 · 32· 5

    2.520 = 2

    3 · 3

    2 · 5

    · 7

    30= . . . .

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    12

    MÍNIMO COMÚN MÚLTIPLO El Mínimo común múltiplo de dos o más números es el menor de todos los múltiplos comunes. Se representa como: m.c.m.

    Ejemplo: Calcular el m.c.m. de 6 y 9. Para ello calculamos los múltiplos 6= {6, 12, 18, 24, 30, 36..... }

    9= {9, 18, 27, 36, 45,.......}

    Los múltiplos comunes son el 18 y el 36, pero elegiremos el menor, luego el m.c.m. (6,9) = 18

    Cálculo del Mínimo Común Múltiplo

    Ejemplos: Calcular el m.c.m. de 18 y 20.

    Hacemos la descomposición factorial: 18 2 20 2 9 3 10 2 3 3 5 5 1 1

    18 = 2·32 20 = 22·5 El m.c.m.(18, 20) = 22·32·5 = 180

    23.- Calcula el mínimo común múltiplo de:

    a) 9 y 12 b) 4 y 20 c) 6 y 10

    d) 12 y 16 e) 12 y 36 f) 6 , 9, 24 g) 4 , 12 , 15 h) 4, 8 y 28 i) 60 y 72

    En la práctica, para obtener el m.c.m.

    1º se descompone en factores primos cada número

    2º Se escogen los factores primos comunes y no comunes elevados al mayor exponente

    y se multiplican entre sí.

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    13

    Clasificación de los números que hemos estudiado hasta ahora:

    Los números naturales se representan por N y son N= { 1,2,3,4,5 , . . . . }

    Los números enteros se representan por Z y son: Z= { ., -4, -3, -2, -1 , 0, +1, +2,+ 3, +4, +5 ,. . }

    (Los números enteros contienen a los naturales)

    Los números racionales son los que estudiaremos a continuación

    L O S N Ú M E R O S R A C I O N A L E S

    Hay muchas ocasiones en la vida diaria en las que se utilizan los números fraccionarios, así cuando

    decimos: “Medio litro de agua” (2

    1), “Tres cuartos de kilo de carne” (

    4

    3), “Un cuarto de hora” (

    4

    1)

    Los números racionales se representan por Q y son los números que se pueden expresar en

    forma de una fracción y que pueden ser enteros o decimales

    Por ejemplo: 42

    8 es entero ; 75,0

    4

    3 es decimal

    Por tanto los números racionales contienen a los enteros

    Una fracción es una forma de expresar un cociente. Si realizamos la división entre numerador y denominador obtendremos un número entero o decimal

    1.- Dados los siguientes números racionales indica (hallando su valor) cuáles son enteros y cuáles decimales

    a) 2

    7 . . . . . . . . b)

    6

    3 . . . . . . . . . c)

    3

    12 . . . . . . . . d)

    5

    25 . . . . . . .

    e) 5

    32 . . . . . . . f)

    1

    40

    . . . . . . . g)

    10

    4 . . . . . . . h)

    8

    5 . . . . . . .

    En el Tema siguiente estudiaremos los números decimales y además aprenderemos a

    expresarlos en forma de fracción

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    14

    LAS FRACCIONES

    Una fracción es una expresión del tipo b

    a en la que a y b son números naturales llamados

    a numerador b denominador

    Lectura de fracciones

    Numerador: se lee el número que figura en él.

    Denominador: Si es 2 se lee medios 3 tercios , 4 cuartos, 5 quintos,

    6 sextos , 7 séptimos, 8 octavos , 9 novenos , 10 décimos,

    Si es mayor que 10 se lee el número añadiendo la terminación “avos”. ( onceavos, doceavos treceavos,etc.)

    2.- Escribe la fracción correspondiente:

    Tres octavos Siete medios Cuatro novenos Cinco tercios

    Nueve octavos Un quinto Ocho cuartos Un décimo

    Siete onceavos Seis doceavos Ocho medios Dos sextos

    3.- Lee las siguientes fracciones

    2

    5

    7

    3

    3

    15

    8

    5

    13

    11

    SIGNIFICADO DE UNA FRACCIÓN Una fracción es el resultado de dividir la unidad en partes iguales y tomar varias de esas partes.

    En la fracción b

    a

    b el denominador: indica el número de partes iguales en que se divide la unidad o el todo.

    a numerador: indica el número de partes que se toman

    Representación gráfica y Representación en la recta numérica

    Ejemplo: Se han comido los 4

    3 de un queque (las tres cuartas partes).

    Significado si dividimos el queque en cuatro partes, se han comido tres

    Representación gráfica

    Además de la representación gráfica se puede representar la fracción en la recta numérica

    Representación en la recta numérica fíjate en los ejemplos que hay a continuación

    NUMERADOR:

    Las partes que se toman.

    DENOMINADOR:

    Las partes en que se divide el todo o la unidad.

    Tres cuartas partes o 3/4

    b

    a

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    15

    Ejemplos:

    4.- Escribe el significado e indica la representación gráfica en los siguientes casos

    a) Un depósito contiene 3

    1 de gasolina.

    Significado Si dividimos el depósito en . . . . partes iguales, la gasolina llena . . . . de las partes

    Representación gráfica

    Representación en la recta

    b) He recorrido los 5

    3 del trayecto

    Significado Si dividimos el trayecto en . . . . . .

    Representación gráfica

    Representación en la recta

    c) Se han comido 4

    5 de pizzas

    Significado

    Representación gráfica

    Representación en la recta

    5.- Completa el significado de cada fracción y represéntala

    2

    1 Dividimos la unidad en . . . partes iguales y tomamos . . .

    3

    2 Dividimos la unidad en . . . partes iguales y tomamos . . .

    5

    2 Dividimos la unidad en . . . partes iguales y tomamos . . .

    0 1

    0 1

    0 1

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    16

    Tipos de fracciones Una fracción puede ser:

    • Menor que uno si el numerador es menor que el denominador: Fracción PROPIA • Igual a uno si el numerador es igual que el denominador. Fracción UNIDAD • Mayor que uno si el numerador es mayor que el denominador. Fracción IMPROPIA

    FRACCIONES EQUIVALENTES Fracciones equivalentes son las fracciones que representan la misma cantidad.

    Y podemos escribir 12

    3

    4

    1

    Si dos fracciones son equivalentes, los productos de los términos en cruz son iguales.

    Dos fracciones b

    a y

    d

    cson equivalentes si se cumple

    8.- Escribe los términos que faltan para que las siguientes parejas de fracciones sean equivalentes.

    a) 4

    3 =

    ...

    21 ; b)

    5

    .... =

    45

    27 ; c)

    ...

    9

    4

    3 ; d)

    18

    10 =

    9

    ... ; e)

    ...

    14 =

    5

    7

    f) 10

    13 =

    100

    ... ; g)

    ...

    3

    24

    18 ; h)

    ...

    64

    3

    8 i)

    45

    24

    15

    ... j)

    4

    7

    ...

    49

    9- Averigua qué parejas de fracciones son equivalentes;

    a) 3

    2 y

    15

    10 b)

    6

    7 y

    4

    5 c)

    12

    8 y

    23

    16 d)

    9

    15 y

    3

    5

    e) 6

    4 y

    12

    8 f)

    4

    15 y

    2

    7 g)

    45

    63y

    5

    7 h)

    8

    6 y

    49

    36

    Obtención de fracciones equivalentes

    Cada fracción tiene infinitas fracciones equivalentes a ella.

    Para obtener una fracción equivalente a otra dada nos basta con multiplicar o dividir el numerador

    y el denominador por el mismo número.

    Ejemplo: 4

    1y

    12

    3son fracciones equivalentes

    12

    3

    4

    1

    a · d = b · c

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    17

    Por ejemplo, las tres fracciones 12

    4

    3

    1

    6

    2 son equivalentes como puedes observar con su

    representación y se pueden obtener unas de otras multiplicando o dividiendo numerador y denominador

    por el mismo número

    : 4 x 2

    12

    4

    3

    1 6

    2

    : 4 x 2

    10 .- Escribe 2 fracciones equivalente a cada una de las siguientes:

    a) 6

    10 b)

    9

    12 c)

    7

    1 d)

    3

    4 e)

    8

    10

    11.- Escribe una fracción equivalente con los términos menores y otra con los términos mayores

    a) 8

    12 b)

    20

    10 c)

    6

    9 d)

    15

    9 e)

    8

    6

    12.- Completa los numeradores o denominadores de las fracciones equivalentes siguientes:

    a) ...

    ...

    3630...

    4

    ...

    3

    6

    2

    3

    1 b)

    5

    2

    ...

    ...

    45...

    8

    10

    ...

    ...

    6

    ...

    10

    OPERACIONES CON FRACCIONES :

    SUMA y RESTA

    Suma y Resta de fracciones con el MISMO DENOMINADOR. Para sumar o restar fracciones con el mismo denominador: Ejemplo: 1º) Se coloca el mismo denominador. 2º) Se suman o se restan los numeradores.

    3º) Se simplifica si se puede

    5

    7

    5

    2

    5

    5

    72 =

    5

    9

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    18

    16.- Realiza las siguientes sumas y restas. Simplifica el resultado, es decir escríbelo como fracción irreducible.

    a) 5

    2 +

    5

    13= b)

    4

    2 +

    4

    1= c)

    8

    3 +

    8

    2 –

    8

    1=

    d) 6

    7 –

    6

    5 = e)

    15

    60 –

    15

    35 = f)

    21

    13 –

    21

    7 =

    17.- Expresa el resultado de las siguientes operaciones en forma de fracción irreducible.

    a) 20

    23 –

    20

    8

    20

    7 = b)

    15

    17

    15

    15 –

    15

    4

    15

    7 =

    c)

    5

    4

    5

    7

    5

    13

    5

    15= d)

    4

    9

    4

    2

    4

    5

    4

    7

    4

    23=

    Suma y Resta de fracciones con DISTINTO DENOMINADOR.

    Pasos a seguir: Ejemplo:

    Cálculo del mínimo común múltiplo (m.c.m) de los denominadores

    - Cada denominador hay que descomponerlo en factores primos

    - Se eligen los factores comunes elevados al mayor exponente y los no comunes

    20:10=2 20:4=5

    a) 3 b)3/4 c) 1/2

    d) 1/3 e) 5/3 f) 2/7

    a) 2/5 b) 7/5

    c) 1 d) 5/2

    4

    6

    10

    3

    10 2 4 2 5 5 2 2 1 1

    10= 2·5 4=22 m.c.m.(4,10)= 22·5= 20

    20

    6·53·2

    20

    1º) Hay que reducir las fracciones a denominador común

    que es el mínimo común múltiplo

    2º) Se divide el denominador común, (m.c.m) por cada denominador del enunciado y lo que da se multiplica por el numerador correspondiente.

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    19

    10

    3 +

    4

    6 =

    20

    10

    3 +

    4

    6 =

    20

    6

    4

    6 =

    20

    306 =

    20

    36 = (Después de simplificar ) =

    5

    9

    10

    3+

    18.- Realiza las siguientes operaciones y expresa el resultado en forma de fracción irreducible.

    a) 6

    1

    4

    10 b)

    12

    4

    8

    6

    c) 9

    6

    3

    7 d)

    5

    2

    6

    5

    e) 10

    4

    6

    2 f)

    7

    2

    5

    3

    3º) Se suman o se restan los numeradores de las fracciones obtenidas

    y se deja el denominador común.

    4º) Se simplifica si se puede

    20

    306 =

    20

    36

    :

    x

    :

    5

    9

    20

    36=

    10

    18=

    =

    =

    x

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    20

    g) 6

    1

    3

    7 h)

    9

    8

    4

    5

    i) 9

    4

    6

    3

    8

    2 j)

    5

    1

    15

    3

    20

    7

    k) 10

    3

    8

    62 l)

    8

    3

    5

    2

    2

    1

    19.- Realiza las siguientes operaciones y expresa el resultado en forma de fracción irreducible

    a) 4

    3+

    2

    1+

    8

    5= b)

    9

    7–

    3

    1+

    6

    5=

    c) 6

    7–

    3

    2 + 2 = d)

    5

    4–

    10

    3+

    8

    6=

    e) 5

    3+

    20

    13+

    10

    7= f)

    15

    13+ 5

    30

    24 =

    a )8/3 ; b) 5/12

    c) 3 ; d) 13/30

    e) 11/15 ; f) 31/35

    g) 13/6 ; h) 13/36

    i) 11/36 ; j) 7/20 ;

    k) 31/20 ; l) 21/40

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    21

    g) 12

    13–

    18

    17= h)

    12

    6+

    9

    8+

    6

    5=

    i) 9

    6–

    9

    1–

    3

    2= j)

    10

    4+

    5

    1

    10

    8=

    MULTIPLICACIÓN de f racciones

    El producto de dos fracciones es otra fracción cuyo:

    - numerador es el producto de los numeradores.

    - denominador es el producto de los denominadores.

    Ejemplo 1: 5

    3 ·

    7

    2 =

    75

    23

    =

    35

    6

    Ejemplo 2: 10

    3 ·7 =

    10

    73 =

    10

    21

    Al multiplicar hay que tener en cuenta las reglas de los signos:

    - si se multiplican dos fracciones del mismo signo, el resultado queda positivo,

    - si son de distinto signo, el resultado es negativo. Ver el esquema

    20.- Realiza las siguientes multiplicaciones y expresa el resultado en forma de fracción irreducible.

    a) 2 · 5

    3 = b)

    2

    7· 4 = c) 3 ·

    6

    5 =

    d) 7

    4

    7 = e) 9 ·

    12

    5 = f)

    4

    3

    2 · 6 =

    g) 10

    3

    4

    5 h)

    5

    3

    7

    2 i)

    3

    2

    6

    5

    a) 15/8 b) 23/18

    c) 5/2 d) 5/4

    e) 39/20 f) -10/3

    g) 5/36 h) 20/9

    i) -1/9 j) -1/5

    Para multiplicar una fracción por un número entero:

    Se multiplica el numerador por el número entero. Se pone el mismo denominador

    db

    ca

    d

    c

    b

    a

    ·

    ··

    + · + = +

    · = +

    + · – =

    · + =

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    22

    j)

    4

    1

    3

    2

    k) 4·

    2

    5

    3

    l)

    7

    4.

    6

    1

    m)

    3

    2

    5

    3

    4

    1 n)

    10

    5

    3

    5

    2 ñ)

    3

    2

    7

    4

    Fracción inversa Dos fracciones son inversas cuando su producto es igual a la unidad.

    8

    5 y

    5

    8 son fracciones inversas porque

    8

    5

    8 =

    40

    40 = 1

    21.- Escribe las fracciones inversas de:

    a) 5

    2 b)

    4

    3 c)

    9

    7 d)

    13

    1 e) 6

    DIVISIÓN de f racc iones

    Para hallar el cociente de dos fracciones hay dos métodos:

    Multiplicar la primera fracción por la inversa de la segunda.

    o

    Multiplicar en cruz, es decir multiplicar el numerador de la primera por el denominador de la segunda,

    siendo el producto el nuevo numerador.

    Luego multiplicar el denominador de la primera por el numerador de la segunda, el producto es el nuevo

    denominador. Después si podemos se simplifica.

    5

    3 :

    7

    4 =

    5

    4

    7 =

    20

    21

    Al dividir hay que tener en cuenta las reglas de los signos:

    22.- Calcula los siguientes cocientes y expresa los resultados en forma de fracción irreducible.

    a) 6

    5:

    3

    2 = b)

    21

    10 :

    3

    2 = c) 10 :

    3

    4 =

    d) 10

    9 :

    5

    3 = e)

    4

    1 :

    3

    1 = f)

    35

    6 :

    5

    3 =

    a) 6/5 b) 14

    c) 5/2 d) 1

    e) 15/4 f) 3

    g)3/8 h) 6/35

    i) 5/9 j) -1/6

    k)-6/5 l) 2/21

    m) 1/10 n) -12/5

    ñ) -8/21

    5

    3 :

    7

    4 =

    5

    4

    7 =

    20

    21

    cb

    da

    d

    c

    b

    a

    ·

    ·:

    + : + = +

    : = +

    + : =

    : + =

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    23

    g) 12

    8:

    5

    4 h)

    5

    2:

    6

    4 i) 3:

    3

    2

    j) 2:6

    5 k) 10:

    3

    5 l)

    4

    3:

    5

    2

    m)

    5

    3:

    7

    2= n)

    4

    1:

    3

    1 = ñ)

    4

    5:

    2

    5

    o)

    5

    3:

    3

    2 p)

    2

    5:

    3

    1 q)

    3

    4:5

    r) 9

    3:5 s) 5:

    7

    1

    =

    OPERACIONES COMBINADAS con fracciones.

    Se siguen los mismos pasos que para los Números Naturales o Enteros:

    1º Se realizan las multiplicaciones y las divisiones.

    (si son seguidas se sigue el orden en el que están)

    2º Se realizan las sumas y las restas

    3º Se simplifica si se puede

    23.- Resuelve, paso a paso, estas operaciones y simplifica el resultado.

    a) 3

    8

    5

    1

    3

    1 .b)

    8

    2

    3

    1:

    6

    3

    c) 5

    25:

    2

    3

    2

    1 = d)

    7

    5

    2

    12:

    7

    15

    2

    4

    7:

    2

    1 =

    a) 5/4 b) 5/7 c)15/2

    d) 3/2 e)3/4 f) 2/7

    g)6/5 h) 5/3 i) 2/9

    j) 5/12 k) 1/6 l) 8/15

    m) -21/10 n) - ¾ ñ) 2

    o)10/9 p) -2/15 q) -15/4

    r) 15 s) 1/35

    5

    3

    2

    5

    4

    3

    10

    15

    4

    3

    20

    3015

    20

    45=

    4

    9

    Cálculo mcm (4,10)

    4=22

    10=2·5

    mcm(4,10)= 22·5= 20

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    24

    e) 6

    1

    3

    4

    2

    1

    5

    2 f)

    2

    1:

    5

    2

    6

    1:

    3

    2 =

    g) 3

    2

    2

    1

    6

    1

    8

    5 h)

    2

    1:

    5

    2

    3

    4

    2

    3

    i) 6

    5

    2

    1

    9

    4 j)

    2

    3

    5

    1

    2

    5:

    3

    1

    k) 15

    7+

    10

    9

    2

    3:

    4

    5 =

    CON PARÉNTESIS 1º Las operaciones que están entre paréntesis.

    2º Las multiplicaciones y las divisiones.

    3º Se realizan las sumas y las restas

    4º Se simplifica si se puede 24

    22 12

    11

    24.- Resuelve, paso a paso, estas operaciones y si es posible simplifica el resultado.

    a)

    4

    3+

    6

    3

    1 = b)

    4

    3+

    12

    7–

    8

    5:

    3

    2 =

    a) 13/15 b) 5/4

    c) 11/20 d) -1

    e) 9/10 f) 16/5

    g) 29/24 h) 13/30

    i) 19/18 j) – 1/6

    k) 1/6

    Ejemplo:

    2

    1+

    3

    2 ·

    8

    1+

    4

    2

    2

    1+

    3

    2 ·

    8

    41 =

    2

    1+

    8

    5

    3

    2

    24

    10

    2

    1

    24

    1012

    24

    22

    Cálculo mcm (4,8)

    4=22

    8=23

    mcm(4,8)= 23·=8

    Cálculo mcm (2,24)

    2=2

    24=23·3

    mcm(2,24)= 23·3=24

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    25

    c)

    3

    4

    9

    11:

    3

    4 = d)

    5

    7+

    10

    9–

    2

    3 :

    3

    5 =

    e) 2

    15

    8

    5

    3 = f)

    3

    1

    6

    5

    4

    3

    g) 3

    4:

    4

    5–

    6

    2 = h)

    3

    5

    4

    2

    3

    72:

    5

    1

    i) 5

    3:

    10

    3

    2

    1

    3

    2:

    5

    4

    Otra forma de expresar operaciones entre fracciones es mediante la raya de fracción que indica división

    Ejemplo:

    3

    1

    6

    5:

    4

    1

    2

    3= es lo mismo que escribir

    3

    1

    6

    54

    1

    2

    3

    Resolución: Se multiplican entre sí los extremos formando el numerador; Y se multiplican entre sí los medios formando el denominador

    3

    1

    6

    54

    1

    2

    3

    6

    254

    16

    6

    34

    7

    = 6

    21

    12

    42

    3·4

    6·7 =

    2

    7

    simplificación 25.- Resuelve paso a paso y expresa el resultado como fracción irreducible.

    a)

    2

    13

    3

    1

    4

    3

    b)

    6

    5

    3

    73

    4

    2

    1

    a) 19/36 b) 17/16

    c) -1/12 d) 12/25

    e) 1/10 f) 3/8

    g) 16/11 h) 6/25

    i) 1/2

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    26

    c)

    2

    3

    54

    3

    2

    1

    d)

    2

    1

    8

    33

    2

    e)

    14

    5

    43

    2

    f)

    4

    12

    3

    1

    4

    31

    g)

    4

    3·22:

    3

    15

    41

    5

    2

    = h)

    4:3

    2

    3

    1

    3

    4

    2

    11

    PROBLEMAS CON FRACCIONES

    - La Fracción como parte de la unidad Consideraremos dos tipos de problemas: - La Fracción como operador

    La fracción como PARTE de la UNIDAD

    Una fracción puede expresar un valor con respecto a un total que llamamos unidad.

    En este caso el denominador representa el número de partes iguales en que dividimos la unidad,

    y el numerador el número de partes que se toman.

    Ejemplo: Nos comemos las 4

    3 partes de un queque.

    ▪ Significa que si dividimos el queque en cuatro partes, nos vamos a comer tres ▪ Se representa así:

    ▪ El queque completo equivale a 4

    4 que es la unidad

    ▪ Lo que no hemos comido representa el resto es decir 4

    4

    4

    3=

    4

    1

    a) 1/6 b) 4/9

    c) -3/10 d) -16/3

    e) 5/12 f) -1/3

    g) 3/25 h) -10

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    27

    -.-.-.-.-.-.-.-.-.-.

    261.- Un depósito contiene 3

    2 de gasolina. Representación

    a) ¿Qué fracción equivale a todo el depósito? . . . . . .

    b) ¿Qué fracción del depósito está vacía? (Escribe la operación) . . . . .

    262 .- He recorrido los 5

    3 del trayecto. Representación

    a) ¿Qué fracción equivale a todo el trayecto? . . . . .

    b) ¿Qué fracción del trayecto aún no ha sido recorrida? (Escribe la operación) . . . .

    263.- Escribe debajo de cada figura la fracción que se pregunta.

    - Fracción zona oscura . . . . . . . . . . . . . . . .

    - Fracción que equivale a todo . . . . . . . . . . . . . . . .

    - Fracción que equivale al resto (zona clara) . . . . . . . . . . . . . . . .

    264.- Un niño bebió de un sorbo6

    1 de agua de una botella y en otro sorbo

    5

    1

    a) ¿Cuánto bebió entre los dos sorbos?

    b)¿Cuánto queda en la botella? { a)11/30 ; b)19/30 }

    265.- A Juan le dieron 3

    1 de pastel y a Montse

    9

    2. ¿Cuánto comieron entre los dos? { 5/9 }

    266.- Marta ha comprado 8

    5 de una empanada y Luis

    8

    2

    a) ¿Qué fracción de empanada ha comprado Marta más que Luis?

    b) ¿Qué fracción de empanada han comprado entre los dos? {a) 3/8 ; b) 7/8 }

    267.- Ayer llené el depósito de gasolina y a continuación hice dos viajes: en el primero gasté 9

    2 de

    la capacidad del tanque y en el segundo viaje 6

    1.

    a) ¿Qué fracción total del tanque gasté en los dos viajes?

    b) ¿Qué fracción me queda? { a) 7/18 ; b) 11/18 }

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    28

    268.- Andrés se comió 5

    1de los bombones de una caja y Carmen

    2

    1 de la misma.

    a) ¿Qué fracción de bombones se comieron entre las dos?

    b) ¿Qué parte queda sin comer en la caja? { a)7/10 ; b) 3/10 }

    269.- Un ciclista ha recorrido 10

    3 de un trayecto por la mañana y por la tarde

    4

    1.

    ¿Qué parte del trayecto le falta por recorrer? { 9/20}

    2610.- La suma de dos fracciones es 18

    15. Si una de ellas es

    6

    1 ¿Cuál es la otra? { 2/3}

    2611.- ¿Cuánto le falta a 4

    3 para valer

    3

    5? { 11/12}

    2612.- Los ingresos de una comunidad de vecinos se gastan de la siguiente manera: 6

    1 en electricidad,

    5

    2 en mantenimiento del edificio,

    10

    1 en la recogida de basuras y el resto se emplea en limpieza.

    ¿Qué fracción de los ingresos se emplea en limpieza? { 1/3}

    La fracción COMO OPERADOR

    El uso de las fracciones en la vida real suele ser el tomar de un número la parte que la fracción nos indica.

    Entonces la fracción se dice que funciona como operador, ya que opera sobre una cantidad y la transforma

    y se puede leer como "la fracción del número".

    Ejemplo 1: Tengo 15 € y me gasto las 5

    2 partes ¿Cuánto dinero gasto?

    Aquí el todo son los 15 € , los cuales tengo que dividir entre 5 partes y tomar 2 de esas partes. 15 : 5 = 3 3 · 2 = 6 €

    Hallar los 155

    2de es la operación €6

    5

    30

    5

    15·215·

    5

    2

    Cuando una fracción va seguida de la preposición “de” y de una cantidad o de otra fracción, esa preposición “de” indica la multiplicación.

    -.-.-.-.-.-.-.-.-.-.-.-

    Para calcular la fracción de un número, multiplicamos el numerador por el número y el resultado lo dividimos por el denominador.

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    29

    27.- Calcula:

    a) 5

    4 de 50 = . . . . . . b)

    3

    2 de 18 = . . . . . . c)

    7

    2 de 35= . . . . . .

    d) 12

    7 de 60 = e)

    3

    1 de

    5

    3= . . . . . f) La mitad de la mitad

    g) 2

    1 de

    5

    3= h) La mitad de

    4

    1= i)

    3

    2 de

    8

    6=

    { a) 40 ; b) 12 ; c) 10 ; d) 35 ; e) 1/5 ; f) 1/4 ; g) 3/10 ; h) 1/8 ; i) 1/2 }

    -.-.-.-.-.-.-.-.-.-.

    Ejemplo 2: He comprado unos patines por 85 € , de los cuales pagué al contado los 5

    4

    a) ¿Cuántos euros entregué al contado?

    b) ¿Cuánto me queda por pagar?

    281.- En una merienda se sirvieron 63 bocadillos y se comieron los cinco novenos..

    a) ¿Cuántos bocadillos se comieron?

    b) ¿Cuántos sobraron? { a) 35 ; b) 28 }

    282.- Si en una compra nos gastamos 5

    3 de 150 €.

    a) ¿Cuánto nos gastamos?

    b) ¿Cuánto nos sobró? { a) 90 € ; 60 € }

    283.- Entre tres hermanos deben repartirse 120 euros. El primero se lleva 15

    7del total, el segundo

    12

    5

    del total y el tercero el resto.

    a) ¿Cuánto dinero se ha llevado cada uno?

    b) ¿Qué fracción corresponde a lo que se lleva el tercer hermano? { a) 56 , 50 y 14 € ; b) 7/60 }

    Solución a) €685

    340

    5

    85·485·

    5

    4

    Solución b) Lo podemos resolver de dos formas:

    Iª) Hallando la diferencia entre el coste total y lo que pagué 85 – 68 = 17 €

    IIª) Sabiendo que lo que me queda por pagar es 5

    1 , hallo

    5

    1 de 85 €17

    5

    8585·

    5

    1

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    30

    284.- Se han construido los 8

    5de la Variante del Norte. Sabiendo que la variante tiene una longitud

    total de 16 km, calcula los kilómetros que quedan por construir. { 6 km }

    285.- De un trozo de alambre de 60 metros, se han cortado los 4

    3. ¿Cuánto mide el trozo sobrante? { 15 m }

    286.- En un grupo de personas mayores hay 32 personas y tres octavos de ellos saben bailar isas y folías.

    ¿Cuántas personas no saben bailar isas y folías?. { 20 personas }

    287.- Al tostarse el café pierde un quinto de su peso. Un comerciante tiene 80 kg. de café verde.

    ¿Cuánto café le queda después de tostarlo? { 64 kg }

    FRACCIÓN DE OTRA FRACCIÓN

    Ejemplo: Laura gasta 5

    2 de su sueldo en pagar el alquiler y

    7

    4 de lo que queda en el supermercado.

    El resto lo ahorra. ¿Qué fracción corresponde a lo que ahorra?

    Solución: Laura gasta en alquiler 5

    2; Después de pagar el alquiler le quedan:

    5

    5

    5

    2=

    5

    3

    Gasto en el supermercado: los7

    4 de

    5

    3 son:

    7

    5

    3=

    35

    12

    Gastos totales : 35

    1214

    35

    12

    5

    2 =

    35

    26 (fracción del sueldo que gasta)

    Quedan: 35

    26

    35

    35 =

    35

    9 fracción del sueldo que ahorra

    -.-.-.-.-.-.-.-.-.-.-.-.

    291.- Jacinto se come los 5

    2 de una tarta y Pepita

    2

    1 del resto.

    a) ¿Qué fracción se ha comido Pepita?

    b) ¿Qué fracción de tarta queda para que se la coman otros? { a) 3/10 b) 3/10 }

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    31

    292.- María va de compras con 180 €. Se gasta 5

    2 de esa cantidad en ropa y

    4

    1 de lo que le queda en

    comida.

    a) ¿Cuánto dinero gasta en ropa y en comida

    b) ¿Qué fracción corresponde al dinero que le queda y cuánto es? { a) 72 € en ropa; 27 € en comida ; b) 9/20 ; 81€ }

    293.- Berta realiza un viaje de 480 Km por etapas. El primer día recorre 8

    3 del camino, el segundo día

    5

    2

    de lo que recorrió el primer día .

    a) ¿Qué fracción le corresponde al camino que le queda por recorrer?

    b)¿Cuántos kilómetros le quedan por recorrer?

    { a) 19/40; b) 228 km }

    La fracción como razón Cuando comparamos dos cantidades de una magnitud, estamos usando las fracciones como razones.

    Así por ejemplo, cuando decimos que la proporción entre chicas y chicos en el Instituto es de 2 a 3,

    estamos diciendo que por cada 3 chicos hay 2 chicas, es decir, que de cada cinco estudiantes, 3 son

    chicos y 2 son chicas. La fracción de chicas es 5

    2

    38.- Hallar la fracción que se pide en cada apartado:

    a) Si un curso está compuesto por 22 hombres y 16 mujeres. Halla la fracción que representa el número de hombres del curso. . . . . . .

    b) ¿Qué fracción de un siglo son 40 años? . . . . .

    c) ¿Qué fracción de día representa el trabajo de un obrero durante 8 horas diarias? . . . . .

    d) En un curso de 45 alumnos, 25 practican baloncesto. ¿Qué fracción representa a los que no practican ese deporte? . . . . .

    e) Un matrimonio decide pasar su luna de miel en Maspalomas durante 4 días. ¿Cuál es la fracción de semana que duró su luna de miel? . . . . . .

    f) ¿Qué fracción del día ha transcurrido cuando son las siete de la tarde? . . . . .

    -.-.-.-.-.-.-.-.-.-.-.-.-.

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    32

    Un caso particular de aplicación de las fracciones como razón son los porcentajes, ya que éstos

    no son más que la relación que se establece entre un número y 100.

    39.- Escribe en forma de fracción:

    a) 50% b) 25% c) 20 %

    d) 15 % e) 5 % f) 9 %

    g) 22 % h) 18 % i) 40 %

    CONSEJOS PARA RESOLVER LOS PROBLEMAS:

    • Lee atentamente el enunciado del problema. Si lo haces más de una vez mejor.

    • Fíjate qué es lo que te pide que calcules.

    • Mira los datos con los que cuentas.

    • Haz un esquema o dibujo del problema.

    • Decide las operaciones que debes realizar hasta llegar al resultado.

    • Resuélvelo con orden.

    • Pon las unidades en el resultado, es decir de qué cosa se trata.( €, litros, metros, etc. )

    • Observa el resultado, mira si es un resultado lógico o no. (Puede ser que en algo te hayas confundido).

    Números decimales son aquellos números cuyas cifras estén separadas por una coma.

    Las cifras a la izquierda de la coma corresponden a la parte entera del número, mientras que las cifras

    a la derecha de la coma son la parte decimal.

    Los números decimales son necesarios para expresar cantidades cuyo

    valor es mayor que un número entero dado, pero menor que el número

    entero siguiente.

    Por eso aparecen en múltiples ocasiones en la vida diaria, como por ejemplo al manejar moneda

    fraccionaria o al efectuar cualquier medida.

    Ejemplo 2,25 € 2 euros y 25 céntimos 2 < 2,25 < 3

    Ejemplo:

    372,25

    parte entera parte decimal

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    33

    Nombre y valor de las cifras decimales Al igual que en la parte entera, en la parte decimal el valor de cada cifra depende de la posición que

    ocupa respecto a la unidad.

    Si tomamos el número 125,255942 vemos que está compuesto de:

    PARTE ENTERA PARTE DECIMAL

    1 2 5 , 2 5 5 9 4 2 unidad

    de millar

    UM

    Centena

    C

    Decena

    D

    Unidad

    U

    ,

    décima

    d

    centésima

    c

    milésima

    m

    diezmilésima

    dm

    cienmilésima

    cm

    millonésima

    mm

    ACTIVIDADES

    1.- Descomponer los números siguientes (en centenas, decenas, unidades,.décimas, centésimas, ...) utilizando las abreviaturas.(UM, C, D , U , d , c , m , dm , cm , mm) ( leer solo los números distintos de 0) a) 5,27 5 U 2d 7 c b) 0,4 c) 5,08 d) 0,007 e) 0,05178 f) 7,8359

    g) 539,0004 h) 20,5037 i) 0,49053 j) 1269,87 k) 2014,938 l) 0,057

    .-.-.-.-.-.-.-.-.-.-.-.

    En general, podemos comparar dos posiciones cualesquiera, no importa si pertenecen a la

    parte entera o decimal. Si pasamos de una posición a otra menor, tendremos que multiplicar por 10 tantas

    veces como sea preciso.

    1 unidad = 10 décimas 1 unidad = 100 centésimas 1 unidad= 1000 milésimas etc.

    A la inversa, para pasar de una posición a otra mayor tendremos que dividir sucesivamente entre 10.

    Por ejemplo: 1 décima son 0,1 unidades; 3 centésimas son 0,03 unidades; 50 centésimas son 0,5 unidades

    2.- a) Observa la tabla y contesta

    D U , d c m dm cm mm

    A) 1

    B) 4 0

    C) 2 0 0

    D) 3

    c1)

    c2)

    c3)

    c4)

    b) Escribe los números correspondientes a cada uno de los apartados anteriores

    A) . . . . B) . . . C) . . . . D) . . . .

    A) ¿Cuántas milésimas hacen una décima? B) Cuántas centésimas hay en 40 milésimas? C) ¿Cuántas centésimas hay en 200 diezmilésimas ? . . . . . .

    ¿Y cuántas milésimas? . . . . . . .

    D) ¿Cuántas millonésimas hay en 3 milésimas?

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    34

    c) Coloca en la tabla e indica cómo se escriben los número que están formados por

    c1) 2036 milésimas . . . . c2) 4 diezmilésimas . . . . c3) 80 décimas . . . . c4) 4570 milésimas . . . .

    Lectura de números decimales

    Por ejemplo para el número 256, 859

    1º Leemos la parte entera: 256 unidades. Añadimos la conjunción “y ”

    2º Leemos la parte decimal dándole el nombre de la posición de la última cifra decimal 859 milésimas

    Los ceros que aparecen al final de la parte decimal de un número pueden suprimirse, tanto a la hora de

    escribirlo, como a la hora de nombrarlo:

    3,4 = 3,40 = 3,400 porque 4 décimas = 40 centésimas = 400 milésimas

    El número Se lee El número Se lee

    0,3 3 décimas 0,005 5 milésimas

    74,58 74 unidades y 58 centésimas 0,0032 32 diezmilésimas

    3.- Escribe con cifras:

    a) 3 unidades y 4 décimas . . . . . . b) 6 unidades y 8 centésimas . . . . . c) 8 décimas . . . . . d) 12 unidades y 25 centésimas. . . . . e) 1 unidad y 31 milésimas . . . . . f) 2 centésimas . . . . g) 5 unidades y 14 milésimas . . . . . h) 75 milésimas . . . . . . i) 3 milésimas . . . . . j) 47 centésimas . . . . . k) 39 milésimas . . . . . l) 183 diezmilésimas . .

    m) 432 diezmilésimas n) 4593 cienmilésimas ñ) 5 unidades y 5 milésimas o) 58 millonésimas

    Redondear o Aproximar A veces, cuando operamos con números decimales, nos encontramos con un resultado con muchas

    cifras decimales. Es posible que no necesitemos tantas cifras decimales, o que incluso no tengan sentido.

    Así por ejemplo no tiene sentido que un artículo cualquiera de una tienda tenga un precio de 25,569 €,

    ya que no existen monedas de valor inferior al céntimo de euro.

    En estos casos debemos realizar una aproximación o redondeo, que limite el número de cifras decimales.

    El procedimiento para redondear un número hasta una determinada cifra decimal es el siguiente:

    Si la primera cifra que queremos suprimir es menor que 5, dejamos igual la última cifra que se

    conserva.

    Por ejemplo: Redondear hasta las décimas el número 25,128 → se obtiene el número 25,1

    25,1 2 8 (al ser la primera cifra a eliminar 2 < 5 , las décimas no cambian) y el resultado es 25,1

    Si la primera cifra que suprimimos es mayor o igual que 5, se aumenta 1 a la última cifra que se

    conserva.

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    35

    Por ejemplo: Redondear hasta las centésimas el número 4,568 → se obtiene el número 4,57

    4,5 6 8 (al ser la primera cifra a eliminar 8 > 5 , las centésimas aumentan en 1) y el resultado 4,57

    13.- Aproxima a las décimas

    a) 6,27 . . . . b) 3,65 . . . . c) 0,139 . . . . d) 4,746 . . . .

    e) 2,651 . . . . f) 9,235 . . . . g) 5,423 . . . . h) 1,092 . . . .

    14.- Redondea a las centésimas

    a) 6,423 . . . . b) 6,072 . . . . c) 5,165 . . . . d) 4,786 . . . .

    e) 2,651 . . . . f) 9,2556 . . . . g) 25,035 . . . . h) 5,8745 . . . .

    15.- Redondea hasta obtener números enteros (aproxima a las unidades)

    a) 923,17 . . . . b) 16,5 . . . . c) 71,08 . . . . d) 0,54 . . . . e) 3,4 . . . . 16.- Aproxima los siguientes números según se indica en la tabla:

    a las unidades a las décimas a las centésimas a las milésimas

    2,491 . . . . . . . . . . . .

    0,946 . . . . . . . . . . . .

    1,792 . . . . . . . . . . . .

    8,1325 . . . . . . . . . . . . . . . .

    3,5436 . . . . . . . . . . . . . . . .

    5,3752 . . . . . . . . . . . . . . . .

    7,0627 . . . . . . . . . . . . . . . .

    21,6284 . . . . . . . . . . . . . . . .

    5,8451 . . . . . . . . . . . . . . . .

    Fracciones y decimales Una fracción es un cociente entre números enteros.

    Si se efectúa la división entre el numerador y el denominador podemos obtener

    Un número entero. Ejemplo: 23

    6

    Un número decimal

    TIPOS DE NÚMEROS DECIMALES

    Número DECIMAL EXACTO tiene un número finito de cifras decimales.

    Al hacer la división el resto se hace 0

    Ejemplo: 75,04

    3

    mixto

    puroperiódicodecimal

    exactodecimal

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    36

    Número DECIMAL PERIÓDICO tiene infinitas cifras decimales repetidas

    El resto no llega a hacerse 0 nunca, dando lugar a un número con cifras decimales

    que se repiten periódicamente, denominado número decimal periódico,

    Ejemplo: 3

    4= 3,1..3333,1

    Al grupo de decimales que se repiten se le denomina PERIODO

    y lo indicaremos mediante un arco que lo abarca: 3,1

    Un número decimal periódico, a su vez puede ser:

    PERIÓDICO PURO , si el periodo empieza justo detrás de la coma.

    Ejemplo: 33

    40=1'21212121....... =

    PERIÓDICO MIXTO , si antes del periodo tiene otras cifras decimales.

    Ejemplo: 6

    19= 3,1666…. = 61,3

    Las cifras decimales antes del periodo forman el anteperiodo

    17.- Clasifica los siguientes números en la tabla: 2,7 4 5,3

    4,63 34,39

    12

    924,7

    3,645 36,0

    127 3,89 24,82 387 3,0

    entero decimal exacto decimal periódico puro decimal periódico mixto

    18.- Escribe en forma de número decimal las siguientes fracciones.

    Señala si es decimal exacto, periódico puro o periódico mixto, según corresponda.

    a) 25

    6= b)

    3

    1= c)

    25

    3= d)

    9

    1= e)

    3

    163=

    f) 15

    2= g)

    11

    4= h)

    15

    31= i)

    8

    1 j)

    5

    7

  • C.E.P.A. VALLECAS Matemáticas Nivel II

    37

    FRACCIÓN GENERATRIZ

    Todo número decimal exacto o periódico se puede escribir como una fracción, a la que se denomina

    fracción generatriz

    Por ejemplo, consideremos la fracción 4

    17

    Al hacer la división entre numerador y denominador se obtiene 4,25

    4'25 es la expresión decimal de 4

    17 y de cualquier fracción equivalente a ella.

    A su vez, 4

    17(o cualquier fracción equivalente a ella) se llama fracción generatriz de 4'25.

    CÁLCULO de fracciones generatrices

    de Números DECIMALES EXACTOS

    La fracción generatriz de un decimal exacto es una fracción que tiene:

    por numerador al número, escrito sin coma decimal,

    por denominador un 1 seguido de tantos ceros como cifras decimales tiene el número.

    Ejemplo 1) 3,1 = 10

    31 ; Ejemplo 2) 0,24 =

    100

    24

    andosimpplif iv =

    25

    6 ;

    20.- Halla la fracción generatriz sin simplificar de los siguientes números decimales

    a) 3,76 = . .