26
3/23/2020 1 CE 6504 Finite Elements Method in Structures (Part 1) AAiT March 2020 Bedilu Habte AAiT Civil Engineering Bedilu Habte 2 Course Outline 1. Introduction 2. Preliminaries 3. 1D (2-Node) Line Elements Bar, Truss, Beam-elements, Shape functions 4. 2D Elements Plane Stress and Plane Strain Problems 5. 3D Elements Tetrahedral, Hexahedral Elements 6. Plate Bending & Shells 7. Further Issues Modeling, Errors, Non-linearity AAiT Civil Engineering Bedilu Habte 3 References Finite Element Analysis (Text) By: S.S. BHAVIKATTI Concepts and Applications of Finite Element Analysis By: Robert D. Cook, David S. Malkus and Michael E. Plesha Finite Element Procedures in Engineering Analysis By: K.-J. Bathe The Finite Element Method O.C. Zienkiewicz An Introduction to the Finite Element Method By: J. N. Reddy AAiT Civil Engineering Bedilu Habte 4 Internet References: FEM Primer Part 1 - 4 Mike Barton & S. D. Rajan Arizona State University http://enpub.fulton.asu.edu/structures/FEMPrimer-Part1.ppt Introduction to Finite Element Methods Department of Aerospace Engineering Sciences University of Colorado at Boulder http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html Advanced Finite Element Methods Department of Aerospace Engineering Sciences University of Colorado at Boulder http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/Home.html

CE 6504 - ndl.ethernet.edu.et

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

3/23/2020

1

CE 6504 Finite Elements Method in Structures

(Part 1)

AAiTMarch 2020

Bedilu Habte

AAiT – Civil Engineering – Bedilu Habte 2

Course Outline

1. Introduction 2. Preliminaries3. 1D (2-Node) Line Elements

Bar, Truss, Beam-elements, Shape functions

4. 2D ElementsPlane Stress and Plane Strain Problems

5. 3D ElementsTetrahedral, Hexahedral Elements

6. Plate Bending & Shells7. Further Issues

Modeling, Errors, Non-linearity

AAiT – Civil Engineering – Bedilu Habte 3

References

Finite Element Analysis (Text)By: S.S. BHAVIKATTI

Concepts and Applications of Finite Element AnalysisBy: Robert D. Cook, David S. Malkus and Michael E. Plesha

Finite Element Procedures in Engineering AnalysisBy: K.-J. Bathe

The Finite Element MethodO.C. Zienkiewicz

An Introduction to the Finite Element MethodBy: J. N. Reddy

AAiT – Civil Engineering – Bedilu Habte 4

Internet References:

FEM Primer Part 1 - 4Mike Barton & S. D. RajanArizona State Universityhttp://enpub.fulton.asu.edu/structures/FEMPrimer-Part1.ppt

Introduction to Finite Element MethodsDepartment of Aerospace Engineering SciencesUniversity of Colorado at Boulderhttp://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html

Advanced Finite Element MethodsDepartment of Aerospace Engineering SciencesUniversity of Colorado at Boulderhttp://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/Home.html

3/23/2020

2

AAiT – Civil Engineering – Bedilu Habte 5

I Introduction

What is FEM? Finite element method is a numerical method that generates approximate solutions to engineering problems which are usually expressed in terms of differential equations.

Used for stress analysis, heat transfer, fluid flow, electromagnetic etc.

AAiT – Civil Engineering – Bedilu Habte 6

• Use of several materials within the same structure, • complicated or discontinuous geometry, • complicated loading, etc,

makes the closed form (analytical) solution of structural problems very difficult.

One resorts to a numerical solution, the best of which is the FEM.

What is FEM?

AAiT – Civil Engineering – Bedilu Habte 7

Structure is partitioned into FINITE ELEMENTS – that are joined to each other at limited number of NODES

Behavior of an individual element can be described with a simple set of equations

Assembling the element equations, to a large set, is supposed to describe the behavior of the whole structure.

What is FEM?

AAiT – Civil Engineering – Bedilu Habte 8

Discretization Example

Find the circumference of a circle with a unit diameter – find the value of π.

Approximation with that of regular polygons:

3/23/2020

3

AAiT – Civil Engineering – Bedilu Habte 9

Solution:Let n be the number of sides of the inscribed or circumscribing polygon.

i) Inscribed polygonPerimeter p = n sin (180/n)

ii) Circumscribing polygonPerimeter p = n tan (180/n)

Discretization Example

AAiT – Civil Engineering – Bedilu Habte 10

Estimated vs. exact value of π = 3.1415926536

No. of sides Inscribed polygon Error

3 2.5980762114 0.5435164422

4 2.8284271247 0.3131655288

8 3.0614674589 0.0801251947

16 3.1214451523 0.0201475013

32 3.1365484905 0.0050441630

64 3.1403311570 0.0012614966

128 3.1412772509 0.0003154027

1000 3.1415874859 0.0000051677

10000 3.1415926019 0.0000000517

100000 3.1415926531 0.0000000005

1000000 3.1415926536 0.0000000000

Discretization Example

AAiT – Civil Engineering – Bedilu Habte 11

A formal mathematical theory for the FEM started some 60 years ago The steps in FEA are very similar to the method of the direct stiffness method in matrix structural analysis

The term finite element was first used by Clough in 1960.

The first book on the FEM by Zienkiewicz and Cheung was published in 1967.

In the late 1960s and early 1970s, the FEM was applied to a wide variety of engineering problems.

Brief History

AAiT – Civil Engineering – Bedilu Habte 12

The Pioneers – 1950 to 1962; Clough, Turner, Argyris, etc.; thought structural elements as a device to transmit forces (“force transducer”).

The Golden Age – 1962–1972; Zienkiewicz, Cheung, Martin, Carey etc.; thought discrete elements approximate continuum models (displacement formulation).

Brief History

3/23/2020

4

AAiT – Civil Engineering – Bedilu Habte 13

Consolidation – 1972 to mid 1980s; Hughes, Bathe Argyris, etc.; variational method, mixed formulation, error estimation.

Back to Basics – early 1980s to the present; Elements are kept simple but should provide answers of engineering accuracy with relatively coarse meshes.

Brief History

AAiT – Civil Engineering – Bedilu Habte 14

The 1970s advances in mathematical treatments, including the development of new elements, and convergence studies.

Most commercial FEM software packages originated in the 1970s and 1980s.

The FEM is one of the most important developments in computational methods to occur in the 20th century.

Brief History

AAiT – Civil Engineering – Bedilu Habte 15

Brief History

AAiT – Civil Engineering – Bedilu Habte 16

ANSYS

MSC/NASTRAN

ABAQUS

ADINA

ALGOR

NISA

COSMOS/M

STARDYNE

IMAGES-3D

Proprietary Software

3/23/2020

5

AAiT – Civil Engineering – Bedilu Habte 17

1. Discretize and Select Element Type

2. Select a Displacement Function

3. Define Strain/Displacement and Stress/Strain Relationships

4. Derive Element Stiffness Matrix & Eqs.

5. Assemble Equations and Introduce B.C.’s

6. Solve for the Unknown Degrees of Freedom

7. Solve for Element Stresses and Strains

8. Interpret the Results

Typical Steps in FEA Process

AAiT – Civil Engineering – Bedilu Habte 18

Common FEA Procedure for Structures

0. IdealizationThe given structure needs to be idealized based on engineering judgment. Identify the governing equation.

1. DiscretizationThe continuum system is disassembled into a number of small and manageable parts (finite elements).

AAiT – Civil Engineering – Bedilu Habte 19

2 – 4. Derivation of Element EquationsDerive the relationship between the unknown and given parameters at the nodes of the element.

5a. AssemblyAssembling the global stiffness matrix from the element stiffness matrices based on compatibility of displacements and equilibrium of forces.For example:

Common FEA Procedure for Structures

e e e

f k u

AAiT – Civil Engineering – Bedilu Habte 20

Displacement of a node is always the same for the adjoining elements and for the whole structure.

21

12

21

12

vvV

uuU

i

i

Common FEA Procedure for Structures

3/23/2020

6

AAiT – Civil Engineering – Bedilu Habte 21

For the whole structure, this process results in the masterstiffness equation:

The sum of the forces on each element of a particular node must balance the external force at that node.

Common FEA Procedure for Structures1 22 1

1 22 1

ix

iy

F f x f x

F f y f y

' ' 'K U F

AAiT – Civil Engineering – Bedilu Habte 22

5b. Introduce Boundary ConditionsAfter applying prescribed nodal displacements (and known external forces) to the master stiffness equation, the resulting equation becomes the modified master stiffness equation:

Common FEA Procedure for Structures

K U F

AAiT – Civil Engineering – Bedilu Habte 23

6. Solve for the primary unknowns

7/8. Compute other values of interestSecondary unknowns are determined using the known nodal displacements. Result interpretation.

Common FEA Procedure for Structures

1

U K F

AAiT – Civil Engineering – Bedilu Habte 24

1. Linear analysis: small deflection and elastic material properties.

2. Non-linear analysis: • Material non-linearity: small deflection and

non-linear material properties.• Geometric non-linearity: large deflection and

elastic material properties.• Both material and geometric non-linearity.

Types of FEA in Structures

3/23/2020

7

AAiT – Civil Engineering – Bedilu Habte 25

Advantages of Finite Element Analysis

• Models Bodies of Complex Shape

• Can Handle General Loading/Boundary Conditions

• Models Bodies Composed of Composite Materials

• Model is Easily Refined for Improved Accuracy by

Varying Element Size and Type (Approximation

Scheme)

• Time Dependent and Dynamic Effects Can Be Included

• Can Handle a Variety Nonlinear Effects

AAiT – Civil Engineering – Bedilu Habte 26

Common Sources of Error in FEA

• Domain Approximation

• Element Interpolation/Approximation

• Numerical Integration Errors

(Including Spatial and Time Integration)

• Computer Errors (Round-Off, Etc., )

AAiT – Civil Engineering – Bedilu Habte 27

Measures of Accuracy in FEA

Accuracy

Error = |(Exact Solution)-(FEM Solution)|

Convergence

Limit of Error as:

Number of Elements (h-convergence) or

Approximation Order (p-convergence)

Increases

Ideally, Error 0 as Number of Elements or Approximation Order is Higher

AAiT – Civil Engineering – Bedilu Habte 28

Numerical Methods

Several approaches can be used to transform the physical formulation of the problem to its finite element discrete analogue.

Ritz/ Galerkin methods – the physical formulation of the problem is known as a differential equation.

Variational formulation – the physical problem can be formulated as minimization of a functional.

3/23/2020

8

AAiT – Civil Engineering – Bedilu Habte 29

Variational Method cont.

• A mathematical model is a set of mathematical statements which attempts to describe a given physical system.

AAiT – Civil Engineering – Bedilu Habte 30

Strong Form (SF): A system of ordinary or partial differential equations in space and/or time, complemented by appropriate boundary conditions.

Weak Form (WF): A weighted integral equation that “relaxes” the strong form into a domain-averaging statement.

Variational Form (VF): A functional whose stationary conditions generate the weak and strong forms.

Variational Method cont.

AAiT – Civil Engineering – Bedilu Habte 31

Elasticity

x

xy

y

z

zy

zx xz

yz

xy

3D Stress block

AAiT – Civil Engineering – Bedilu Habte 32

Elasticity cont.

Stress Equilibrium Equations

3/23/2020

9

AAiT – Civil Engineering – Bedilu Habte 33

Elasticity cont.

AAiT – Civil Engineering – Bedilu Habte 34

Elasticity cont.

Strain – Displacement

AAiT – Civil Engineering – Bedilu Habte 35

Elasticity cont.

3D Stress – Strain Relationships

AAiT – Civil Engineering – Bedilu Habte 36

Bar Elements

(1) The longitudinal dimension or axial dimension is much larger that the transverse dimension(s). The intersection of a plane normal to the longitudinal dimension and the bar defines the cross sections.

(2) The bar resists an internal axial force along its longitudinal dimension.

3/23/2020

10

AAiT – Civil Engineering – Bedilu Habte 37

Bar Elements cont.

AAiT – Civil Engineering – Bedilu Habte 38

Bar Elements cont.

AAiT – Civil Engineering – Bedilu Habte 39

Bar Elements cont.

• It must be in equilibrium.• It must satisfy the elastic stress–strain law (Hooke’s law)

• The displacement field must be compatible.

• It must satisfy the strain–displacement equation.

AAiT – Civil Engineering – Bedilu Habte 40

Governing Equation

The governing differential equation of the bar element is given by

Pdx

duAE

u

conditionsboundary

qdx

duAE

dx

d

Lx

x

0

0

0

3/23/2020

11

AAiT – Civil Engineering – Bedilu Habte 41

Admissible displacement function is continuous over the length and satisfies any boundary condition:

Principles of Minimum Potential Energy – Of all

kinematically admissible displacement equations, those corresponding to equilibrium extermize the TPE. If the extremum is a minimum, the equilibrium state is stable.

Approximate Solution

AAiT – Civil Engineering – Bedilu Habte 42

Kinematically admissible Displacement Functions

those that satisfy the single-valued nature of displacements (compatibility) and the boundary conditions

Usually Polynomials

Continuous within element.

Inter-element compatibility. Prevent overlap or gaps.

Allow for rigid body displacement and constant strain.

AAiT – Civil Engineering – Bedilu Habte 43

Total Potential Energy (TPE)

Strain Energy (Internal

work)

Jima – Civil Engineering – Bedilu Habte

dVU

dVdU

dVddU

dzyxdU

WU

V

xx

V

ε

xx

xx

xx

p

x

2

1

0

AAiT – Civil Engineering – Bedilu Habte 44

External work of loads

Total Potential Energy

TPE

Jima – Civil Engineering – Bedilu Habte

S

M

iiix

V

b

p

dfdSuTdVuXW

WU

1

ˆˆˆˆˆ

WdxAE x

L

xp 2

1

3/23/2020

12

AAiT – Civil Engineering – Bedilu Habte 45

Strain energy

External energy

Total potential energy

1

2

Total Potential Energy

Jima – Civil Engineering – Bedilu Habte

AdxL

T 2

1

2Pu

22

1PuAdxΠ

L

T

AAiT – Civil Engineering – Bedilu Habte 46

Ritz-Method

AAiT – Civil Engineering – Bedilu Habte 47

Ritz-Method

Using the Ritz-method, approximate displacement function is obtained by:

Assume arbitrary displacement

Introduce this into the TPE functional

Performing differentiation and integration to obtain a function

Minimizing the resulting function

nn fafafa ...2211

niforda

d

i

,...,2,10

AAiT – Civil Engineering – Bedilu Habte 48

Ritz-Method

Consider the linear elastic one-dimensional rod with the force shown below

• The potential energy of this system is:

1

2

0

2

21 2udx

dx

duEAΠ

3/23/2020

13

AAiT – Civil Engineering – Bedilu Habte 49

Ritz-Method

Consider the polynomial function:

To be kinematically admissible u must satisfy the boundary conditions u = 0 at both (x = 0) and (x = 2)

Thus:

&

AAiT – Civil Engineering – Bedilu Habte 50

Ritz-Method

• TPE of this system becomes:

• Minimizing the TPE:

• Thus, an approximate u is given by:

• Rayleigh-Ritz method assumes trial functions over entire structure

AAiT – Civil Engineering – Bedilu Habte 51

Galerkin-Method

For the one-dimensional rod considered in the pervious example, the governing equation is:

The Galerkin method aims at setting the residual relative to a weighting function Wi, to zero. The weighting functions, Wi, are chosen from the basis functions used for constructing û (approximate displacement function).

AAiT – Civil Engineering – Bedilu Habte 52

Galerkin-Method

Using the Galerkin-method, approximate displacement function is obtained by:

The governing DE is written in residual form

Multiply this RES by weight function f and integrate and equate to zero

Perform differentiation and integration to obtain the approximate u

dx

duAE

dx

dRES

0 dxRfL

3/23/2020

14

AAiT – Civil Engineering – Bedilu Habte 53

Galerkin-MethodConsider the rod shown below

• Multiplying by Φ (weighting function) and integrating gives (by parts):

AAiT – Civil Engineering – Bedilu Habte 54

Galerkin-MethodThe function Φ is zero at (x = 0) and (x = 2)

and EA(du/dx) is the force in the rod, which equals 2 at (x = 1). Thus:

• Using the same polynomial function for u and Φ and if u1 and Φ1 are the values at (x = 1):

• Setting these and

E=A=1 in the integral:

AAiT – Civil Engineering – Bedilu Habte 55

Galerkin-MethodEquating the value in the bracket to zero and

performing the integral:

• In elasticity problems Galerkin’s method turns out to be the principle of virtual work.

43

1 u 2275.0 xxu

AAiT – Civil Engineering – Bedilu Habte 56

Bar Element

L

1

2

xx fd 11ˆ,ˆ

u,x

xx fd 22ˆ,ˆ

y

Y

X 0ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

xd

udAE

xd

d

ATA

xd

ud

E

x

3/23/2020

15

AAiT – Civil Engineering – Bedilu Habte 57

Assumptions

The bar cannot resist shear forces.

That is:

Effects of transverse displacements are ignored.

Hooke’s law applies.

That is:

0ff y2y1

xx E

AAiT – Civil Engineering – Bedilu Habte 58

Select a Displacement Function

Assume a linear function.

No. of coefficients = No. of DOF

Written in matrix form:

Expressed as function of and

uxaau ˆˆ 21

2

1ˆ1ˆa

axu

LaddLaadLu

adaadu

xxx

xx

212212

11211

ˆˆ)(ˆ)(ˆ

ˆ)0(ˆ)0(ˆ

x1d x2d

AAiT – Civil Engineering – Bedilu Habte 59

Shape functions:

2x 1x1x

1x

2x

1x

1 2

2x

1 2

ˆ ˆd d ˆˆ ˆu x dL

dˆ ˆx xu 1

ˆL L d

du N N

d

Where :

ˆ ˆx xN 1 and N

L L

AAiT – Civil Engineering – Bedilu Habte 60

Shape Functions

N1 and N2 are called Shape Functions or Interpolation Functions. They express the shape of the assumed displacements.N1 =1 N2 =0 at node 1N1 =0 N2 =1 at node 2N1 + N2 =1 at any point

1 2

N1 N2

L

1 1

Jima – Civil Engineering – Bedilu Habte

3/23/2020

16

AAiT – Civil Engineering – Bedilu Habte 61

Define Strain/Displacement and Stress/Strain Relationships

Jima – Civil Engineering – Bedilu Habte

L

ddEE

L

dd

xd

ud

dxL

ddu

xx

xx

xxx

12

12

112

ˆˆ

ˆˆ

ˆ

ˆ

ˆˆˆˆ

ˆ

L

ddAEf

L

ddAEf

Af

xxx

xxx

122

211

ˆˆˆ

ˆˆˆ

AAiT – Civil Engineering – Bedilu Habte 62

Derive the Element Stiffness Matrix and Equations

Assemble Global Stiffness Matrix, apply BC and solve the Master stiffness equation for the unknown

displacements:

Jima – Civil Engineering – Bedilu Habte

11

11ˆ

ˆ

ˆ

11

11

ˆ

ˆ

2

1

2

1

L

AEk

d

d

L

AE

f

f

x

x

x

x

FdK

fF

kK

N

e

e

N

e

e

1

)(

1

)(

ˆ

ˆ

AAiT – Civil Engineering – Bedilu Habte 63

Potential Energy Approach

Jima – Civil Engineering – Bedilu Habte

dVU

dVddU

WU

V

xx

xx

p

2

1

S

M

iixixx

V

b dfdSuTdVuXW1

ˆˆˆˆˆ

AAiT – Civil Engineering – Bedilu Habte 64

Potential Energy Approach

V

b

S

xxxxx

L

xxp dvXudSTudfdfxdA ˆˆˆˆˆˆˆˆˆ2

12211

0

x

x

d

dd

L

x

L

xN

dNu

2

1

ˆ

ˆˆ

ˆˆ1

}ˆ{][ˆ

LLB

dB

dLL

x

x

11

ˆ

ˆ11

3/23/2020

17

AAiT – Civil Engineering – Bedilu Habte 65

Potential Energy Approach

[D] is the constitutive matrix(elasticity property matrix)

dBD

ED

D

x

xx

ˆ

V

b

S

xxxxx

L

xxp dvXudSTudfdfxdA ˆˆˆˆˆˆˆˆˆ2

2211

0

AAiT – Civil Engineering – Bedilu Habte 66

Potential Energy Approach

V

b

T

S

xT

TL

x

T

xp dvXudSTuPdxdA ˆˆˆˆˆˆ2

0

V

b

TT

S

x

TTT

LTTT

p

dvXNddSTNdPd

xddBDBdA

ˆˆˆˆˆ

ˆˆˆ2

0

V

b

T

S

x

T

TTTT

p

dvXNdSTNPf

fddBDBdAL

ˆˆ}{ˆ

ˆˆˆˆ2

AAiT – Civil Engineering – Bedilu Habte 67

Potential Energy Approach

xxxx

T

xxxx

x

xxx

TTT

fdfdfd

ddddL

EU

d

d

LLE

L

LddU

dBDBdU

2211

2221

212

*

2

121

*

*

ˆˆˆˆˆˆ

ˆˆˆ2ˆ

ˆ

ˆ111

1

ˆˆ

ˆˆ

AAiT – Civil Engineering – Bedilu Habte 68

Potential Energy Approach

0ˆˆ2ˆ22ˆ

0ˆˆ2ˆ22ˆ

2122

2

1212

1

xxx

x

p

xxx

x

p

fddL

EAL

d

fddL

EAL

d

1 1

2 2

ˆ ˆ1 1

ˆ ˆ1 1

x x

x x

T T

V

d fAE

L d f

k B D B dV D D

3/23/2020

18

AAiT – Civil Engineering – Bedilu Habte 69

Transformation Matrix (Local Global)

θS

θC

Let

sin

cos

fTf

dTd

d

d

d

d

CS

SC

CS

SC

d

d

d

d

y

x

y

x

y

x

y

x

ˆ

ˆ

00

00

00

00

ˆ

ˆ

ˆ

ˆ

2

2

1

1

2

2

1

1

CS

SC

CS

SC

T

00

00

00

00

AAiT – Civil Engineering – Bedilu Habte 70

Element stiffness equation in local coordinate:

Element stiffness matrixin the global coordinate:

y

x

y

x

y

x

y

x

d

d

d

d

L

AE

f

f

f

f

2

2

1

1

2

2

1

1

0000

0101

0000

0101

ˆ

ˆ

ˆ

ˆ

TkTk

dTkTf

TT

dTkTf

dTkfT

T

T

T

ˆ

ˆ

ˆ

ˆ

1

1

AAiT – Civil Engineering – Bedilu Habte 71

Obtain displacement function for the one-dimensional quadratic element with three nodes shown below.

Quadratic Bar Element

A quadratic displacement function:

No. of coefficients = No. of DOF

Written in matrix form:

3

2

12ˆˆ1ˆ

a

aa

xxu

2321ˆˆˆ xaxaau

AAiT – Civil Engineering – Bedilu Habte 72

3

20ˆ

1

ˆ

ˆ

ˆ

du

du

du

Lx

x

Lx

42

42

232

13

12

232

11

LaLaad

ad

LaLaad

2

3 12 3 2 1 2

12 2 2

22 2 2

3

ˆˆ ˆ 2 2

ˆ ˆ ˆ ˆ ˆ2 4 21

d d xu d x d d d

L L

dx x x x x

dL L L L L

d

1

1 2 3 2

3

d

N N N d

d

3/23/2020

19

AAiT – Civil Engineering – Bedilu Habte 73

Quadratic Shape Functions

N1 =1 N2 = N3 =0 at node 1N2 =1 N1 = N3 =0 at node 2N3 =1 N1 = N2 =0 at node 3

N1 + N2 + N3 = 1 at any point

AAiT – Civil Engineering – Bedilu Habte 74

PROPERTIES OF THE SHAPE FUNCTIONS

The shape function at any node has a value of 1 at that node and a value of zero at ALL other nodes.

x1 x2

1 1

Check

x

21

2 1

x -xN (x)

x x

1

2

2 1

x-xN (x)

x x

0xx

x-x)x(xNand

1xx

x-x)x(xN

xx

x-x(x)N

12

2221

12

1211

12

21

AAiT – Civil Engineering – Bedilu Habte 75

Compatibility: The displacement approximation is continuous across element boundaries

x1 x2El #1 x3El #2

Hence the displacement approximation is continuous across elements

AAiT – Civil Engineering – Bedilu Habte 76

Writing shape functions (without deriving):

x1 x2El #1

1 1

The Kronecker delta property (the shape function at any node has value of 1 at that node and a value of zero at all other nodes)

Notice that the length of the element = x2-x1

Node at which N1 is 0

The denominator is the numerator evaluated at the node itself

21

2 1

1 1

2

1 2 2 1

x -xN ( x )

x - x

x -x x -xN ( x )

x - x x -x

x

21

2 1

x -xN (x )

x x

12

2 1

x-xN (x)

x x

3/23/2020

20

AAiT – Civil Engineering – Bedilu Habte 77

3-Node bar element: varying quadratically inside the bar

3231

213

2321

312

1312

321

x-xx-x

x-xx-x(x)N

x-xx-x

x-xx-x(x)N

x-xx-x

x-xx-x(x)N

xx1 x2

(x)N1(x)N3

x3

1

(x)N2

1 1x 2 2x 3 3xu(x) N (x)d N (x)d N (x)d

This is a quadratic finite element in 1D and it has three nodes and three associated shape functions per element.

AAiT – Civil Engineering – Bedilu Habte 78

Writing shape functions for higher DOFs:

AAiT – Civil Engineering – Bedilu Habte 79

STRAIN and STRESS WITHIN EACH ELEMENT

From equation (1), the displacement within each element

The strain in the bar

Hence

(2)

The matrix B is known as the “strain-displacement matrix”

( x ) = N d

dx

d Nε d B d

dx

d NB

dx

AAiT – Civil Engineering – Bedilu Habte 80

For a linear finite element

Hence

For a linear bar element, strain is a constant within the element.

2 1 2 1 2 1

-1 1 1B 1 1

x x x x x x

2 11 2

2 1 2 1

x -x x -xN N (x ) N (x )

x x x x

1 x

2 x2 1 2 1

2 x 1 x

2 1

d- 1 1ε B d

dx x x x

d - d

x x

3/23/2020

21

AAiT – Civil Engineering – Bedilu Habte 81

x1 x2

El #1

Displacement is linear

Strain is constant

The stress in the bar

Inside the element, the approximate stress is

The stiffness matrix

2xd

1xd x

0 1(x ) a a x

2 x 1 x

2 1

d -dε =

x x

d uE ε = E

d x

E B d

T

V

k B E B d V

AAiT – Civil Engineering – Bedilu Habte 82

O1

2P

x1

x2 = x1 + L

L

Mapped on the following Natural Coordinate

Natural Coordinates

-1P

2

1

AAiT – Civil Engineering – Bedilu Habte 83

2 Node Linear Element

1

N1

1

N2

x

x2-xN1 = -----------

x2-x1

1 - N1 = -----------

2

x-x1N2 = ----------

x2-x1

+ 1N2 = ---------

2

x1-1

x21

L

x

AAiT – Civil Engineering – Bedilu Habte 84

1 23

1 23

1 23

3 Node Quadratic Element

x21

123

x1-1

x30

2

32

2

31

13

2

23

3

21

12

2

13

3

12

21

11

-1

1

-1-

xx

x-x

xx

x-xN

2

1

1

-

2

-1-

xx

x-x

xx

x-xN

2

1

1

-

2

-1

xx

x-x

xx

x-xN

3/23/2020

22

AAiT – Civil Engineering – Bedilu Habte 85

Beam Theory – Terminology

A general beam is a bar-like member designed to resist a combination of loading actions such as biaxial bending, transverse shears, axial stretching or compression, and possibly torsion.

If the beam is subject primarily to bending and axial forces, it is called a beam-column.

A beam is straight if its longitudinal axis is straight. It is prismatic if its cross section is constant.

A spatial beam supports transverse loads that can act on arbitrary directions along the cross section.

A plane beam resists primarily transverse loading on a preferred longitudinal plane.

AAiT – Civil Engineering – Bedilu Habte 86

Mathematical Models

One-dimensional mathematical models of structural beams are constructed on the basis of beam theories.

The simplest and best known models for straight, prismatic beams are based on the:

Bernoulli-Euler theory (also called classical beam theory or engineering beam theory)

Timoshenko beam theory

AAiT – Civil Engineering – Bedilu Habte 87

Beam Theory – Kinematics

AAiT – Civil Engineering – Bedilu Habte 88

Beam Theory – Terminology

3/23/2020

23

AAiT – Civil Engineering – Bedilu Habte 89

Bernoulli-Euler Model

AAiT – Civil Engineering – Bedilu Habte 90

Mathematical Model

Total Potential Energy of Beam Members

AAiT – Civil Engineering – Bedilu Habte 91

Bernoulli-Euler Beam Theory

AAiT – Civil Engineering – Bedilu Habte 92

Iso-P Shape Function

3/23/2020

24

AAiT – Civil Engineering – Bedilu Habte 93

Iso-P Shape Function

AAiT – Civil Engineering – Bedilu Habte 94

Element Equations

AAiT – Civil Engineering – Bedilu Habte 95

Element Stiffness

AAiT – Civil Engineering – Bedilu Habte 96

Loading

3/23/2020

25

AAiT – Civil Engineering – Bedilu Habte 97

General 3D Frame Element

AAiT – Civil Engineering – Bedilu Habte 98

L

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EIL

GI

L

GIL

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EIL

EA

L

EAL

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EIL

GI

L

GIL

EI

L

EI

L

EI

L

EIL

EI

L

EI

L

EI

L

EIL

EA

L

EA

K

zzzz

yyyy

xx

yyyy

zzzz

xx

zzzz

yyyy

xx

yyyy

zzzz

xx

ji

4000

60

2000

60

04

06

0002

06

00

0000000000

06

012

0006

012

00

6000

120

6000

120

0000000000

2000

60

4000

60

02

06

0004

06

00

0000000000

06

012

0006

012

00

6000

120

6000

120

0000000000

][

22

22

2323

2323

22

22

2323

2323

Stiffness of a 3D Frame Element

3/23/2020 98

AAiT – Civil Engineering – Bedilu Habte 99

Example 1 – Analyse the plane truss

AAiT – Civil Engineering – Bedilu Habte 100

Example 1

3/23/2020

26

AAiT – Civil Engineering – Bedilu Habte 101

Example 2 – Analyze the Plane Frame

AAiT – Civil Engineering – Bedilu Habte 102

Example 2 – Element and node numbering

AAiT – Civil Engineering – Bedilu Habte 103

Example 2 – Boundary Condition & Solve

AAiT – Civil Engineering – Bedilu Habte 104