77
Class-XII-Maths Continuity and Differentiability 1 Practice more on Continuity and Differentiability www.embibe.com CBSE NCERT Solutions for Class 12 Maths Chapter 05 Back of Chapter Questions Exercise . 1. Prove that the function () = 5 βˆ’ 3 is continuous at = 0, at = βˆ’3 and at = 5. Solution: Given function is () = 5 βˆ’ 3 At = 0, (0) = 5(0) βˆ’ 3 = βˆ’3 LHL = lim β†’0 βˆ’ () = lim β†’0 βˆ’ (5 βˆ’ 3) = βˆ’3 RHL = lim β†’0 + () = lim β†’0 + (5 βˆ’ 3) = βˆ’3 Here, at = 0, LHL = RHL = (0) = βˆ’3 Hence, the function is continuous at = 0. Now at = βˆ’3, (βˆ’3) = 5(βˆ’3) βˆ’ 3 = βˆ’18 LHL = lim β†’βˆ’3 βˆ’ () = lim β†’βˆ’3 βˆ’ (5 βˆ’ 3) = βˆ’18 RHL = lim β†’βˆ’3 + () = lim β†’βˆ’3 + (5 βˆ’ 3) = βˆ’18 Here, at = βˆ’3, LHL = RHL = (βˆ’3) = βˆ’18 Hence, the function is continuous at = βˆ’3. At = 5, (5) = 5(5) βˆ’ 3 = 22 = lim β†’5 βˆ’ () = lim β†’5 βˆ’ (5 βˆ’ 3) = 22 RHL = lim β†’5 + () = lim β†’5 + (5 βˆ’ 3) = 22 Here, at = 5, LHL = RHL = (5) = 22 Hence, the function is continuous at = 5. 2. Examine the continuity of the function () = 2 2 βˆ’1 at = 3.

CBSE NCERT Solutions for Class 12 Maths Chapter 05...Class-XII-Maths Continuity and Differentiability 1 Practice more on Continuity and Differentiability CBSE NCERT Solutions for Class

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Class-XII-Maths Continuity and Differentiabil ity

    1 Practice more on Continuity and Differentiability www.embibe.com

    CBSE NCERT Solutions for Class 12 Maths Chapter 05

    Back of Chapter Questions

    Exercise πŸ“. 𝟏

    1. Prove that the function 𝑓(π‘₯) = 5π‘₯ βˆ’ 3 is continuous at π‘₯ = 0, at π‘₯ = βˆ’3 and at π‘₯ = 5.

    Solution:

    Given function is 𝑓(π‘₯) = 5π‘₯ βˆ’ 3

    At π‘₯ = 0, 𝑓(0) = 5(0) βˆ’ 3 = βˆ’3

    LHL = limπ‘₯β†’0βˆ’

    𝑓(π‘₯) = limπ‘₯β†’0βˆ’

    (5π‘₯ βˆ’ 3) = βˆ’3

    RHL = limπ‘₯β†’0+

    𝑓(π‘₯) = limπ‘₯β†’0+

    (5π‘₯ βˆ’ 3) = βˆ’3

    Here, at π‘₯ = 0, LHL = RHL = 𝑓(0) = βˆ’3

    Hence, the function 𝑓 is continuous at π‘₯ = 0.

    Now at π‘₯ = βˆ’3, 𝑓(βˆ’3) = 5(βˆ’3) βˆ’ 3 = βˆ’18

    LHL = limπ‘₯β†’βˆ’3βˆ’

    𝑓(π‘₯) = limπ‘₯β†’βˆ’3βˆ’

    (5π‘₯ βˆ’ 3) = βˆ’18

    RHL = limπ‘₯β†’βˆ’3+

    𝑓(π‘₯) = limπ‘₯β†’βˆ’3+

    (5π‘₯ βˆ’ 3) = βˆ’18

    Here, at π‘₯ = βˆ’3, LHL = RHL = 𝑓(βˆ’3) = βˆ’18

    Hence, the function 𝑓 is continuous at π‘₯ = βˆ’3.

    At π‘₯ = 5, 𝑓(5) = 5(5) βˆ’ 3 = 22

    𝐿𝐻𝐿 = limπ‘₯β†’5βˆ’

    𝑓(π‘₯) = limπ‘₯β†’5βˆ’

    (5π‘₯ βˆ’ 3) = 22

    RHL = limπ‘₯β†’5+

    𝑓(π‘₯) = limπ‘₯β†’5+

    (5π‘₯ βˆ’ 3) = 22

    Here, at π‘₯ = 5, LHL = RHL = 𝑓(5) = 22

    Hence, the function 𝑓 is continuous at π‘₯ = 5.

    2. Examine the continuity of the function 𝑓(π‘₯) = 2π‘₯2 βˆ’ 1 at π‘₯ = 3.

  • Class-XII-Maths Continuity and Differentiabil ity

    2 Practice more on Continuity and Differentiability www.embibe.com

    Solution:

    Given function is 𝑓(π‘₯) = 2π‘₯2 βˆ’ 1.

    At π‘₯ = 3, 𝑓(3) = 2(3)2 βˆ’ 1 = 17

    LHL = limπ‘₯β†’3βˆ’

    𝑓(π‘₯) = limπ‘₯β†’3βˆ’

    (2π‘₯2 βˆ’ 1) = 17

    RHL = limπ‘₯β†’3+

    𝑓(π‘₯) = limπ‘₯β†’3+

    (2π‘₯2 βˆ’ 1) = 17

    Here, at π‘₯ = 3, LHL = RHL = 𝑓(3) = 17

    Therefore, the function 𝑓 is continuous at π‘₯ = 3.

    3. Examine the following functions for continuity:

    (a) 𝑓(π‘₯) = π‘₯ βˆ’ 5

    (b) 𝑓(π‘₯) =1

    π‘₯βˆ’5, π‘₯ β‰  5

    (c) 𝑓(π‘₯) =π‘₯2βˆ’25

    π‘₯+5, π‘₯ β‰  βˆ’5

    (d) 𝑓(π‘₯) = |π‘₯ βˆ’ 5|

    Solution:

    (a) Given function 𝑓(π‘₯) = π‘₯ βˆ’ 5

    Let π‘˜ be any real number. At π‘₯ = π‘˜, 𝑓(π‘˜) = π‘˜ βˆ’ 5

    LHL = limπ‘₯β†’π‘˜βˆ’

    𝑓(π‘₯) = limπ‘₯β†’π‘˜βˆ’

    (π‘₯ βˆ’ 5) = π‘˜ βˆ’ 5

    RHL = limπ‘₯β†’π‘˜+

    𝑓(π‘₯) = limπ‘₯β†’π‘˜+

    (π‘₯ βˆ’ 5) = π‘˜ βˆ’ 5

    At π‘₯ = π‘˜, LHL = RHL = 𝑓(π‘˜) = π‘˜ βˆ’ 5

    Hence, the function 𝑓 is continuous for all real numbers.

    (b) Given function 𝑓(π‘₯) =1

    π‘₯βˆ’5, π‘₯ β‰  5

    Let π‘˜(π‘˜ β‰  5) be any real number. At π‘₯ = π‘˜, 𝑓(π‘˜) =1

    π‘˜βˆ’5

    LHL = limπ‘₯β†’π‘˜βˆ’

    𝑓(π‘₯) = limπ‘₯β†’π‘˜βˆ’

    (1

    π‘₯βˆ’5) =

    1

    π‘˜βˆ’5

    RHL = limπ‘₯β†’π‘˜+

    𝑓(π‘₯) = limπ‘₯β†’π‘˜+

    (1

    π‘₯βˆ’5) =

    1

    π‘˜βˆ’5

    At π‘₯ = π‘˜, LHL = RHL = 𝑓(π‘˜) =1

    π‘˜βˆ’5

    Hence, the function 𝑓 is continuous for all real numbers (except 5).

  • Class-XII-Maths Continuity and Differentiabil ity

    3 Practice more on Continuity and Differentiability www.embibe.com

    (c) Given function 𝑓(π‘₯) =π‘₯2βˆ’25

    π‘₯+5, π‘₯ β‰  βˆ’5

    Let π‘˜(π‘˜ β‰  βˆ’5) be any real number.

    At π‘₯ = π‘˜, 𝑓(π‘˜) =π‘˜2βˆ’25

    π‘˜+5=

    (π‘˜+5)(π‘˜βˆ’5)

    (π‘˜+5)= (π‘˜ + 5)

    LHL = limπ‘₯β†’π‘˜βˆ’

    𝑓(π‘₯) = limπ‘₯β†’π‘˜βˆ’

    (π‘₯2βˆ’25

    π‘₯+5) = lim

    π‘₯β†’π‘˜βˆ’((π‘˜+5)(π‘˜βˆ’5)

    (π‘˜+5)) = π‘˜ + 5

    RHL = limπ‘₯β†’π‘˜+

    𝑓(π‘₯) = limπ‘₯β†’π‘˜+

    (π‘₯2βˆ’25

    π‘₯+5) = lim

    π‘₯β†’π‘˜+((π‘˜+5)(π‘˜βˆ’5)

    (π‘˜+5)) = π‘˜ + 5

    At π‘₯ = π‘˜, LHL = RHL = 𝑓(π‘˜) = π‘˜ + 5

    Hence, the function 𝑓 is continuous for all real numbers (except βˆ’5).

    (d) Given function is 𝑓(π‘₯) = |π‘₯ βˆ’ 5| = {5 βˆ’ π‘₯, π‘₯ < 5π‘₯ βˆ’ 5, π‘₯ β‰₯ 5

    Let π‘˜ be any real number. According to question,π‘˜ can be π‘˜ < 5 or π‘˜ = 5 or π‘˜ > 5.

    First case: If π‘˜ < 5,

    𝑓(π‘˜) = 5 βˆ’ π‘˜ and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (5 βˆ’ π‘₯) =5 βˆ’ π‘˜. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers less than 5.

    Second case: If π‘˜ = 5,

    𝑓(π‘˜) = π‘˜ βˆ’ 5 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯ βˆ’ 5) = π‘˜ βˆ’ 5. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous at π‘₯ = 5.

    Third case: If π‘˜ > 5,

    𝑓(π‘˜) = π‘˜ βˆ’ 5 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯ βˆ’ 5) = π‘˜ βˆ’ 5. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) =𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers greater than 5.

    Hence, the function 𝑓 is continuous for all real numbers.

    4. Prove that the function 𝑓(π‘₯) = π‘₯𝑛, is continuous at π‘₯ = 𝑛, where 𝑛 is a positive integer.

    Solution:

    Given function is 𝑓(π‘₯) = π‘₯𝑛.

    At π‘₯ = 𝑛, 𝑓(𝑛) = π‘₯𝑛

    limπ‘₯→𝑛

    𝑓(π‘₯) = limπ‘₯→𝑛

    (π‘₯𝑛) = π‘₯𝑛

    Here, at π‘₯ = 𝑛, limπ‘₯→𝑛

    𝑓(π‘₯) =𝑓(𝑛) = π‘₯𝑛

    Since limπ‘₯→𝑛

    𝑓(π‘₯) =𝑓(𝑛) = π‘₯𝑛

  • Class-XII-Maths Continuity and Differentiabil ity

    4 Practice more on Continuity and Differentiability www.embibe.com

    Hence, the function 𝑓 is continuous at π‘₯ = 𝑛, where 𝑛 is positive integer.

    5. Is the function 𝑓 defined by 𝑓(π‘₯) = {π‘₯, π‘₯ ≀ 15, π‘₯ > 1

    continuous at π‘₯ = 0? At π‘₯ = 1? At π‘₯ = 2?

    Solution:

    Given function is 𝑓(π‘₯) = {π‘₯, π‘₯ ≀ 15, π‘₯ > 1

    At π‘₯ = 0, 𝑓(0) = 0

    limπ‘₯β†’0

    𝑓(π‘₯) = limπ‘₯β†’0

    (π‘₯) = 0

    Here at π‘₯ = 0, limπ‘₯β†’0

    𝑓(π‘₯) = 𝑓(0) = 0

    Hence, the function 𝑓 is discontinuous at π‘₯ = 0.

    At π‘₯ = 1, 𝑓(1) = 1

    LHL = limπ‘₯β†’1βˆ’

    𝑓(π‘₯) = limπ‘₯β†’1βˆ’

    (π‘₯) = 1

    RHL = limπ‘₯β†’1+

    𝑓(π‘₯) = limπ‘₯β†’1+

    (5) =5

    Here, at π‘₯ = 1, LHL β‰  RHL.

    Hence, the function 𝑓 is discontinuous at π‘₯ = 1.

    At π‘₯ = 2, 𝑓(2) = 5

    limπ‘₯β†’2

    𝑓(π‘₯) = limπ‘₯β†’2

    (5) = 5

    Here, at π‘₯ = 2, limπ‘₯β†’2

    𝑓(π‘₯) = 𝑓(2) = 5

    Hence, the function 𝑓 is continuous at π‘₯ = 2.

    6. Find all points of discontinuity of 𝑓, where 𝑓 is defined by 𝑓(π‘₯) = {2π‘₯ + 3, If π‘₯ ≀ 22π‘₯ βˆ’ 3, If π‘₯ > 2

    Solution:

    Let π‘˜ be any real number. According to question, π‘˜ < 2 or π‘˜ = 2 or π‘˜ > 2

    First case: π‘˜ < 2

    𝑓(π‘˜) = 2π‘˜ + 3 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (2π‘₯ + 3) = 2π‘˜ + 3. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers smaller than 2.

  • Class-XII-Maths Continuity and Differentiabil ity

    5 Practice more on Continuity and Differentiability www.embibe.com

    Second case: If π‘˜ = 2, 𝑓(2) = 2π‘˜ + 3

    LHL = limπ‘₯β†’2βˆ’

    𝑓(π‘₯) = limπ‘₯β†’2βˆ’

    (2π‘₯ + 3) = 7

    RHL = limπ‘₯β†’2+

    𝑓(π‘₯) = limπ‘₯β†’2+

    (2π‘₯ βˆ’ 3) = 1

    Here, at π‘₯ = 2, LHL β‰  RHL. Hence, the function 𝑓 is discontinuous at π‘₯ = 2.

    Third case: If π‘˜ > 2,

    𝑓(π‘˜) = 2π‘˜ βˆ’ 3 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (2π‘₯ βˆ’ 3) = 2π‘˜ βˆ’ 3. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Therefore, the function 𝑓 is continuous for all real numbers greater than 2.

    Hence, the function 𝑓 is discontinuous only at π‘₯ = 2.

    7. Find all points of discontinuity of 𝑓,

    where 𝑓 is defined by 𝑓(π‘₯) = {|π‘₯| + 3, If π‘₯ ≀ βˆ’3

    βˆ’2π‘₯, If βˆ’ 3 < π‘₯ < 36π‘₯ + 2, If π‘₯ β‰₯ 3

    Solution:

    Let π‘˜ be any real number. According to question,

    π‘˜ < βˆ’3 or π‘˜ = βˆ’3 or βˆ’3 < π‘˜ < 3 or π‘˜ = 3 or π‘˜ > 3

    First case: If π‘˜ < βˆ’3,

    𝑓(π‘₯) = βˆ’π‘˜ + 3 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (βˆ’π‘₯ + 3) = βˆ’π‘˜ + 3. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers less than βˆ’3.

    Second case: If π‘˜ = βˆ’3, 𝑓(βˆ’3) = βˆ’(βˆ’3) + 3 = 6

    LHL = limπ‘₯β†’βˆ’3βˆ’

    𝑓(π‘₯) = limπ‘₯β†’βˆ’3βˆ’

    (βˆ’π‘₯ + 3) = βˆ’(βˆ’3) + 3 = 6

    RHL = limπ‘₯β†’βˆ’3+

    𝑓(π‘₯) = limπ‘₯β†’βˆ’3+

    (βˆ’2π‘₯) = βˆ’2(βˆ’3) = 6. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous at π‘₯ = βˆ’3.

    Third case: If βˆ’3 < π‘˜ < 3,

    𝑓(π‘˜) = βˆ’2π‘˜ and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    𝑓(βˆ’2π‘₯) = βˆ’2π‘˜. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous at βˆ’3 < π‘₯ < 3.

    Fourth case: If π‘˜ = 3,

    LHL = limπ‘₯β†’π‘˜βˆ’

    𝑓(π‘₯) = limπ‘₯β†’π‘˜βˆ’

    (βˆ’2π‘₯) = βˆ’2π‘˜

    RHL = limπ‘₯β†’π‘˜+

    𝑓(π‘₯) = limπ‘₯β†’π‘˜+

    (6π‘₯ + 2) = 6π‘˜ + 2,

    Here, at π‘₯ = 3, LHL β‰  RHL. Hence, the function 𝑓 is discontinuous at π‘₯ = 3.

  • Class-XII-Maths Continuity and Differentiabil ity

    6 Practice more on Continuity and Differentiability www.embibe.com

    Fifth case: If π‘˜ > 3,

    𝑓(π‘˜) = 6π‘˜ + 2 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (6π‘₯ + 2) = 6π‘˜ + 2. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all numbers greater than 3.

    Hence, the function 𝑓 is discontinuous only at π‘₯ = 3.

    8. Find all points of discontinuity of 𝑓, where 𝑓 is defined by 𝑓(π‘₯) = {|π‘₯|

    π‘₯, If π‘₯ β‰  0

    0, If π‘₯ = 0

    Solution:

    After redefining the function 𝑓, we get

    𝑓(π‘₯) =

    {

    βˆ’

    π‘₯

    π‘₯= βˆ’1, If π‘₯ < 0

    0, If π‘₯ = 0π‘₯

    π‘₯= 1, If π‘₯ > 0

    Let π‘˜ be any real number. According to question, π‘˜ < 0 or π‘˜ = 0 or π‘˜ > 0.

    First case: If π‘˜ < 0,

    𝑓(π‘˜) = βˆ’π‘˜

    π‘˜= βˆ’1 and lim

    π‘₯β†’π‘˜π‘“(π‘₯) = lim

    π‘₯β†’π‘˜(βˆ’

    π‘₯

    π‘₯) = βˆ’1. Hence, lim

    π‘₯β†’π‘˜π‘“(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers smaller than 0.

    Second case: If, π‘˜ = 0, 𝑓(0) = 0

    LHL = limπ‘₯β†’π‘˜βˆ’

    𝑓(π‘₯) = limπ‘₯β†’π‘˜βˆ’

    (βˆ’π‘₯

    π‘₯) = βˆ’1 and RHL = lim

    π‘₯β†’π‘˜+𝑓(π‘₯) = lim

    π‘₯β†’π‘˜+(π‘₯

    π‘₯) = 1.

    Here, at π‘₯ = 0, LHL β‰  RHL. Hence, the function 𝑓 is discontinuous at π‘₯ = 0.

    Third case: If π‘˜ > 0,

    𝑓(π‘˜) =π‘˜

    π‘˜= 1 and lim

    π‘₯β†’π‘˜π‘“(π‘₯) = lim

    π‘₯β†’π‘˜(π‘₯

    π‘₯) = 1. Here, lim

    π‘₯β†’π‘˜π‘“(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers greater than 0.

    Therefore, the function 𝑓 is discontinuous only at π‘₯ = 0.

    9. Find all points of discontinuity of 𝑓, where 𝑓 is defined by 𝑓(π‘₯) = {π‘₯

    |π‘₯|, If π‘₯ < 0

    βˆ’1, If π‘₯ β‰₯ 0

  • Class-XII-Maths Continuity and Differentiabil ity

    7 Practice more on Continuity and Differentiability www.embibe.com

    Solution:

    Redefining the function, we get

    𝑓(π‘₯) = {

    π‘₯

    |π‘₯|=

    π‘₯

    βˆ’π‘₯= βˆ’1, If π‘₯ < 0

    βˆ’1, If π‘₯ β‰₯ 0

    Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜) = βˆ’1, where π‘˜ is a real number.

    Hence, the function 𝑓 is continuous for all real numbers.

    10. Find all points of discontinuity of 𝑓, where 𝑓 is defined by 𝑓(π‘₯) = {π‘₯ + 1, If β‰₯ 1

    π‘₯2 + 1, If π‘₯ < 1

    Solution:

    Given function is defined by 𝑓(π‘₯) = {π‘₯ + 1, If β‰₯ 1

    π‘₯2 + 1, If π‘₯ < 1

    Let π‘˜ be any real number. According to question, π‘˜ < 1 or π‘˜ = 1 or π‘˜ > 1

    First case: If π‘˜ < 1,

    𝑓(π‘˜) = π‘˜2 + 1 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯2 + 1) = π‘˜2 + 1. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers smaller than 1.

    Second case: If π‘˜ = 1, 𝑓(1) = 1 + 1 = 2

    LHL = limπ‘₯β†’1βˆ’

    𝑓(π‘₯) = limπ‘₯β†’1βˆ’

    (π‘₯2 + 1) = 1 + 1 = 2

    RHL = limπ‘₯β†’1+

    𝑓(π‘₯) = limπ‘₯β†’1+

    (π‘₯ + 1) = 1 + 1 = 2,

    Here, at π‘₯ = 1, LHL = RHL = 𝑓(1). Hence, the function 𝑓 is continuous at π‘₯ = 1.

    Third case: If π‘˜ > 1,

    𝑓(π‘˜) = π‘˜ + 1 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯ + 1) = π‘˜ + 1 . Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers greater than 1.

    Therefore, the function 𝑓 is continuous for all real numbers.

    11. Find all points of discontinuity of 𝑓, where 𝑓 is defined by 𝑓(π‘₯) = {π‘₯3 βˆ’ 3, If π‘₯ ≀ 2

    π‘₯2 + 1, If π‘₯ > 2

  • Class-XII-Maths Continuity and Differentiabil ity

    8 Practice more on Continuity and Differentiability www.embibe.com

    Solution:

    Given function is defined by 𝑓(π‘₯) = {π‘₯3 βˆ’ 3, If π‘₯ ≀ 2

    π‘₯2 + 1, If π‘₯ > 2

    Let π‘˜ be any real number. According to question, π‘˜ < 2 or π‘˜ = 2 or π‘˜ > 2

    First case: If π‘˜ < 2,

    𝑓(π‘˜) = π‘˜3 βˆ’ 3 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯3 βˆ’ 3) = π‘˜3 βˆ’ 3. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers less than 2.

    Second case: If π‘˜ = 2, 𝑓(2) = 23 βˆ’ 3 = 5

    LHL = limπ‘₯β†’2βˆ’

    𝑓(π‘₯) = limπ‘₯β†’2βˆ’

    (π‘₯3 βˆ’ 3) = 23 βˆ’ 3 = 5

    RHL = limπ‘₯β†’2+

    𝑓(π‘₯) = limπ‘₯β†’2+

    (π‘₯2 + 1) = 22 + 1 = 5

    Here at π‘₯ = 2, LHL = RHL = 𝑓(2)

    Hence, the function 𝑓 is continuous at π‘₯ = 2.

    Third case: If π‘˜ > 2,

    𝑓(π‘˜) = π‘˜2 + 1 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯2 + 1) = π‘˜2 + 1. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for real numbers greater than 2.

    Hence, the function 𝑓 is continuous for all real numbers.

    12. Find all points of discontinuity of 𝑓, where 𝑓 is defined by 𝑓(π‘₯) = {π‘₯10 βˆ’ 1, If π‘₯ ≀ 1

    π‘₯2, If π‘₯ > 1

    Solution:

    Given function is defined by 𝑓(π‘₯) = {π‘₯10 βˆ’ 1, If π‘₯ ≀ 1

    π‘₯2, If π‘₯ > 1

    Let π‘˜ be any real number. According to question, π‘˜ < 1 or π‘˜ = 1 or π‘˜ > 1

    First case: If π‘˜ < 1,

    𝑓(π‘˜) = π‘˜10 βˆ’ 1 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯10 βˆ’ 1) = π‘˜10 βˆ’ 1. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers less than 1.

    Second case: If π‘˜ = 1, 𝑓(1) = 110 βˆ’ 1 = 0

    LHL = limπ‘₯β†’1βˆ’

    𝑓(π‘₯) = limπ‘₯β†’1βˆ’

    (π‘₯10 βˆ’ 1) = 0

    RHL = limπ‘₯β†’1+

    𝑓(π‘₯) = limπ‘₯β†’1+

    (π‘₯2) = 1

    Here at π‘₯ = 1, LHL β‰  RHL. Hence, the function 𝑓 is discontinuous at π‘₯ = 1.

  • Class-XII-Maths Continuity and Differentiabil ity

    9 Practice more on Continuity and Differentiability www.embibe.com

    Third case: If π‘˜ > 1,

    𝑓(π‘˜) = π‘˜2 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯2) = π‘˜2. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real values greater than 1.

    Hence, the function 𝑓 is discontinuous only at π‘₯ = 1.

    13. Is the function defined by 𝑓(π‘₯) = {π‘₯ + 5, If π‘₯ ≀ 1 π‘₯ βˆ’ 5, If π‘₯ > 1

    a continuous function?

    Solution:

    Given function is defined by 𝑓(π‘₯) = {π‘₯ + 5, If π‘₯ ≀ 1 π‘₯ βˆ’ 5, If π‘₯ > 1

    Let, π‘˜ be any real number. According to question, π‘˜ < 1 or π‘˜ = 1 or π‘˜ > 1

    First case: If π‘˜ < 1,

    𝑓(π‘˜) = π‘˜ + 5 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯ + 5) = π‘˜ + 5. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers less than 1.

    Second case: If π‘˜ = 1, 𝑓(1) = 1 + 5 = 6

    LHL = limπ‘₯β†’1βˆ’

    𝑓(π‘₯) = limπ‘₯β†’1βˆ’

    (π‘₯ + 5) = 6

    RHL = limπ‘₯β†’1+

    𝑓(π‘₯) = limπ‘₯β†’1+

    (π‘₯ βˆ’ 5) = βˆ’4,

    Here at π‘₯ = 1, LHL β‰  RHL. Hence, the function 𝑓 is discontinuous at π‘₯ = 1.

    Third case: If π‘˜ > 1,

    𝑓(π‘˜) = π‘˜ βˆ’ 5 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯ βˆ’ 5) = π‘˜ βˆ’ 5

    Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers greater than 1.

    Therefore, the function 𝑓 is discontinuous only at π‘₯ = 1.

    14. Discuss the continuity of the function 𝑓,

    where 𝑓 is defined by 𝑓(π‘₯) = { 3, If 0 ≀ π‘₯ ≀ 14, If 1 < π‘₯ < 3

    5, If 3 ≀ π‘₯ ≀ 10

  • Class-XII-Maths Continuity and Differentiabil ity

    10 Practice more on Continuity and Differentiability www.embibe.com

    Solution:

    Given function is defined by 𝑓(π‘₯) = { 3, If 0 ≀ π‘₯ ≀ 14, If 1 < π‘₯ < 3

    5, If 3 ≀ π‘₯ ≀ 10

    Let π‘˜ be any real number. According to question, π‘˜ can be

    0 ≀ π‘˜ ≀ 1 or π‘˜ = 1 or 1 < π‘˜ < 3 or π‘˜ = 3 or 3 ≀ π‘˜ ≀ 10

    First case: If 0 ≀ π‘˜ ≀ 1,

    𝑓(π‘˜) = 3 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (3) = 3. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for 0 ≀ π‘₯ ≀ 1.

    Second case: If π‘˜ = 1, 𝑓(1) = 3

    LHL = limπ‘₯β†’1βˆ’

    𝑓(π‘₯) = limπ‘₯β†’1βˆ’

    (3) = 3

    RHL = limπ‘₯β†’1+

    𝑓(π‘₯) = limπ‘₯β†’1+

    (4) = 4,

    Here at π‘₯ = 1, LHL β‰  RHL. Hence, the function 𝑓 is discontinuous at π‘₯ = 1.

    Third case: If 1 < π‘˜ < 3,

    𝑓(π‘˜) = 4 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (4) = 4. Here limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for 1 < π‘₯ < 3.

    Fourth case: If π‘˜ = 3,

    LHL = limπ‘₯β†’3βˆ’

    𝑓(π‘₯) = limπ‘₯β†’3βˆ’

    (4) = 4 and RHL = limπ‘₯β†’3+

    𝑓(π‘₯) = limπ‘₯β†’3+

    (5) = 5,

    Here at π‘₯ = 3, LHL β‰  RHL. Hence, the function 𝑓 is discontinuous at π‘₯ = 3.

    Fifth case: If 3 ≀ π‘˜ ≀ 10,

    𝑓(π‘˜) = 5 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (5) = 5. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for 3 ≀ π‘₯ ≀ 10.

    Hence, the function 𝑓 is discontinuous only at π‘₯ = 1 and π‘₯ = 3.

    15. Discuss the continuity of the function 𝑓,

    where 𝑓 is defined by 𝑓(π‘₯) = {2π‘₯, If π‘₯ < 00, If 0 ≀ π‘₯ ≀ 1 4π‘₯, If π‘₯ > 1

    Solution:

    Given function is defined by 𝑓(π‘₯) = {2π‘₯, If π‘₯ < 00, If 0 ≀ π‘₯ ≀ 1 4π‘₯, If π‘₯ > 1

  • Class-XII-Maths Continuity and Differentiabil ity

    11 Practice more on Continuity and Differentiability www.embibe.com

    Let π‘˜ be any real number. According to question,

    π‘˜ < 0 or π‘˜ = 0 or 0 ≀ π‘˜ ≀ 1 or π‘˜ = 1 or π‘˜ > 1

    First case: If π‘˜ < 0,

    𝑓(π‘˜) = 2π‘˜ and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (2π‘₯) = 2π‘˜. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers less than 0.

    Second case: If π‘˜ = 0, 𝑓(0) = 0

    LHL = limπ‘₯β†’0βˆ’

    𝑓(π‘₯) = limπ‘₯β†’0βˆ’

    (2π‘₯) = 0

    RHL = limπ‘₯β†’0+

    𝑓(π‘₯) = limπ‘₯β†’0+

    (0) = 0. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous at π‘₯ = 0.

    Third case: If 0 ≀ π‘˜ ≀ 1,

    𝑓(π‘˜) = 0 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (0) = 0. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous at 0 ≀ π‘₯ ≀ 1.

    Fourth case: If π‘˜ = 1,

    LHL = limπ‘₯β†’1βˆ’

    𝑓(π‘₯) = limπ‘₯β†’1βˆ’

    (0) = 0

    RHL = limπ‘₯β†’1+

    𝑓(π‘₯) = limπ‘₯β†’1+

    (4π‘₯) = 4,

    Here, at π‘₯ = 1, LHL β‰  RHL.

    Hence, the function 𝑓 is discontinuous at π‘₯ = 1.

    Fifth case: If π‘˜ > 1,

    𝑓(π‘˜) = 4π‘˜ and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (4π‘₯) = 4π‘˜.

    Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers greater than 1.

    Hence, the function 𝑓 is discontinuous only at π‘₯ = 1.

    16. Discuss the continuity of the function 𝑓,

    where 𝑓 is defined by 𝑓(π‘₯) = {βˆ’2, If π‘₯ ≀ βˆ’12π‘₯, If βˆ’ 1 < π‘₯ ≀ 1 2, If π‘₯ > 1

    Solution:

    Given function is defined by 𝑓(π‘₯) = {βˆ’2, If π‘₯ ≀ βˆ’12π‘₯, If βˆ’ 1 < π‘₯ ≀ 1 2, If π‘₯ > 1

  • Class-XII-Maths Continuity and Differentiabil ity

    12 Practice more on Continuity and Differentiability www.embibe.com

    Let π‘˜ be any real number

    According to question, π‘˜ < βˆ’1 or π‘˜ = βˆ’1 or βˆ’1 < π‘₯ ≀ 1 or π‘˜ = 1 or π‘˜ > 1

    First case: If π‘˜ < βˆ’1,

    𝑓(π‘˜) = βˆ’2 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (βˆ’2) = βˆ’2. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers less than βˆ’1.

    Second case: If π‘˜ = βˆ’1, 𝑓(βˆ’1) = βˆ’2

    LHS = limπ‘₯β†’βˆ’1βˆ’

    𝑓(π‘₯) = limπ‘₯β†’βˆ’1βˆ’

    (βˆ’2) = βˆ’2

    RHL = limπ‘₯β†’βˆ’1+

    𝑓(π‘₯) = limπ‘₯β†’βˆ’1+

    (2π‘₯) = βˆ’2. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous at π‘₯ = βˆ’1.

    Third case: If βˆ’1 < π‘₯ ≀ 1,

    𝑓(π‘˜) = 2π‘˜ and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (2π‘₯) = 2π‘˜. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous at βˆ’1 < π‘₯ ≀ 1.

    Fourth case: If π‘˜ = 1,

    LHL = limπ‘₯β†’1βˆ’

    𝑓(π‘₯) = limπ‘₯β†’1βˆ’

    (2π‘₯) = 2

    RHL = limπ‘₯β†’1+

    𝑓(π‘₯) = limπ‘₯β†’1+

    (2) = 2. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous at π‘₯ = 1.

    Fifth case: If π‘˜ > 1,

    𝑓(π‘˜) = 2 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (2) = 2.

    Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers greater than 1.

    Therefore, the function 𝑓 is continuous for all real numbers.

    17. Find the relationship between π‘Ž and 𝑏 so that the function 𝑓 defined by

    𝑓(π‘₯) = {π‘Žπ‘₯ + 1, If π‘₯ ≀ 3

    𝑏π‘₯ + 3, If π‘₯ > 3 is continuous at π‘₯ = 3.

    Solution:

    Given functions is defined by 𝑓(π‘₯) = {π‘Žπ‘₯ + 1, If π‘₯ ≀ 3

    𝑏π‘₯ + 3, If π‘₯ > 3

    Given that the function is continuous at π‘₯ = 3. Therefore, LHL = RHL = 𝑓(3)

    β‡’ limπ‘₯β†’3βˆ’

    𝑓(π‘₯) = limπ‘₯β†’3+

    𝑓(π‘₯) = 𝑓(3)

  • Class-XII-Maths Continuity and Differentiabil ity

    13 Practice more on Continuity and Differentiability www.embibe.com

    β‡’ limπ‘₯β†’3βˆ’

    π‘Žπ‘₯ + 1 = limπ‘₯β†’3+

    𝑏π‘₯ + 3 = 3π‘Ž + 1

    β‡’ 3π‘Ž + 1 = 3𝑏 + 3 = 3π‘Ž + 1

    β‡’ 3π‘Ž = 3𝑏 + 2 β‡’ π‘Ž = 𝑏 +2

    3

    Hence, the relationship between π‘Ž and 𝑏 is π‘Ž = 𝑏 +2

    3

    18. For what value of πœ† is the function defined by

    𝑓(π‘₯) = {πœ†(π‘₯2 βˆ’ 2π‘₯), If π‘₯ ≀ 0

    4π‘₯ + 1, If π‘₯ > 0

    Continuous at π‘₯ = 0? What about continuity at π‘₯ = 1?

    Solution:

    Given function is defined as 𝑓(π‘₯) = {πœ†(π‘₯2 βˆ’ 2π‘₯), If π‘₯ ≀ 0

    4π‘₯ + 1, If π‘₯ > 0

    Given that the function is continuous at π‘₯ = 0. Therefore, LHL = RHL = 𝑓(0)

    β‡’ limπ‘₯β†’0βˆ’

    𝑓(π‘₯) = limπ‘₯β†’0+

    𝑓(π‘₯) = 𝑓(0)

    β‡’ limπ‘₯β†’0βˆ’

    πœ†(π‘₯2 βˆ’ 2π‘₯) = limπ‘₯β†’0+

    4π‘₯ + 1 = πœ†[(0)2 βˆ’ 2(0)]

    β‡’ πœ†[(0)2 βˆ’ 2(0)] = 4(0) + 1 = πœ†(0)

    β‡’ 0. πœ† = 1 β‡’ πœ† =1

    0

    Hence, there is no real value of πœ† for which the given function be continuous.

    If π‘₯ = 1,

    𝑓(1) = 4(1) + 1 = 5 and limπ‘₯β†’1

    𝑓(π‘₯) = limπ‘₯β†’1

    4(1) + 1 = 5. Here, limπ‘₯β†’1

    𝑓(π‘₯) = 𝑓(1)

    Therefore, the function 𝑓 is continuous for all real values of πœ†.

    19. Show that the function defined by 𝑔(π‘₯) = π‘₯ βˆ’ [π‘₯] is discontinuous at all integral points.

    Here [π‘₯] denotes the greatest integer less than or equal to π‘₯.

    Solution:

    Given function is defined by 𝑔(π‘₯) = π‘₯ βˆ’ [π‘₯]

    Let π‘˜ be any integer

    LHL = limπ‘₯β†’π‘˜βˆ’

    𝑓(π‘₯) = limπ‘₯β†’π‘˜βˆ’

    π‘₯ βˆ’ [π‘₯] = π‘˜ βˆ’ (π‘˜ βˆ’ 1) = 1

  • Class-XII-Maths Continuity and Differentiabil ity

    14 Practice more on Continuity and Differentiability www.embibe.com

    RHL = limπ‘₯β†’π‘˜+

    𝑓(π‘₯) = limπ‘₯β†’π‘˜+

    π‘₯ βˆ’ [π‘₯] = π‘˜ βˆ’ (π‘˜) = 0,

    Here, at π‘₯ = π‘˜, LHL β‰  RHL.

    Therefore, the function 𝑓 is discontinuous for all integers.

    20. Is the function defined by 𝑓(π‘₯) = π‘₯2 βˆ’ sinπ‘₯ + 5 continuous at π‘₯ = πœ‹.

    Solution:

    Given function is defined by 𝑓(π‘₯) = π‘₯2 βˆ’ sinπ‘₯ + 5,

    At π‘₯ = πœ‹, 𝑓(πœ‹) = πœ‹2 βˆ’ sinπœ‹ + 5 = πœ‹2 βˆ’ 0 + 5 = πœ‹2 + 5

    limπ‘₯→𝑛

    𝑓(π‘₯) = limπ‘₯→𝑛

    π‘₯2 βˆ’ sinπ‘₯ + 5 = πœ‹2 βˆ’ sinπœ‹ + 5 = πœ‹2 βˆ’ 0 + 5 = πœ‹2 + 5

    Here, at π‘₯ = πœ‹, limπ‘₯→𝑛

    𝑓(π‘₯) = 𝑓(πœ‹) = πœ‹2 + 5

    Therefore, the function 𝑓(π‘₯) is continuous at π‘₯ = πœ‹.

    21. Discuss the continuity of the following functions:

    (a) 𝑓(π‘₯) = sin π‘₯ + cos π‘₯

    (b) 𝑓(π‘₯) = sin π‘₯ βˆ’ cosπ‘₯

    (c) 𝑓(π‘₯) = sinπ‘₯. cos π‘₯

    Solution:

    Let 𝑔(π‘₯) = sin π‘₯

    Let π‘˜ be any real number. At π‘₯ = π‘˜, 𝑔(π‘˜) = sinπ‘˜

    LHL = limπ‘₯β†’π‘˜βˆ’

    𝑔(π‘₯) = limπ‘₯β†’π‘˜βˆ’

    sin π‘₯ = limβ„Žβ†’0

    sin(π‘˜ βˆ’ β„Ž) = limβ„Žβ†’0

    sinπ‘˜ cosβ„Ž βˆ’ cos π‘˜ sin β„Ž = sin π‘˜

    RHL = limπ‘₯β†’π‘˜+

    𝑔(π‘₯) = limπ‘₯β†’π‘˜+

    sin π‘₯ = limβ„Žβ†’0

    sin(π‘˜ + β„Ž) = limβ„Žβ†’0

    sin π‘˜ cos β„Ž + cos π‘˜ sinβ„Ž = sin π‘˜

    Here, at π‘₯ = π‘˜, LHL = RHL = 𝑔(π‘˜).

    Hence, the function 𝑔 is continuous for all real numbers.

    Let β„Ž(π‘₯) = cos π‘₯

    Let π‘˜ be any real number. π‘₯ = π‘˜, β„Ž(π‘˜) = cos π‘˜

    𝐿𝐻𝐿 = limπ‘₯β†’π‘˜βˆ’

    β„Ž(π‘₯) = limπ‘₯β†’π‘˜βˆ’

    cos π‘₯ = limβ„Žβ†’0

    cos(π‘˜ βˆ’ β„Ž) = limβ„Žβ†’0

    cosπ‘˜ cos β„Ž + sinπ‘˜ sinβ„Ž = cos π‘˜

    RHL = limπ‘₯β†’π‘˜+

    β„Ž(π‘₯) = limπ‘₯β†’π‘˜+

    cos π‘₯ = limβ„Žβ†’0

    cos(π‘˜ + β„Ž) = limβ„Žβ†’0

    cos π‘˜ cosβ„Ž βˆ’ sinπ‘˜ sinβ„Ž = cos π‘˜

  • Class-XII-Maths Continuity and Differentiabil ity

    15 Practice more on Continuity and Differentiability www.embibe.com

    Here, at π‘₯ = π‘˜, LHL = RHL = β„Ž(π‘˜).

    Hence, the function β„Ž is continuous for all real numbers.

    We know that if 𝑔 and β„Ž are two continuous functions, then the functions 𝑔 + β„Ž, 𝑔 βˆ’ β„Ž and π‘”β„Ž also be a continuous function.

    Therefore, (a) 𝑓(π‘₯) = sinπ‘₯ + cos π‘₯ (b) 𝑓(π‘₯) = sin π‘₯ βˆ’ cosπ‘₯ and

    (c) 𝑓(π‘₯) = sinπ‘₯. cos π‘₯ are continuous functions.

    22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

    Solution:

    Let 𝑔(π‘₯) = sin π‘₯

    Let π‘˜ be any real number. At π‘₯ = π‘˜, 𝑔(π‘˜) = sinπ‘˜

    LHL = limπ‘₯β†’π‘˜βˆ’

    𝑔(π‘₯) = limπ‘₯β†’π‘˜βˆ’

    sin π‘₯ = limβ„Žβ†’0

    sin(π‘˜ βˆ’ β„Ž) = limβ„Žβ†’0

    sinπ‘˜ cos β„Ž βˆ’ cos π‘˜ sin β„Ž = sinπ‘˜

    RHL = limπ‘₯β†’π‘˜+

    𝑔(π‘₯) = limπ‘₯β†’π‘˜+

    sin π‘₯ = limβ„Žβ†’0

    sin(π‘˜ + β„Ž) = limβ„Žβ†’0

    sinπ‘˜ cosβ„Ž + cos π‘˜ sin β„Ž = sin π‘˜

    Here, at π‘₯ = π‘˜, LHL = RHL = 𝑔(π‘˜).

    Hence, the function 𝑔 is continuous for all real numbers.

    Let β„Ž(π‘₯) = cos π‘₯

    Let π‘˜ be any real number. At π‘₯ = π‘˜, β„Ž(π‘˜) = cosπ‘˜

    𝐿𝐻𝐿 = limπ‘₯β†’π‘˜βˆ’

    β„Ž(π‘₯) = limπ‘₯β†’π‘˜βˆ’

    cos π‘₯ = limβ„Žβ†’0

    cos(π‘˜ βˆ’ β„Ž) = limβ„Žβ†’0

    cos π‘˜ cosβ„Ž + sinπ‘˜ sinβ„Ž = cos π‘˜

    RHL = limπ‘₯β†’π‘˜+

    β„Ž(π‘₯) = limπ‘₯β†’π‘˜+

    cos π‘₯ = limβ„Žβ†’0

    cos(π‘˜ + β„Ž) = limβ„Žβ†’0

    cos π‘˜ cosβ„Ž βˆ’ sinπ‘˜ sinβ„Ž = cos π‘˜

    Here, at π‘₯ = π‘˜, LHL = RHL = β„Ž(π‘˜).

    Hence, the function β„Ž is continuous for all real numbers.

    We know that if 𝑔 and β„Ž are two continuous functions, then the functions 𝑔

    β„Ž, β„Ž β‰  0,

    1

    β„Ž, β„Ž β‰  0

    and 1

    𝑔, 𝑔 β‰  0 are continuous functions.

    Therefore, cosecπ‘₯ =1

    sinπ‘₯, sin π‘₯ β‰  0 is continuous β‡’ π‘₯ β‰  π‘›πœ‹(𝑛 ∈ 𝑍) is continuous.

    Hence, cosec π‘₯ is continuous except π‘₯ = π‘›πœ‹(𝑛 ∈ 𝑍).

    sec π‘₯ =1

    cosπ‘₯, cos π‘₯ β‰  0 is continuous. β‡’ π‘₯ β‰ 

    (2𝑛+1)πœ‹

    2(𝑛 ∈ 𝑍) is continuous.

    Hence, sec π‘₯ is continuous except π‘₯ =(2𝑛+1)πœ‹

    2(𝑛 ∈ 𝑍).

    cot π‘₯ =cosπ‘₯

    sinπ‘₯, sin π‘₯ β‰  0 is continuous. β‡’ π‘₯ β‰  π‘›πœ‹(𝑛 ∈ 𝑍) is continuous.

  • Class-XII-Maths Continuity and Differentiabil ity

    16 Practice more on Continuity and Differentiability www.embibe.com

    Hence, cot π‘₯ is continuous except π‘₯ = π‘›πœ‹(𝑛 ∈ 𝑍).

    23. Find all points of discontinuity of 𝑓, where 𝑓(π‘₯) = {sinπ‘₯

    π‘₯, If π‘₯ < 0

    π‘₯ + 1, If π‘₯ β‰₯ 0

    Solution:

    Given function is defined by 𝑓(π‘₯) = {sinπ‘₯

    π‘₯, If π‘₯ < 0

    π‘₯ + 1, If π‘₯ β‰₯ 0

    Let π‘˜ be any real number. According to question, π‘˜ < 0 or π‘˜ = 0 or π‘˜ > 0

    First case: If π‘˜ < 0

    𝑓(π‘˜) =sinπ‘˜

    π‘˜ and lim

    π‘₯β†’π‘˜π‘“(π‘₯) = lim

    π‘₯β†’π‘˜(sinπ‘₯

    π‘₯) =

    sinπ‘˜

    π‘˜. Here, lim

    π‘₯β†’π‘˜π‘“(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers less than 0.

    Second case: If π‘˜ = 0

    𝑓(0) = 0 + 1 = 1

    LHL = limπ‘₯β†’0βˆ’

    𝑓(π‘₯) = limπ‘₯β†’0βˆ’

    (π‘₯ + 1) = 0 + 1 = 1

    RHL = limπ‘₯β†’0+

    𝑓(π‘₯) = limπ‘₯β†’0+

    (π‘₯ + 1) = 0 + 1 = 1,

    Here at π‘₯ = 0, LHL = RHL = 𝑓(0). Hence, the function 𝑓 is continuous at π‘₯ = 0.

    Third case: If π‘˜ > 0

    𝑓(π‘˜) = π‘˜ + 1 and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯ + 1) = π‘˜ + 1. Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for all real numbers greater than 0.

    Therefore, the function 𝑓 is continuous for all real numbers.

    24. Determine if 𝑓 defined by

    𝑓(π‘₯) = {π‘₯2 sin

    1

    π‘₯, If π‘₯ β‰  0

    0, If π‘₯ = 0

    is a continuous function?

    Solution:

    Given function is defined by 𝑓(π‘₯) = {π‘₯2 sin

    1

    π‘₯, If π‘₯ β‰  0

    0, If π‘₯ = 0

  • Class-XII-Maths Continuity and Differentiabil ity

    17 Practice more on Continuity and Differentiability www.embibe.com

    Let π‘˜ be any real number. According to question, π‘˜ β‰  0 or π‘˜ = 0

    First case: If π‘˜ β‰  0

    𝑓(π‘˜) = π‘˜2 sin1

    π‘˜ and lim

    π‘₯β†’π‘˜π‘“(π‘₯) = lim

    π‘₯β†’π‘˜(π‘₯2 sin

    1

    π‘₯) = π‘˜2 sin

    1

    π‘˜. Here, lim

    π‘₯β†’π‘˜π‘“(π‘₯) = 𝑓(π‘˜)

    Hence, the function 𝑓 is continuous for π‘˜ β‰  0.

    Second case: If, π‘˜ = 0, 𝑓(0) = 0

    LHL = limπ‘₯β†’0βˆ’

    𝑓(π‘₯) = limπ‘₯β†’0βˆ’

    (π‘₯2 sin1

    π‘₯) = lim

    π‘₯β†’0(π‘₯2 sin

    1

    π‘₯)

    We know that, βˆ’1 ≀ sin1

    π‘₯≀ 1, π‘₯ β‰  0 β‡’ βˆ’π‘₯2 ≀ sin

    1

    π‘₯≀ π‘₯2

    β‡’ limπ‘₯β†’0

    (βˆ’π‘₯2) ≀ limπ‘₯β†’0

    sin1

    π‘₯≀ limπ‘₯β†’0

    π‘₯2

    β‡’ 0 ≀ limπ‘₯β†’0

    sin1

    π‘₯≀ 0 β‡’ lim

    π‘₯β†’0sin

    1

    π‘₯= 0 β‡’ lim

    π‘₯β†’0βˆ’π‘₯2 sin

    1

    π‘₯= 0 β‡’ lim

    π‘₯β†’0βˆ’π‘“(π‘₯) = 0

    Similarly, RHL = limπ‘₯β†’0+

    𝑓(π‘₯) = limπ‘₯β†’0+

    (π‘₯2 sin1

    π‘₯) = lim

    π‘₯β†’0(π‘₯2 sin

    1

    π‘₯) = 0

    Here, at π‘₯ = 0, LHL = RHL = 𝑓(0)

    Hence, at π‘₯ = 0, 𝑓 is continuous.

    Therefore, the function 𝑓 is continuous for all real numbers.

    25. Examine the continuity of 𝑓, where 𝑓 is defined by

    𝑓(π‘₯) = {sin π‘₯ βˆ’ cosπ‘₯ , If π‘₯ β‰  0

    βˆ’1, If π‘₯ = 0

    Solution:

    Given function is defined by 𝑓(π‘₯) = {sinπ‘₯ βˆ’ cos π‘₯ , If π‘₯ β‰  0

    βˆ’1, If π‘₯ = 0

    Let π‘˜ be any real number. According to question, π‘˜ β‰  0 or π‘˜ = 0

    First case: If π‘˜ β‰  0, 𝑓(0) = 0 βˆ’ 1 = βˆ’1

    LHL = limπ‘˜β†’0βˆ’

    𝑓(π‘₯) = limπ‘˜β†’0βˆ’

    (sin π‘₯ βˆ’ cos π‘₯) = 0 βˆ’ 1 = βˆ’1

    RHL = limπ‘˜β†’0+

    𝑓(π‘₯) = limπ‘˜β†’0+

    (sin π‘₯ βˆ’ cos π‘₯) = 0 βˆ’ 1 = βˆ’1

    Hence, at π‘₯ β‰  0, LHL = RHL = 𝑓(π‘₯)

    Hence, the function 𝑓 is continuous at π‘₯ β‰  0.

    Second case: If, π‘˜ = 0, 𝑓(π‘˜) = βˆ’1

    and limπ‘₯β†’π‘˜

    𝑓(π‘₯) = limπ‘₯β†’π‘˜

    (βˆ’1) = βˆ’1 Here, limπ‘₯β†’π‘˜

    𝑓(π‘₯) = 𝑓(π‘˜)

  • Class-XII-Maths Continuity and Differentiabil ity

    18 Practice more on Continuity and Differentiability www.embibe.com

    Hence, the function 𝑓 is continuous at π‘₯ = 0

    Hence, the function 𝑓 is continuous for all real numbers.

    26. Find the values of π‘˜ so that the function 𝑓 is continuous at the indicated point.

    𝑓(π‘₯) = {

    π‘˜ cosπ‘₯

    πœ‹βˆ’2π‘₯, If π‘₯ β‰ 

    πœ‹

    2

    3, If π‘₯ =πœ‹

    2

    at π‘₯ =πœ‹

    2

    Solution:

    Given function is defined by 𝑓(π‘₯) = {

    π‘˜ cosπ‘₯

    πœ‹βˆ’2π‘₯, If π‘₯ β‰ 

    πœ‹

    2

    3, If π‘₯ =πœ‹

    2

    at π‘₯ =πœ‹

    2

    Given that the function is continuous at π‘₯ =πœ‹

    2. Therefore, LHL = RHL = 𝑓 (

    πœ‹

    2)

    β‡’ limπ‘₯β†’

    πœ‹2

    𝑓(π‘₯) = limπ‘₯β†’

    πœ‹+

    2

    𝑓(π‘₯) = 𝑓 (πœ‹

    2)

    β‡’ limπ‘₯β†’

    πœ‹2

    π‘˜ cos π‘₯

    πœ‹ βˆ’ 2π‘₯= lim

    π‘₯β†’πœ‹+

    2

    π‘˜ cos π‘₯

    πœ‹ βˆ’ 2π‘₯= 3

    β‡’ limβ„Žβ†’0

    π‘˜ cos(πœ‹

    2βˆ’β„Ž)

    πœ‹βˆ’2(πœ‹

    2βˆ’β„Ž)

    = limβ„Žβ†’0

    π‘˜ cos(πœ‹

    2+β„Ž)

    πœ‹βˆ’2(πœ‹

    2+β„Ž)

    = 3

    β‡’ limβ„Žβ†’0

    π‘˜ sinβ„Ž

    2β„Ž= lim

    β„Žβ†’0

    βˆ’π‘˜ sinβ„Ž

    βˆ’2β„Ž= 3

    β‡’π‘˜

    2=

    π‘˜

    2= 3 [∡ lim

    β„Žβ†’0

    sinβ„Ž

    β„Ž= 1]

    β‡’ π‘˜ = 6

    Hence, for π‘˜ = 6, the given function 𝑓 is continuous at the indicated point.

    27. Find the values of π‘˜ so that the function 𝑓 is continuous at the indicated point.

    𝑓(π‘₯) = {π‘˜π‘₯2, If π‘₯ ≀ 2

    3, If π‘₯ > 2 at π‘₯ = 2

    Solution:

    Given function is defined by 𝑓(π‘₯) = {π‘˜π‘₯2, If π‘₯ ≀ 2

    3, If π‘₯ > 2 at π‘₯ = 2

  • Class-XII-Maths Continuity and Differentiabil ity

    19 Practice more on Continuity and Differentiability www.embibe.com

    Given that the function is continuous at π‘₯ = 2.

    Therefore, LHL = RHL = 𝑓(2)

    β‡’ limπ‘₯β†’2βˆ’

    𝑓(π‘₯) = limπ‘₯β†’2+

    𝑓(π‘₯) = 𝑓(2)

    β‡’ limπ‘₯β†’2βˆ’

    π‘˜π‘₯2 = limπ‘₯β†’2+

    3 = π‘˜(2)2

    β‡’ 4π‘˜ = 3 = 4π‘˜

    β‡’ π‘˜ =3

    4

    Hence, for π‘˜ =3

    4, the given function 𝑓 is continuous at the indicated point.

    28. Find the values of π‘˜ so that the function 𝑓 is continuous at the indicated point.

    𝑓(π‘₯) = {π‘˜π‘₯ + 1, If π‘₯ ≀ πœ‹

    cosπ‘₯, If π‘₯ > πœ‹ at π‘₯ = πœ‹

    Solution:

    Given function is 𝑓(π‘₯) = {π‘˜π‘₯ + 1, If π‘₯ ≀ πœ‹

    cos π‘₯, If π‘₯ > πœ‹ at π‘₯ = πœ‹

    Given that the function is continuous at π‘₯ = πœ‹,

    Therefore, LHL = RHL = 𝑓(πœ‹)

    β‡’ limπ‘₯β†’πœ‹βˆ’

    𝑓(π‘₯) = limπ‘₯β†’πœ‹+

    𝑓(π‘₯) = 𝑓(πœ‹)

    β‡’ limπ‘₯β†’πœ‹βˆ’

    π‘˜π‘₯ + 1 = limπ‘₯β†’πœ‹+

    cos π‘₯ = π‘˜(πœ‹) + 1

    β‡’ π‘˜(πœ‹) + 1 = cos πœ‹ = π‘˜πœ‹ + 1

    β‡’ π‘˜πœ‹ + 1 = βˆ’1 = π‘˜πœ‹ + 1

    β‡’ πœ‹π‘˜ = βˆ’2

    β‡’ π‘˜ = βˆ’2

    πœ‹

    Hence, for π‘˜ = βˆ’2

    πœ‹, the given function 𝑓 is continuous at the indicated point.

    29. Find the values of π‘˜ so that the function 𝑓 is continuous at the indicated point.

    𝑓(π‘₯) = {π‘˜π‘₯ + 1, If π‘₯ ≀ 53π‘₯ βˆ’ 5, If π‘₯ > 5

    at π‘₯ = 5

  • Class-XII-Maths Continuity and Differentiabil ity

    20 Practice more on Continuity and Differentiability www.embibe.com

    Solution:

    Given function is defined by 𝑓(π‘₯) = {π‘˜π‘₯ + 1, If π‘₯ ≀ 53π‘₯ βˆ’ 5, If π‘₯ > 5

    at π‘₯ = 5

    Given that the function is continuous at π‘₯ = 5.

    Therefore, LHL = RHL = 𝑓(5)

    β‡’ limπ‘₯β†’5βˆ’

    𝑓(π‘₯) = limπ‘₯β†’5+

    𝑓(π‘₯) = 𝑓(5)

    β‡’ limπ‘₯β†’5βˆ’

    π‘˜π‘₯ + 1 = limπ‘₯β†’5+

    3π‘₯ βˆ’ 5 = 5π‘˜ + 1

    β‡’ 5π‘˜ + 1 = 15 βˆ’ 5 = 5π‘˜ + 1

    β‡’ 5π‘˜ = 9

    β‡’ π‘˜ =9

    5

    Hence, for π‘˜ =9

    5, the given function 𝑓 is continuous at the indicated point.

    30. Find the values of π‘Ž and 𝑏 such that the function defined by

    𝑓(π‘₯) = {5, If π‘₯ ≀ 2

    π‘Žπ‘₯ + 𝑏, If 2 < π‘₯ < 1021, If π‘₯ β‰₯ 10

    is continuous function.

    Solution:

    Given function is 𝑓(π‘₯) = {5, If π‘₯ ≀ 2

    π‘Žπ‘₯ + 𝑏, If 2 < π‘₯ < 1021, If π‘₯ β‰₯ 10

    Given that the function is continuous at π‘₯ = 2. Therefore, LHL = RHL = 𝑓(2)

    β‡’ limπ‘₯β†’2βˆ’

    𝑓(π‘₯) = limπ‘₯β†’2+

    𝑓(π‘₯) = 𝑓(2)

    β‡’ limπ‘₯β†’2βˆ’

    5 = limπ‘₯β†’2+

    π‘Žπ‘₯ + 𝑏 = 5

    β‡’ 2π‘Ž + 𝑏 = 5 …(i)

    Given that the function is continuous at π‘₯ = 10. Therefore, LHL = RHL = 𝑓(10)

    β‡’ limπ‘₯β†’10βˆ’

    𝑓(π‘₯) = limπ‘₯β†’10+

    𝑓(π‘₯) = 𝑓(10)

    β‡’ limπ‘₯β†’10βˆ’

    π‘Žπ‘₯ + 𝑏 = limπ‘₯β†’10+

    21 = 21

    β‡’ 10π‘Ž + 𝑏 = 21 …(ii)

    Solving the equation (i) and (ii), we get

    π‘Ž = 2 𝑏 = 1

  • Class-XII-Maths Continuity and Differentiabil ity

    21 Practice more on Continuity and Differentiability www.embibe.com

    31. Show that the function defined by 𝑓(π‘₯) = cos(π‘₯2) is a continuous function.

    Solution:

    Given function is defined by 𝑓(π‘₯) = cos(π‘₯2)

    Assuming that the functions are well defined for all real numbers, we can write the given function 𝑓 in the combination of 𝑔 and β„Ž(𝑓 = π‘”π‘œβ„Ž). Where, 𝑔(π‘₯) = cosπ‘₯ and β„Ž(π‘₯) = π‘₯2, if 𝑔 and β„Ž both are continuous function then 𝑓 also be continuous.

    [∡ π‘”π‘œβ„Ž(π‘₯) = 𝑔(β„Ž(π‘₯)) = 𝑔(π‘₯2) = cos(π‘₯2)]

    Let the function 𝑔(π‘₯) be cos π‘₯

    Let π‘˜ be any real number. At π‘₯ = π‘˜, 𝑔(π‘˜) = cos π‘˜

    limπ‘₯β†’π‘˜

    𝑔(π‘₯) = limπ‘₯β†’π‘˜

    cos π‘₯ = limβ„Žβ†’0

    cos(π‘˜ + β„Ž) = limβ„Žβ†’0

    cos π‘˜ cos β„Ž βˆ’ sinπ‘˜ sin β„Ž = cosπ‘˜

    Here, limπ‘₯β†’π‘˜

    𝑔(π‘₯) = 𝑔(π‘˜). Hence, t\he function 𝑔 is continuous for all real numbers.

    And let the function β„Ž(π‘₯) be π‘₯2

    Let π‘˜ be any real number. At π‘₯ = π‘˜, β„Ž(π‘˜) = π‘˜2

    limπ‘₯β†’π‘˜

    β„Ž(π‘₯) = limπ‘₯β†’π‘˜

    π‘₯2 = π‘˜2

    Here, limπ‘₯β†’π‘˜

    β„Ž(π‘₯) = β„Ž(π‘˜). Hence, the function β„Ž is continuous for all real numbers.

    Therefore, 𝑔 and β„Ž both are continuous function. Hence, 𝑓 is continuous.

    32. Show that the function defined by 𝑓(π‘₯) = |cos π‘₯| is a continuous function.

    Solution:

    Given that the function is defined by 𝑓(π‘₯) = |cos π‘₯|

    Assuming that the functions are well defined for all real numbers, we can write the given function 𝑓 in the combination of 𝑔 and β„Ž(𝑓 = π‘”π‘œβ„Ž). Where, 𝑔(π‘₯) = |π‘₯| and β„Ž(π‘₯) = cos π‘₯. If 𝑔 and β„Ž both are continuous function then 𝑓 also be continuous.

    [∡ π‘”π‘œβ„Ž(π‘₯) = 𝑔(β„Ž(π‘₯)) = 𝑔(cos π‘₯) = |cos π‘₯|]

    Let the function 𝑔(π‘₯) be |π‘₯|

    Rearranging the function 𝑔, we get

    𝑔(π‘₯) = {βˆ’π‘₯, If π‘₯ < 0π‘₯, If π‘₯ β‰₯ 0

    Let π‘˜ be any real number. According to question, π‘˜ < 0 or π‘˜ = 0 or π‘˜ > 0

  • Class-XII-Maths Continuity and Differentiabil ity

    22 Practice more on Continuity and Differentiability www.embibe.com

    First case: If π‘˜ < 0,

    𝑔(π‘˜) = 0 and limπ‘₯β†’π‘˜

    𝑔(π‘₯) = limπ‘₯β†’π‘˜

    (βˆ’π‘₯) = 0, here, limπ‘₯β†’π‘˜

    𝑔(π‘₯) = 𝑔(π‘˜)

    Hence, the function 𝑔 is continuous for all real numbers less than 0.

    Second case: If π‘˜ = 0, 𝑔(0) = 0 + 1 = 1

    LHL = limπ‘₯β†’0βˆ’

    𝑔(π‘₯) = limπ‘₯β†’0βˆ’

    (βˆ’π‘₯) = 0

    RHL = limπ‘₯β†’0+

    𝑔(π‘₯) = limπ‘₯β†’0+

    (π‘₯) = 0,

    Here at π‘₯ = 0, LHL = RHL = 𝑔(0)

    Hence, the function 𝑔 is continuous at π‘₯ = 0.

    Third case: If π‘˜ > 0,

    𝑔(π‘˜) = 0 and limπ‘₯β†’π‘˜

    𝑔(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯) = 0. Here, limπ‘₯β†’π‘˜

    𝑔(π‘₯) = 𝑔(π‘˜)

    Hence, the function 𝑔 is continuous for all real numbers greater than 0.

    Hence, the function 𝑔 is continuous for all real numbers.

    And let the function β„Ž(π‘₯) be cos π‘₯

    Let π‘˜ be any real number. At π‘₯ = π‘˜, β„Ž(π‘˜) = cosπ‘˜

    limπ‘₯β†’π‘˜

    β„Ž(π‘₯) = limπ‘₯β†’π‘˜

    cos π‘₯ = cos π‘˜

    Here, limπ‘₯β†’π‘˜

    β„Ž(π‘₯) = β„Ž(π‘˜). Hence, the function β„Ž is continuous for all real numbers.

    Therefore, 𝑔 and β„Ž both are continuous function. Hence, 𝑓 is continuous.

    33. Examine that sin|π‘₯| is a continuous function.

    Solution:

    Let the given function be 𝑓(π‘₯) = sin|π‘₯|

    Assuming that the functions are well defined for all real numbers, we can write the given function 𝑓 in the combination of 𝑔 and β„Ž(𝑓 = β„Žπ‘œπ‘”). Where, β„Ž(π‘₯) = sin π‘₯ and 𝑔(π‘₯) = |π‘₯|. If 𝑔 and β„Ž both are continuous function then 𝑓 also be continuous.

    [∡ β„Žπ‘œπ‘”(π‘₯) = β„Ž(𝑔(π‘₯)) = β„Ž(|π‘₯|) = sin|π‘₯|]

    Function β„Ž(π‘₯) = sin π‘₯

    Let π‘˜ be any real number. At π‘₯ = π‘˜, β„Ž(π‘˜) = sinπ‘˜

    limπ‘₯β†’π‘˜

    β„Ž(π‘₯) = limπ‘₯β†’π‘˜

    sin π‘₯ = sinπ‘˜

    Here, limπ‘₯β†’π‘˜

    β„Ž(π‘₯) = β„Ž(π‘˜). Hence, the function β„Ž is continuous for all real numbers.

  • Class-XII-Maths Continuity and Differentiabil ity

    23 Practice more on Continuity and Differentiability www.embibe.com

    Function 𝑔(π‘₯) = |π‘₯|

    Redefining the function 𝑔, we get

    𝑔(π‘₯) = {βˆ’π‘₯, If π‘₯ < 0π‘₯, If π‘₯ β‰₯ 0

    Let π‘˜ be any real number. According to question, π‘˜ < 0 or π‘˜ = 0 or π‘˜ > 0

    First case: If π‘˜ < 0,

    𝑔(π‘˜) = 0 and limπ‘₯β†’π‘˜

    𝑔(π‘₯) = limπ‘₯β†’π‘˜

    (βˆ’π‘₯) = 0. Here, limπ‘₯β†’π‘˜

    𝑔(π‘₯) = 𝑔(π‘˜)

    Hence, the function 𝑔 is continuous for all real numbers less than 0.

    Second case: If π‘˜ = 0, 𝑔(0) = 0 + 1 = 1

    LHL = limπ‘₯β†’0βˆ’

    𝑔(π‘₯) = limπ‘₯β†’0βˆ’

    (βˆ’π‘₯) = 0

    RHL = limπ‘₯β†’0+

    𝑔(π‘₯) = limπ‘₯β†’0+

    (π‘₯) = 0

    Here at π‘₯ = 0, LHL = RHL = 𝑔(0)

    Hence at π‘₯ = 0, the function 𝑔 is continuous.

    Third case: If π‘˜ > 0,

    𝑔(π‘˜) = 0 and limπ‘₯β†’π‘˜

    𝑔(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯) = 0. Here, limπ‘₯β†’π‘˜

    𝑔(π‘₯) = 𝑔(π‘˜)

    Hence, the function 𝑔 is continuous for all real numbers greater than 0.

    Hence, the function 𝑔 is continuous for all real numbers.

    Therefore, 𝑔 and β„Ž both are continuous function. Hence, 𝑓 is continuous.

    34. Find all the points of discontinuity of 𝑓 defined by 𝑓(π‘₯) = |π‘₯| βˆ’ |π‘₯ + 1|.

    Solution:

    Given that the function is defined by 𝑓(π‘₯) = |π‘₯| βˆ’ |π‘₯ + 1|

    Assuming that the functions are well defined for all real numbers, we can write the given function 𝑓 in the combination of 𝑔 and β„Ž(𝑓 = 𝑔 βˆ’ β„Ž), where, 𝑔(π‘₯) = |π‘₯| and β„Ž(π‘₯) =|π‘₯ + 1|. If 𝑔 and β„Ž both are continuous function then 𝑓 also be continuous.

    Function 𝑔(π‘₯) = |π‘₯|

    Redefining the function 𝑔, we get,

    𝑔(π‘₯) = {βˆ’π‘₯, If π‘₯ < 0π‘₯, If π‘₯ β‰₯ 0

    Let π‘˜ be any real number. According to question, π‘˜ < 0 or π‘˜ = 0 or π‘˜ > 0

    First case: If π‘˜ < 0,

  • Class-XII-Maths Continuity and Differentiabil ity

    24 Practice more on Continuity and Differentiability www.embibe.com

    𝑔(π‘˜) = 0 and limπ‘₯β†’π‘˜

    𝑔(π‘₯) = limπ‘₯β†’π‘˜

    (βˆ’π‘₯) = 0. Here, limπ‘₯β†’π‘˜

    𝑔(π‘₯) = 𝑔(π‘˜)

    Hence, the function 𝑔 is continuous for all real numbers less than 0.

    Second case: If π‘˜ = 0, 𝑔(0) = 0 + 1 = 1

    LHL = limπ‘₯β†’0βˆ’

    𝑔(π‘₯) = limπ‘₯β†’0βˆ’

    (βˆ’π‘₯) = 0 and RHL = limπ‘₯β†’0+

    𝑔(π‘₯) = limπ‘₯β†’0+

    (π‘₯) = 0

    Here, at π‘₯ = 0, LHL = RHL = g(0)

    Hence, the function 𝑔 is continuous at π‘₯ = 0.

    Third case: If π‘˜ > 0,

    𝑔(π‘˜) = 0 and limπ‘₯β†’π‘˜

    𝑔(π‘₯) = limπ‘₯β†’π‘˜

    (π‘₯) = 0. Here, limπ‘₯β†’π‘˜

    𝑔(π‘₯) = 𝑔(π‘˜)

    Hence, the function 𝑔 is continuous for all real numbers more than 0.

    Hence, the function 𝑔 is continuous for all real numbers.

    Function β„Ž(π‘₯) = |π‘₯ + 1|

    Redefining the function β„Ž, we get

    β„Ž(π‘₯) = {βˆ’(π‘₯ + 1), If π‘₯ < βˆ’1

    π‘₯ + 1, If π‘₯ β‰₯ βˆ’1

    Let π‘˜ be any real number. According to question, π‘˜ < βˆ’1 or π‘˜ = βˆ’1 or π‘˜ > βˆ’1

    First case: If π‘˜ < βˆ’1,

    β„Ž(π‘˜) = βˆ’(π‘˜ + 1) and limπ‘₯β†’π‘˜

    β„Ž(π‘₯) = limπ‘₯β†’π‘˜

    βˆ’(π‘˜ + 1) = βˆ’(π‘˜ + 1). Here, limπ‘₯β†’π‘˜

    β„Ž(π‘₯) = β„Ž(π‘˜)

    Hence, the function 𝑔 is continuous for all real numbers less than βˆ’1.

    Second case: If π‘˜ = βˆ’1, β„Ž(βˆ’1) = βˆ’1 + 1 = 0

    LHL = limπ‘₯β†’βˆ’1βˆ’

    β„Ž(π‘₯) = limπ‘₯β†’βˆ’1βˆ’

    βˆ’(βˆ’1 + 1) = 0

    RHL = limπ‘₯β†’βˆ’1+

    β„Ž(π‘₯) = limπ‘₯β†’βˆ’1+

    (π‘₯ + 1) = βˆ’1 + 1 = 0

    Here at π‘₯ = βˆ’1, LHL = RHL = β„Ž(βˆ’1)

    Hence, the function β„Ž is continuous at π‘₯ = βˆ’1.

    Third case: If π‘˜ > βˆ’1

    β„Ž(π‘˜) = π‘˜ + 1 and limπ‘₯β†’π‘˜

    β„Ž(π‘₯) = limπ‘₯β†’π‘˜

    (π‘˜ + 1) = π‘˜ + 1. Here, limπ‘₯β†’π‘˜

    β„Ž(π‘₯) = β„Ž(π‘˜)

    Hence, the function 𝑔 is continuous for all real numbers greater than βˆ’1.

    Hence, the function β„Ž is continuous for all real numbers.

    Therefore, 𝑔 and β„Ž both are continuous function. Hence, 𝑓 is continuous.

  • Class-XII-Maths Continuity and Differentiabil ity

    25 Practice more on Continuity and Differentiability www.embibe.com

    Exercise πŸ“. 𝟐

    1. Differentiate the functions with respect to π‘₯

    sin(π‘₯2 + 5)

    Solution:

    Let 𝑦 = sin(π‘₯2 + 5)

    Therefore,

    𝑑𝑦

    𝑑π‘₯= cos(π‘₯2 + 5).

    𝑑

    𝑑π‘₯(π‘₯2 + 5)

    = cos(π‘₯2 + 5). 2π‘₯

    Hence, 𝑑(sin(π‘₯2+5))

    𝑑π‘₯ = cos(π‘₯2 + 5). 2π‘₯

    2. Differentiate the functions with respect to π‘₯

    cos(sin π‘₯)

    Solution:

    Let 𝑦 = cos(sin π‘₯)

    Therefore,

    𝑑𝑦

    𝑑π‘₯= βˆ’sin(sinπ‘₯).

    𝑑

    𝑑π‘₯(sin π‘₯)

    = βˆ’sin(sinπ‘₯) . cos π‘₯

    Hence, 𝑑((cos(sinπ‘₯)))

    𝑑π‘₯ = βˆ’ sin(sinπ‘₯) . cos π‘₯.

    3. Differentiate the functions with respect to π‘₯

    sin(π‘Žπ‘₯ + 𝑏)

    Solution:

    Let 𝑦 = sin(π‘Žπ‘₯ + 𝑏)

    Therefore,

    𝑑𝑦

    𝑑π‘₯= cos(π‘Žπ‘₯ + 𝑏).

    𝑑

    𝑑π‘₯(π‘Žπ‘₯ + 𝑏)

  • Class-XII-Maths Continuity and Differentiabil ity

    26 Practice more on Continuity and Differentiability www.embibe.com

    = cos(π‘Žπ‘₯ + 𝑏). π‘Ž

    Hence, 𝑑(sin(π‘Žπ‘₯+𝑏))

    𝑑π‘₯= cos(π‘Žπ‘₯ + 𝑏). π‘Ž

    4. Differentiate the functions with respect to π‘₯

    sec(tan(√π‘₯))

    Solution:

    Let 𝑦 = sec(tan(√π‘₯))

    Therefore,

    𝑑𝑦

    𝑑π‘₯= sec(tan√π‘₯) tan(tan√π‘₯).

    𝑑

    𝑑π‘₯(tan√π‘₯)

    = sec(tan√π‘₯) tan(tan√π‘₯). sec2√π‘₯𝑑

    𝑑π‘₯(√π‘₯)

    = sec(tan√π‘₯) tan(tan√π‘₯) . sec2√π‘₯ (1

    2√π‘₯)

    Hence, 𝑑(sec(tan(√π‘₯)))

    𝑑π‘₯= sec(tan√π‘₯) tan(tan√π‘₯) . sec2√π‘₯ (

    1

    2√π‘₯)

    5. Differentiate the functions with respect to π‘₯

    sin(π‘Žπ‘₯+𝑏)

    cos(𝑐π‘₯+𝑑)

    Solution:

    Let 𝑦 =sin(π‘Žπ‘₯+𝑏)

    cos(𝑐π‘₯+𝑑)

    Therefore,

    𝑑𝑦

    𝑑π‘₯=cos(𝑐π‘₯ + 𝑑).

    𝑑𝑑π‘₯sin(π‘Žπ‘₯ + 𝑏) βˆ’ sin(π‘Žπ‘₯ + 𝑏).

    𝑑𝑑π‘₯cos(𝑐π‘₯ + 𝑑)

    [cos(𝑐π‘₯ + 𝑑)]2

    =cos(𝑐π‘₯ + 𝑑). sin(π‘Žπ‘₯ + 𝑏).

    𝑑𝑑π‘₯(π‘Žπ‘₯ + 𝑏) βˆ’ sin(π‘Žπ‘₯ + 𝑏). [βˆ’ sin(𝑐π‘₯ + 𝑑).

    𝑑𝑑π‘₯(𝑐π‘₯ + 𝑑)]

    cos2(𝑐π‘₯ + 𝑑)

    =cos(𝑐π‘₯+𝑑).sin(π‘Žπ‘₯+𝑏).π‘Ž+sin(π‘Žπ‘₯+𝑏).sin(𝑐π‘₯+𝑑)𝑐

    cos2(𝑐π‘₯+𝑑)

    Hence, 𝑑(

    sin(π‘Žπ‘₯+𝑏)

    cos(𝑐π‘₯+𝑑))

    𝑑π‘₯=

    cos(𝑐π‘₯+𝑑).sin(π‘Žπ‘₯+𝑏).π‘Ž+sin(π‘Žπ‘₯+𝑏).sin(𝑐π‘₯+𝑑)𝑐

    cos2(𝑐π‘₯+𝑑)

  • Class-XII-Maths Continuity and Differentiabil ity

    27 Practice more on Continuity and Differentiability www.embibe.com

    6. Differentiate the functions with respect to π‘₯

    cos π‘₯3. sin2(π‘₯5)

    Solution:

    Let 𝑦 = cos π‘₯3. sin2(π‘₯5)

    Therefore,

    𝑑𝑦

    𝑑π‘₯= cos π‘₯3.

    𝑑

    𝑑π‘₯sin2(π‘₯5) + sin2(π‘₯5).

    𝑑

    𝑑π‘₯cosπ‘₯3

    = cos π‘₯3. 2 sin π‘₯5 cosπ‘₯5.𝑑

    𝑑π‘₯π‘₯5 + sin2(π‘₯5)[βˆ’ sin π‘₯3].

    𝑑

    𝑑π‘₯π‘₯3

    = cos π‘₯3. 2 sin π‘₯5 cosπ‘₯5. 5π‘₯4 βˆ’ sin2(π‘₯5) sin π‘₯3. 3π‘₯2

    Hence, 𝑑(cosπ‘₯3.sin2(π‘₯5))

    𝑑π‘₯= cos π‘₯3. 2 sin π‘₯5 cos π‘₯5. 5π‘₯4 βˆ’ sin2(π‘₯5) sin π‘₯3. 3π‘₯2

    7. Differentiate the functions with respect to π‘₯

    2√cot(π‘₯2)

    Solution:

    Let 𝑦 = 2√cot(π‘₯2)

    Therefore,

    𝑑𝑦

    𝑑π‘₯= 2.

    1

    2√cot(π‘₯2).𝑑

    𝑑π‘₯[cot(π‘₯2)]

    =1

    √cot(π‘₯2). [βˆ’ cossec π‘₯2].

    𝑑

    𝑑π‘₯π‘₯2

    =1

    √cot(π‘₯2). [βˆ’ cossec π‘₯2]. 2π‘₯

    Hence, 𝑑(2√cot(π‘₯2))

    𝑑π‘₯=

    1

    √cot(π‘₯2). [βˆ’ cossec π‘₯2]. 2π‘₯

    8. Differentiate the functions with respect to π‘₯

    cos(√π‘₯)

  • Class-XII-Maths Continuity and Differentiabil ity

    28 Practice more on Continuity and Differentiability www.embibe.com

    Solution:

    Let 𝑦 = cos(√π‘₯)

    Therefore,

    𝑑𝑦

    𝑑π‘₯= βˆ’sin(√π‘₯).

    𝑑

    𝑑π‘₯√π‘₯

    = βˆ’sin(√π‘₯).1

    2√π‘₯

    Hence, 𝑑(cos(√π‘₯))

    𝑑π‘₯= βˆ’ sin(√π‘₯).

    1

    2√π‘₯

    9. Prove that the function 𝑓 given by 𝑓(π‘₯) = |π‘₯ βˆ’ 1|, π‘₯ ∈ 𝑅, is not differentiable at π‘₯ = 1.

    Solution:

    At π‘₯ = 1,

    LHD = limβ„Žβ†’0

    𝑓(1 βˆ’ β„Ž) βˆ’ 𝑓(1)

    βˆ’β„Ž= lim

    β„Žβ†’0

    |1 βˆ’ β„Ž βˆ’ 1| βˆ’ |1 βˆ’ 1|

    βˆ’β„Ž= limβ„Žβ†’0

    β„Ž

    βˆ’β„Ž= βˆ’1

    RHD = limβ„Žβ†’0

    𝑓(1+β„Ž)βˆ’π‘“(1)

    β„Ž= lim

    β„Žβ†’0

    |1+β„Žβˆ’1|βˆ’|1βˆ’1|

    β„Ž= lim

    β„Žβ†’0

    β„Ž

    β„Ž= 1

    Here, LHD β‰  RHD, therefore,

    the function 𝑓(π‘₯) = |π‘₯ βˆ’ 1|, π‘₯ ∈ 𝑅, is not differentiable at π‘₯ = 1.

    10. Prove that the greatest integer function defined by 𝑓(π‘₯) = [π‘₯], 0 < π‘₯ < 3, is not differentiable at π‘₯ = 1 and π‘₯ = 2.

    Solution:

    At π‘₯ = 1,

    LHD = limβ„Žβ†’0

    𝑓(1 βˆ’ β„Ž) βˆ’ 𝑓(1)

    βˆ’β„Ž= lim

    β„Žβ†’0

    [1 βˆ’ β„Ž] βˆ’ |1|

    βˆ’β„Ž= limβ„Žβ†’0

    0 βˆ’ 1

    βˆ’β„Ž= ∞

    RHD = limβ„Žβ†’0

    𝑓(1 + β„Ž) βˆ’ 𝑓(1)

    β„Ž= lim

    β„Žβ†’0

    [1 + β„Ž] βˆ’ [1]

    β„Ž= limβ„Žβ†’0

    1 βˆ’ 1

    β„Ž= 0

    Here, LHD β‰  RHD, therefore,

    The function 𝑓(π‘₯) = [π‘₯], 0 < π‘₯ < 3, is not differentiable at π‘₯ = 1.

    At π‘₯ = 2,

  • Class-XII-Maths Continuity and Differentiabil ity

    29 Practice more on Continuity and Differentiability www.embibe.com

    LHD = limβ„Žβ†’0

    𝑓(1 βˆ’ β„Ž) βˆ’ 𝑓(1)

    βˆ’β„Ž= lim

    β„Žβ†’0

    [2 βˆ’ β„Ž] βˆ’ [2]

    βˆ’β„Ž= lim

    β„Žβ†’0

    1 βˆ’ 2

    βˆ’β„Ž= ∞

    RHD = limβ„Žβ†’0

    𝑓(1 + β„Ž) βˆ’ 𝑓(1)

    β„Ž= lim

    β„Žβ†’0

    [2 + β„Ž] βˆ’ [2]

    β„Ž= lim

    β„Žβ†’0

    2 βˆ’ 2

    β„Ž= 0

    Here, LHD β‰  RHD, therefore,

    The function 𝑓(π‘₯) = [π‘₯], 0 < π‘₯ < 3, is not differentiable at π‘₯ = 2.

    Exercise πŸ“. πŸ‘

    Find 𝑑𝑦

    𝑑π‘₯ in the following:

    1. 2π‘₯ + 3𝑦 = sin π‘₯

    Solution:

    Given equation is 2π‘₯ + 3𝑦 = sinπ‘₯

    Differentiating both sides with respect to π‘₯, we get

    𝑑

    𝑑π‘₯(2π‘₯) +

    𝑑

    𝑑π‘₯(3𝑦) =

    𝑑

    𝑑π‘₯sinπ‘₯

    β‡’ 2+ 3𝑑𝑦

    𝑑π‘₯= cosπ‘₯

    ⇒𝑑𝑦

    𝑑π‘₯=

    cosπ‘₯βˆ’2

    3

    2. 2π‘₯ + 3𝑦 = sin 𝑦

    Solution:

    Given equation is 2π‘₯ + 3𝑦 = sin𝑦

    Differentiating both sides with respect to π‘₯, we get

    𝑑

    𝑑π‘₯(2π‘₯) +

    𝑑

    𝑑π‘₯(3𝑦) =

    𝑑

    𝑑π‘₯sin𝑦 β‡’ 2 + 3

    𝑑𝑦

    𝑑π‘₯= cos 𝑦

    𝑑𝑦

    𝑑π‘₯

    ⇒𝑑𝑦

    𝑑π‘₯(cos𝑦 βˆ’ 3) = 2

    ⇒𝑑𝑦

    𝑑π‘₯=

    2

    cosπ‘¦βˆ’3

  • Class-XII-Maths Continuity and Differentiabil ity

    30 Practice more on Continuity and Differentiability www.embibe.com

    3. π‘Žπ‘₯ + 𝑏𝑦2 = cos 𝑦

    Solution:

    Given equation is π‘Žπ‘₯ + 𝑏𝑦2 = cos 𝑦

    Differentiating both sides with respect to π‘₯, we get

    𝑑

    𝑑π‘₯(π‘Žπ‘₯) +

    𝑑

    𝑑π‘₯(𝑏𝑦2) =

    𝑑

    𝑑π‘₯cos 𝑦 β‡’ π‘Ž + 2𝑏𝑦

    𝑑𝑦

    𝑑π‘₯= βˆ’sin𝑦

    𝑑𝑦

    𝑑π‘₯

    ⇒𝑑𝑦

    𝑑π‘₯(2𝑏𝑦 + sin𝑦) = βˆ’π‘Ž β‡’

    𝑑𝑦

    𝑑π‘₯= βˆ’

    π‘Ž

    2𝑏𝑦+sin𝑦

    4. π‘₯𝑦 + 𝑦2 = tan π‘₯ + 𝑦

    Solution:

    Given equation is π‘₯𝑦 + 𝑦2 = tanπ‘₯ + 𝑦

    Differentiating both sides with respect to π‘₯, we get

    𝑑

    𝑑π‘₯(π‘₯𝑦) +

    𝑑

    𝑑π‘₯(𝑦2) =

    𝑑

    𝑑π‘₯tan π‘₯ +

    𝑑𝑦

    𝑑π‘₯

    β‡’ π‘₯𝑑𝑦

    𝑑π‘₯+ 𝑦 + 2𝑦

    𝑑𝑦

    𝑑π‘₯= sec2 π‘₯ +

    𝑑𝑦

    𝑑π‘₯

    ⇒𝑑𝑦

    𝑑π‘₯(π‘₯ + 2𝑦 βˆ’ 1) = sec2 π‘₯ βˆ’ 𝑦

    ⇒𝑑𝑦

    𝑑π‘₯=

    sec2 π‘₯βˆ’π‘¦

    π‘₯+2π‘¦βˆ’1

    5. π‘₯2 + π‘₯𝑦 + 𝑦2 = 100

    Solution:

    Given equation is π‘₯2 + π‘₯𝑦 + 𝑦2 = 100

    Differentiating both sides with respect to π‘₯, we get

    𝑑

    𝑑π‘₯π‘₯2 +

    𝑑

    𝑑π‘₯(π‘₯𝑦) +

    𝑑

    𝑑π‘₯𝑦2 =

    𝑑

    𝑑π‘₯(100)

    β‡’ 2π‘₯ + π‘₯𝑑𝑦

    𝑑π‘₯+ 𝑦 + 2𝑦

    𝑑𝑦

    𝑑π‘₯= 0

    ⇒𝑑𝑦

    𝑑π‘₯(π‘₯ + 2𝑦) = 2π‘₯ + 𝑦 β‡’

    𝑑𝑦

    𝑑π‘₯=

    2π‘₯+𝑦

    π‘₯+2𝑦

  • Class-XII-Maths Continuity and Differentiabil ity

    31 Practice more on Continuity and Differentiability www.embibe.com

    6. π‘₯3 + π‘₯2𝑦 + π‘₯𝑦2 + 𝑦3 = 81

    Solution:

    Given equation is π‘₯3 + π‘₯2𝑦 + π‘₯𝑦2 + 𝑦3 = 81

    Differentiating both sides with respect to π‘₯, we get

    𝑑

    𝑑π‘₯π‘₯3 +

    𝑑

    𝑑π‘₯(π‘₯2𝑦) +

    𝑑

    𝑑π‘₯(π‘₯𝑦2) +

    𝑑

    𝑑π‘₯𝑦3 =

    𝑑

    𝑑π‘₯81

    β‡’ 3π‘₯2 + π‘₯2𝑑𝑦

    𝑑π‘₯+ 𝑦. 2π‘₯ + π‘₯. 2𝑦

    𝑑𝑦

    𝑑π‘₯+ 𝑦2. 1 + 3𝑦2

    𝑑𝑦

    𝑑π‘₯= 0

    ⇒𝑑𝑦

    𝑑π‘₯(π‘₯2 + 2π‘₯𝑦 + 3𝑦2) = βˆ’(3π‘₯2 + 2π‘₯𝑦 + 𝑦2) β‡’

    𝑑𝑦

    𝑑π‘₯= βˆ’

    3π‘₯2+2π‘₯𝑦+𝑦2

    π‘₯2+2π‘₯𝑦+3𝑦2

    7. sin2 𝑦 + cosπ‘₯𝑦 = π‘˜

    Solution:

    Given equation is sin2 𝑦 + cos π‘₯𝑦 = π‘˜

    Differentiating both sides with respect to π‘₯, we get

    𝑑

    𝑑π‘₯sin2 𝑦 +

    𝑑

    𝑑π‘₯cos π‘₯𝑦 =

    𝑑

    𝑑π‘₯π‘˜

    β‡’ 2sin𝑦 cos 𝑦𝑑𝑦

    𝑑π‘₯βˆ’ sinπ‘₯𝑦 (π‘₯

    𝑑𝑦

    𝑑π‘₯+ 𝑦) = 0

    β‡’ sin2𝑦𝑑𝑦

    𝑑π‘₯βˆ’ π‘₯ sinπ‘₯𝑦

    𝑑𝑦

    𝑑π‘₯βˆ’ 𝑦 sin π‘₯𝑦 = 0

    β‡’ (sin2𝑦 βˆ’ π‘₯ sinπ‘₯𝑦)𝑑𝑦

    𝑑π‘₯= 𝑦 sinπ‘₯𝑦

    ⇒𝑑𝑦

    𝑑π‘₯=

    𝑦 sinπ‘₯𝑦

    sin2π‘¦βˆ’π‘₯ sinπ‘₯𝑦

    8. sin2 π‘₯ + cos2 𝑦 = 1

    Solution:

    Given equation is sin2 π‘₯ + cos2 𝑦 = 1

    Differentiating both sides with respect to π‘₯, we get

    𝑑

    𝑑π‘₯sin2 π‘₯ +

    𝑑

    𝑑π‘₯cos2 𝑦 =

    𝑑

    𝑑π‘₯1

    β‡’ 2sinπ‘₯ cos π‘₯ + 2 cos𝑦 (βˆ’ sin𝑦)𝑑𝑦

    𝑑π‘₯= 0

  • Class-XII-Maths Continuity and Differentiabil ity

    32 Practice more on Continuity and Differentiability www.embibe.com

    β‡’ sin2π‘₯ βˆ’ sin2𝑦𝑑𝑦

    𝑑π‘₯= 0 β‡’

    𝑑𝑦

    𝑑π‘₯=

    sin2π‘₯

    sin2𝑦

    9. 𝑦 = sinβˆ’1 (2π‘₯

    1+π‘₯2)

    Solution:

    Given equation is 𝑦 = sinβˆ’1 (2π‘₯

    1+π‘₯2)

    Let π‘₯ = tanπœƒ

    Therefore, 𝑦 = sinβˆ’1 (2 tanπœƒ

    1+tan2 πœƒ) = sinβˆ’1(sin 2πœƒ) = 2πœƒ = 2 tanβˆ’1 π‘₯

    β‡’ 𝑦 = 2 tanβˆ’1 π‘₯

    Differentiating both sides with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯=

    2

    1+π‘₯2

    10. 𝑦 = tanβˆ’1 (3π‘₯βˆ’π‘₯3

    1βˆ’3π‘₯2) , βˆ’

    1

    √3< π‘₯ <

    1

    √3

    Solution:

    Given equation is 𝑦 = tanβˆ’1 (3π‘₯βˆ’π‘₯3

    1βˆ’3π‘₯2)

    Let π‘₯ = tanπœƒ

    Therefore, 𝑦 = tanβˆ’1 (3 tanπœƒβˆ’tan3 πœƒ

    1βˆ’3 tan2 πœƒ)

    = tanβˆ’1(tan 3πœƒ) = 3πœƒ = 3 tanβˆ’1 π‘₯ β‡’ 𝑦 = 3 tanβˆ’1 π‘₯

    Differentiating both sides with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯=

    3

    1+π‘₯2

    11. 𝑦 = cosβˆ’1 (1βˆ’π‘₯2

    1+π‘₯2) , 0 < π‘₯ < 1

  • Class-XII-Maths Continuity and Differentiabil ity

    33 Practice more on Continuity and Differentiability www.embibe.com

    Solution:

    Given equation is 𝑦 = cosβˆ’1 (1βˆ’π‘₯2

    1+π‘₯2)

    Let π‘₯ = tanπœƒ

    Therefore, 𝑦 = cosβˆ’1 (1βˆ’tan2 πœƒ

    1+tan2 πœƒ)

    = cosβˆ’1(cos 2πœƒ) = 2πœƒ = 2 tanβˆ’1 π‘₯

    β‡’ 𝑦 = 2 tanβˆ’1 π‘₯

    Differentiating both sides with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯=

    2

    1+π‘₯2

    12. 𝑦 = sinβˆ’1 (1βˆ’π‘₯2

    1+π‘₯2) , 0 < π‘₯ < 1

    Solution:

    Given equation is 𝑦 = sinβˆ’1 (1βˆ’π‘₯2

    1+π‘₯2)

    Let π‘₯ = tanπœƒ

    Therefore,

    𝑦 = sinβˆ’1 (1βˆ’tan2 πœƒ

    1+tan2 πœƒ)

    = sinβˆ’1(cos 2πœƒ) = sinβˆ’1 {sin (πœ‹

    2βˆ’ 2πœƒ)} =

    πœ‹

    2βˆ’ 2πœƒ =

    πœ‹

    2βˆ’ 2 tanβˆ’1 π‘₯

    β‡’ 𝑦 =πœ‹

    2βˆ’ 2 tanβˆ’1 π‘₯

    Differentiating both sides with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯= 0 βˆ’

    2

    1+π‘₯2= βˆ’

    2

    1+π‘₯2

    13. 𝑦 = cosβˆ’1 (2π‘₯

    1+π‘₯2) , βˆ’1 < π‘₯ < 1

    Solution:

    Given equation is 𝑦 = cosβˆ’1 (2π‘₯

    1+π‘₯2)

    Let π‘₯ = tanπœƒ

    Therefore, 𝑦 = cosβˆ’1 (2 tanπœƒ

    1+tan2 πœƒ)

  • Class-XII-Maths Continuity and Differentiabil ity

    34 Practice more on Continuity and Differentiability www.embibe.com

    = cosβˆ’1(sin 2πœƒ) = cosβˆ’1 {cos (πœ‹

    2βˆ’ 2πœƒ)} =

    πœ‹

    2βˆ’ 2πœƒ =

    πœ‹

    2βˆ’ 2 tanβˆ’1 π‘₯

    β‡’ 𝑦 =πœ‹

    2βˆ’ 2 tanβˆ’1 π‘₯

    Differentiating both sides with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯= 0 βˆ’

    2

    1+π‘₯2= βˆ’

    2

    1+π‘₯2

    14. 𝑦 = sinβˆ’1(2π‘₯√1 βˆ’ π‘₯2),βˆ’1

    √2< π‘₯ <

    1

    √2

    Solution:

    Given equation is 𝑦 = sinβˆ’1(2π‘₯√1 βˆ’ π‘₯2)

    Let π‘₯ = sin πœƒ

    Therefore, 𝑦 = sinβˆ’1(2 sinπœƒβˆš1 βˆ’ sin2 πœƒ)

    = sinβˆ’1(2 sinπœƒ cosπœƒ) = sinβˆ’1(sin2πœƒ) = 2πœƒ = 2 sinβˆ’1 π‘₯

    β‡’ 𝑦 = 2 sinβˆ’1 π‘₯

    Differentiating both sides with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯=

    2

    √1βˆ’π‘₯2

    15. 𝑦 = secβˆ’1 (1

    2π‘₯2βˆ’1) , 0 < π‘₯ <

    1

    √2

    Solution:

    Given equation is 𝑦 = secβˆ’1 (1

    2π‘₯2βˆ’1)

    Let π‘₯ = cosπœƒ

    Therefore, 𝑦 = secβˆ’1 (1

    2 cos2 πœƒβˆ’1) = secβˆ’1 (

    1

    cos2πœƒ)

    secβˆ’1(sec 2πœƒ) = 2πœƒ = 2 cosβˆ’1 π‘₯

    β‡’ 𝑦 = 2 cosβˆ’1 π‘₯

    Differentiating both sides with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯= βˆ’

    2

    √1βˆ’π‘₯2

  • Class-XII-Maths Continuity and Differentiabil ity

    35 Practice more on Continuity and Differentiability www.embibe.com

    Exercise πŸ“. πŸ’

    1. Differentiate the following w.r.t. π‘₯:

    𝑒π‘₯

    sinπ‘₯

    Solution:

    Given expression is 𝑒π‘₯

    sinπ‘₯

    Let 𝑦 =𝑒π‘₯

    sinπ‘₯ therefore,

    𝑑𝑦

    𝑑π‘₯=

    𝑒π‘₯.𝑑

    𝑑π‘₯sinπ‘₯βˆ’sinπ‘₯

    𝑑

    𝑑π‘₯𝑒π‘₯

    sin2 π‘₯=

    𝑒π‘₯.cosπ‘₯βˆ’sinπ‘₯.𝑒π‘₯

    sin2 π‘₯=

    𝑒π‘₯(cosπ‘₯βˆ’sinπ‘₯)

    sin2 π‘₯

    2. 𝑒sinβˆ’1 π‘₯

    Solution:

    Given expression is 𝑒sinβˆ’1 π‘₯

    Let 𝑦 = 𝑒sinβˆ’1 π‘₯ , therefore,

    𝑑𝑦

    𝑑π‘₯= 𝑒sin

    βˆ’1 π‘₯ .𝑑

    𝑑π‘₯sinβˆ’1 π‘₯ = 𝑒sin

    βˆ’1 π‘₯ .1

    √1βˆ’π‘₯2=

    𝑒sinβˆ’1 π‘₯

    √1βˆ’π‘₯2.

    3. 𝑒π‘₯3

    Solution:

    Given expression is 𝑒π‘₯3

    Let 𝑦 = 𝑒π‘₯3, therefore,

    𝑑𝑦

    𝑑π‘₯= 𝑒π‘₯

    3.𝑑

    𝑑π‘₯π‘₯3 = 𝑒π‘₯

    3. 3π‘₯2 = 3π‘₯2𝑒π‘₯

    3

  • Class-XII-Maths Continuity and Differentiabil ity

    36 Practice more on Continuity and Differentiability www.embibe.com

    4. sin(tanβˆ’1 π‘’βˆ’π‘₯)

    Solution:

    Given expression is sin(tanβˆ’1 π‘’βˆ’π‘₯)

    Let 𝑦 = sin(tanβˆ’1 π‘’βˆ’π‘₯), therefore,

    𝑑𝑦

    𝑑π‘₯= cos(tanβˆ’1 π‘’βˆ’π‘₯) .

    𝑑

    𝑑π‘₯tanβˆ’1 π‘’βˆ’π‘₯ = cos(tanβˆ’1 π‘’βˆ’π‘₯) .

    1

    1+(π‘’βˆ’π‘₯)2.𝑑

    𝑑π‘₯π‘’βˆ’π‘₯

    = cos(tanβˆ’1 π‘’βˆ’π‘₯) .1

    1+π‘’βˆ’2π‘₯. (βˆ’π‘’βˆ’π‘₯) = βˆ’

    π‘’βˆ’π‘₯ cos(tanβˆ’1 π‘’βˆ’π‘₯)

    1+π‘’βˆ’2π‘₯.

    5. log(cos 𝑒π‘₯)

    Solution:

    Given expression is log(cos 𝑒π‘₯)

    Let 𝑦 = log(cos 𝑒π‘₯),

    Therefore,

    𝑑𝑦

    𝑑π‘₯=

    1

    cos𝑒π‘₯.𝑑

    𝑑π‘₯cos 𝑒π‘₯ =

    1

    cos𝑒π‘₯(βˆ’ sin 𝑒π‘₯)

    𝑑

    𝑑π‘₯𝑒π‘₯ = βˆ’ tan 𝑒π‘₯. 𝑒π‘₯

    6. 𝑒π‘₯ + 𝑒π‘₯2+β‹―+ 𝑒π‘₯

    5

    Solution:

    Given expression is 𝑒π‘₯ + 𝑒π‘₯2+β‹―+ 𝑒π‘₯

    5

    Let 𝑦 = 𝑒π‘₯ + 𝑒π‘₯2+ 𝑒π‘₯

    3+ 𝑒π‘₯

    4+ 𝑒π‘₯

    5, therefore,

    𝑑𝑦

    𝑑π‘₯= 𝑒π‘₯ + 𝑒π‘₯

    2 𝑑

    𝑑π‘₯π‘₯2 + 𝑒π‘₯

    3 𝑑

    𝑑π‘₯π‘₯3 + 𝑒π‘₯

    4 𝑑

    𝑑π‘₯π‘₯4 + 𝑒π‘₯

    5 𝑑

    𝑑π‘₯π‘₯5

    = 𝑒π‘₯ + 𝑒π‘₯2. 2π‘₯ + 𝑒π‘₯

    3. 3π‘₯2 + 𝑒π‘₯

    4. 4π‘₯3 + 𝑒π‘₯

    5. 5π‘₯4

    = 𝑒π‘₯ + 2π‘₯𝑒π‘₯2+ 3π‘₯2𝑒π‘₯

    3+ 4π‘₯3𝑒π‘₯

    4+ 5π‘₯4𝑒π‘₯

    5

    7. βˆšπ‘’βˆšπ‘₯, π‘₯ > 0

  • Class-XII-Maths Continuity and Differentiabil ity

    37 Practice more on Continuity and Differentiability www.embibe.com

    Solution:

    Given expression is βˆšπ‘’βˆšπ‘₯, π‘₯ > 0

    Let 𝑦 = βˆšπ‘’βˆšπ‘₯

    Therefore,

    𝑑𝑦

    𝑑π‘₯=

    1

    2βˆšπ‘’βˆšπ‘₯

    𝑑

    𝑑π‘₯π‘’βˆšπ‘₯ =

    1

    2βˆšπ‘’βˆšπ‘₯. π‘’βˆšπ‘₯.

    𝑑

    𝑑π‘₯√π‘₯ =

    1

    2βˆšπ‘’βˆšπ‘₯. π‘’βˆšπ‘₯.

    1

    2√π‘₯=

    βˆšπ‘’βˆšπ‘₯

    4√π‘₯

    8. log(log π‘₯), π‘₯ > 1

    Solution:

    Given expression is log(log π‘₯), π‘₯ > 1

    Let 𝑦 =𝑒π‘₯

    sinπ‘₯

    Therefore,

    𝑑𝑦

    𝑑π‘₯=

    1

    logπ‘₯.𝑑

    𝑑π‘₯log π‘₯ =

    1

    logπ‘₯.1

    π‘₯=

    1

    π‘₯ logπ‘₯

    9. cosπ‘₯

    logπ‘₯, π‘₯ > 0

    Solution:

    Given expression is cosπ‘₯

    log π‘₯, π‘₯ > 0

    Let 𝑦 =cosπ‘₯

    logπ‘₯

    Therefore, 𝑑𝑦

    𝑑π‘₯=

    log π‘₯𝑑

    𝑑π‘₯cosπ‘₯βˆ’cosπ‘₯

    𝑑

    𝑑π‘₯logπ‘₯

    (logπ‘₯)2=

    logπ‘₯.(βˆ’sinπ‘₯)βˆ’cosπ‘₯.1

    π‘₯

    (logπ‘₯)2=

    βˆ’(π‘₯ sinπ‘₯ log π‘₯+cosπ‘₯)

    π‘₯(logπ‘₯)2

    10. cos(log π‘₯ + 𝑒π‘₯)

    Solution:

    Given expression is cos(log π‘₯ + 𝑒π‘₯)

  • Class-XII-Maths Continuity and Differentiabil ity

    38 Practice more on Continuity and Differentiability www.embibe.com

    Let 𝑦 = cos(log π‘₯ + 𝑒π‘₯)

    Therefore,

    𝑑𝑦

    𝑑π‘₯= βˆ’sin(log π‘₯ + 𝑒π‘₯).

    𝑑

    𝑑π‘₯(log π‘₯ + 𝑒π‘₯) = βˆ’ sin(log π‘₯ + 𝑒π‘₯). (

    1

    π‘₯+ 𝑒π‘₯)

    Exercise πŸ“. πŸ“

    1. Differentiate the functions given

    cos π‘₯. cos 2π‘₯. cos 3π‘₯

    Solution:

    Given function is cos π‘₯. cos 2π‘₯. cos 3π‘₯

    Let 𝑦 = cos π‘₯. cos 2π‘₯. cos 3π‘₯, taking log on both the sides

    log 𝑦 = log cos π‘₯ + log cos 2π‘₯ + log cos3π‘₯

    Therefore,

    1

    𝑦

    𝑑𝑦

    𝑑π‘₯=

    1

    cosπ‘₯.𝑑

    𝑑π‘₯cos π‘₯ +

    1

    cos2π‘₯.𝑑

    𝑑π‘₯cos 2π‘₯ +

    1

    cos3π‘₯.𝑑

    𝑑π‘₯cos3π‘₯

    ⇒𝑑𝑦

    𝑑π‘₯= 𝑦 [

    1

    cosπ‘₯. (βˆ’ sinπ‘₯) +

    1

    cos2π‘₯. (βˆ’ sin2π‘₯). 2 +

    1

    cos3π‘₯. (βˆ’ sin 3π‘₯). 3]

    ⇒𝑑𝑦

    𝑑π‘₯= cosπ‘₯. cos 2π‘₯. cos 3π‘₯ [βˆ’ tan π‘₯ βˆ’ 2 tan 2π‘₯ βˆ’ 3 tan3π‘₯]

    2. Differentiate the functions given

    √(π‘₯βˆ’1)(π‘₯βˆ’2)

    (π‘₯βˆ’3)(π‘₯βˆ’4)(π‘₯βˆ’5)

    Solution:

    Given function is √(π‘₯βˆ’1)(π‘₯βˆ’2)

    (π‘₯βˆ’3)(π‘₯βˆ’4)(π‘₯βˆ’5)

    Let 𝑦 = √(π‘₯βˆ’1)(π‘₯βˆ’2)

    (π‘₯βˆ’3)(π‘₯βˆ’4)(π‘₯βˆ’5), taking log on both the sides

    log 𝑦 =1

    2[log(π‘₯ βˆ’ 1) + log(π‘₯ βˆ’ 2) βˆ’ log(π‘₯ βˆ’ 3) βˆ’ log(π‘₯ βˆ’ 4) βˆ’ log(π‘₯ βˆ’ 5)]

  • Class-XII-Maths Continuity and Differentiabil ity

    39 Practice more on Continuity and Differentiability www.embibe.com

    Therefore,

    1

    𝑦

    𝑑𝑦

    𝑑π‘₯=

    1

    2[

    1

    (π‘₯βˆ’1)+

    1

    (π‘₯βˆ’2)βˆ’

    1

    (π‘₯βˆ’3)βˆ’

    1

    (π‘₯βˆ’4)βˆ’

    1

    (π‘₯βˆ’5)]

    ⇒𝑑𝑦

    𝑑π‘₯=

    1

    2√

    (π‘₯βˆ’1)(π‘₯βˆ’2)

    (π‘₯βˆ’3)(π‘₯βˆ’4)(π‘₯βˆ’5)[

    1

    (π‘₯βˆ’1)+

    1

    (π‘₯βˆ’2)βˆ’

    1

    (π‘₯βˆ’3)βˆ’

    1

    (π‘₯βˆ’4)βˆ’

    1

    (π‘₯βˆ’5)]

    3. Differentiate the functions given

    (log π‘₯)cosπ‘₯

    Solution:

    Given function is (log π‘₯)cosπ‘₯

    Let 𝑦 = (log π‘₯)cosπ‘₯ , taking log on both the sides

    log 𝑦 = log(log π‘₯)cosπ‘₯ = cos π‘₯. log log π‘₯

    Therefore,

    1

    𝑦

    𝑑𝑦

    𝑑π‘₯= cos π‘₯.

    𝑑

    𝑑π‘₯log log π‘₯ + log log π‘₯.

    𝑑

    𝑑π‘₯cos π‘₯

    ⇒𝑑𝑦

    𝑑π‘₯= 𝑦 [cos π‘₯.

    1

    logπ‘₯.1

    π‘₯+ log log π‘₯. (βˆ’ sinπ‘₯)]

    ⇒𝑑𝑦

    𝑑π‘₯= (log π‘₯)cosπ‘₯ [

    cosπ‘₯βˆ’sinπ‘₯ log logπ‘₯

    π‘₯ log π‘₯]

    4. Differentiate the functions given

    π‘₯π‘₯ βˆ’ 2sinπ‘₯

    Solution:

    Given function is π‘₯π‘₯ βˆ’ 2sinπ‘₯

    Let 𝑒 = π‘₯π‘₯ and 𝑣 = 2sinπ‘₯ therefore, 𝑦 = 𝑒 βˆ’ 𝑣

    Differentiating with respect to π‘₯ on both sides

    𝑑𝑦

    𝑑π‘₯=

    𝑑𝑒

    𝑑π‘₯βˆ’π‘‘π‘£

    𝑑π‘₯ …(i)

    Here, 𝑒 = π‘₯π‘₯ , taking log on both the sides

  • Class-XII-Maths Continuity and Differentiabil ity

    40 Practice more on Continuity and Differentiability www.embibe.com

    log 𝑒 = π‘₯ log π‘₯, therefore,

    1

    𝑒

    𝑑𝑒

    𝑑π‘₯= π‘₯.

    𝑑

    𝑑π‘₯log π‘₯ + log π‘₯.

    𝑑

    𝑑π‘₯π‘₯ = π‘₯.

    1

    π‘₯+ log π‘₯. 1 = 1 + log π‘₯

    𝑑𝑒

    𝑑π‘₯= 𝑒[1 + log π‘₯] = π‘₯π‘₯[1 + log π‘₯] …(ii)

    and 𝑣 = 2sinπ‘₯ , taking log on both the sides

    log 𝑣 = sinπ‘₯ log 2, therefore,

    1

    𝑣

    𝑑𝑣

    𝑑π‘₯= log2 β‹…

    𝑑

    𝑑π‘₯sin π‘₯ = log 2 β‹… cos π‘₯

    𝑑𝑣

    𝑑π‘₯= 𝑣[cos π‘₯ log 2] = 2sinπ‘₯[cos π‘₯ log 2] …(iii)

    Putting the value of 𝑑𝑒

    𝑑π‘₯ from (ii) and

    𝑑𝑣

    𝑑π‘₯ from (iii) in equation (i), we get

    𝑑𝑦

    𝑑π‘₯= π‘₯π‘₯[1 + log π‘₯] βˆ’ 2sinπ‘₯[cos π‘₯ log 2]

    5. Differentiate the functions given

    (π‘₯ + 3)2. (π‘₯ + 4)3. (π‘₯ + 5)4

    Solution:

    Given function is (π‘₯ + 3)2. (π‘₯ + 4)3. (π‘₯ + 5)4

    Let 𝑦 = (π‘₯ + 3)2. (π‘₯ + 4)3. (π‘₯ + 5)4, taking log on both the sides

    log 𝑦 = 2 log(π‘₯ + 3) + 3 log(π‘₯ + 4) + 4 log(π‘₯ + 5)

    Therefore,

    1

    𝑦

    𝑑𝑦

    𝑑π‘₯= 2.

    1

    (π‘₯+3)+ 3.

    1

    (π‘₯+4)+ 4.

    1

    (π‘₯+5)

    ⇒𝑑𝑦

    𝑑π‘₯= 𝑦 [

    2(π‘₯ + 4)(π‘₯ + 5) + 3(π‘₯ + 3)(π‘₯ + 5) + 4(π‘₯ + 3)(π‘₯ + 4)

    (π‘₯ + 3)(π‘₯ + 4)(π‘₯ + 5)]

    ⇒𝑑𝑦

    𝑑π‘₯= 𝑦 [

    2(π‘₯2 + 9π‘₯ + 20) + 3(π‘₯2 + 8π‘₯ + 15) + 4(π‘₯2 + 7π‘₯ + 12)

    (π‘₯ + 3)(π‘₯ + 4)(π‘₯ + 5)]

    ⇒𝑑𝑦

    𝑑π‘₯= (π‘₯ + 3)2 β‹… (π‘₯ + 4)3 β‹… (π‘₯ + 5)4 [

    9π‘₯2+70π‘₯+133

    (π‘₯+3)(π‘₯+4)(π‘₯+5)]

    ⇒𝑑𝑦

    𝑑π‘₯= (π‘₯ + 3) β‹… (π‘₯ + 4)2 β‹… (π‘₯ + 5)3(9π‘₯2 + 70π‘₯ + 133)

    6. Differentiate the functions given

    (π‘₯ +1

    π‘₯)π‘₯+ π‘₯

    (1+1

    π‘₯)

  • Class-XII-Maths Continuity and Differentiabil ity

    41 Practice more on Continuity and Differentiability www.embibe.com

    Solution:

    Given function is (π‘₯ +1

    π‘₯)π‘₯+ π‘₯

    (1+1

    π‘₯)

    Let 𝑒 = (π‘₯ +1

    π‘₯)π‘₯

    and 𝑣 = π‘₯(1+

    1

    π‘₯), therefore, 𝑦 = 𝑒 + 𝑣

    Differentiating with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯=

    𝑑𝑒

    𝑑π‘₯+𝑑𝑣

    𝑑π‘₯ …(i)

    Here, 𝑒 = (π‘₯ +1

    π‘₯)π‘₯, taking log on both the sides

    log 𝑒 = π‘₯ log (π‘₯ +1

    π‘₯), therefore,

    1

    𝑒

    𝑑𝑒

    𝑑π‘₯= π‘₯ β‹…

    𝑑

    𝑑π‘₯log (π‘₯ +

    1

    π‘₯) + log (π‘₯ +

    1

    π‘₯) β‹…

    𝑑

    𝑑π‘₯π‘₯

    = π‘₯ β‹…1

    (π‘₯+1

    π‘₯)β‹… (1 βˆ’

    1

    π‘₯2) + log (π‘₯ +

    1

    π‘₯) β‹… 1 =

    π‘₯2

    π‘₯2+1β‹…π‘₯2βˆ’1

    π‘₯2+ log (π‘₯ +

    1

    π‘₯)

    𝑑𝑒

    𝑑π‘₯= (π‘₯ +

    1

    π‘₯)π‘₯[π‘₯2βˆ’1

    π‘₯2+1+ log (π‘₯ +

    1

    π‘₯)] …(ii)

    and 𝑣 = π‘₯(1+

    1

    π‘₯), taking log on both the sides

    log 𝑣 = (1 +1

    π‘₯) log π‘₯, therefore,

    1

    𝑣

    𝑑𝑣

    𝑑π‘₯= (1 +

    1

    π‘₯) Β·

    𝑑

    𝑑π‘₯log π‘₯ + log π‘₯ Β·

    𝑑

    𝑑π‘₯(1 +

    1

    π‘₯) = (1 +

    1

    π‘₯) Β·

    1

    π‘₯+ log π‘₯ Β· (βˆ’

    1

    π‘₯2)

    𝑑𝑣

    𝑑π‘₯= 𝑣 [(

    π‘₯2+1

    π‘₯) Β·

    1

    π‘₯βˆ’logπ‘₯

    π‘₯2] = π‘₯

    (1+1

    π‘₯)[π‘₯2+1βˆ’logπ‘₯

    π‘₯2] …(iii)

    Putting the value of 𝑑𝑒

    𝑑π‘₯ from (ii) and

    𝑑𝑣

    𝑑π‘₯ from (iii) in equation (i), we get

    𝑑𝑦

    𝑑π‘₯= (π‘₯ +

    1

    π‘₯)π‘₯[π‘₯2βˆ’1

    π‘₯2+1+ log (π‘₯ +

    1

    π‘₯)] + π‘₯

    (1+1

    π‘₯)[π‘₯2+1βˆ’logπ‘₯

    π‘₯2]

    7. Differentiate the functions given

    (log π‘₯)π‘₯ + π‘₯logπ‘₯

    Solution:

    Given function is (log π‘₯)π‘₯ + π‘₯log π‘₯

    Let 𝑒 = (log π‘₯)π‘₯ and 𝑣 = π‘₯logπ‘₯ , therefore, 𝑦 = 𝑒 + 𝑣

    Differentiating with respect to π‘₯, we get

  • Class-XII-Maths Continuity and Differentiabil ity

    42 Practice more on Continuity and Differentiability www.embibe.com

    𝑑𝑦

    𝑑π‘₯=

    𝑑𝑒

    𝑑π‘₯+𝑑𝑣

    𝑑π‘₯ …(i)

    Here, 𝑒 = (log π‘₯)π‘₯, taking log on both the sides

    log 𝑒 = π‘₯ log log π‘₯, therefore,

    1

    𝑒

    𝑑𝑒

    𝑑π‘₯= π‘₯.

    𝑑

    𝑑π‘₯log log π‘₯ + log log π‘₯.

    𝑑

    𝑑π‘₯π‘₯

    = π‘₯.1

    log π‘₯.1

    π‘₯+ log log π‘₯. 1 =

    1

    log π‘₯+ log log π‘₯

    𝑑𝑒

    𝑑π‘₯= (log π‘₯)π‘₯ [

    1 + log π‘₯. log log π‘₯

    logπ‘₯]

    = (log π‘₯)π‘₯βˆ’1(1 + log π‘₯. log log π‘₯) …(ii)

    and, 𝑣 = π‘₯logπ‘₯ , taking log on both the sides

    log 𝑣 = log π‘₯ log π‘₯, therefore,

    1

    𝑣

    𝑑𝑣

    𝑑π‘₯= log π‘₯.

    𝑑

    𝑑π‘₯log π‘₯ + π‘™π‘œπ‘”π‘₯ .

    𝑑

    𝑑π‘₯log π‘₯

    = log π‘₯.1

    π‘₯+ log π‘₯.

    1

    π‘₯

    𝑑𝑣

    𝑑π‘₯= 𝑣 [

    2 log π‘₯

    π‘₯] = π‘₯logπ‘₯ [

    2 log π‘₯

    π‘₯] = π‘₯logπ‘₯βˆ’1(2 log π‘₯) …(iii)

    Putting the value of 𝑑𝑒

    𝑑π‘₯ from (ii) and

    𝑑𝑣

    𝑑π‘₯ from (iii) in equation (i), we get

    𝑑𝑦

    𝑑π‘₯= (log π‘₯)π‘₯βˆ’1(1 + log π‘₯. log log π‘₯) + π‘₯logπ‘₯βˆ’1(2 log π‘₯)

    8. Differentiate the functions given

    (sin π‘₯)π‘₯ + sinβˆ’1√π‘₯

    Solution:

    Given function is (sin π‘₯)π‘₯ + sinβˆ’1 √π‘₯

    Let 𝑒 = (sinπ‘₯)π‘₯ and 𝑣 = sinβˆ’1 √π‘₯, therefore, 𝑦 = 𝑒 + 𝑣

    Differentiating with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯=

    𝑑𝑒

    𝑑π‘₯+𝑑𝑣

    𝑑π‘₯ …(i)

    Here, 𝑒 = (sin π‘₯)π‘₯, taking log on both the sides

    log 𝑒 = π‘₯ log sin π‘₯, therefore,

    1

    𝑒

    𝑑𝑒

    𝑑π‘₯= π‘₯.

    𝑑

    𝑑π‘₯log sin π‘₯ + log sinπ‘₯.

    𝑑

    𝑑π‘₯π‘₯

    = π‘₯.1

    sin π‘₯. cos π‘₯ + log sin π‘₯. 1 = π‘₯ cot π‘₯ + log sin π‘₯

  • Class-XII-Maths Continuity and Differentiabil ity

    43 Practice more on Continuity and Differentiability www.embibe.com

    𝑑𝑒

    𝑑π‘₯= (sin π‘₯)π‘₯(π‘₯ cot π‘₯ + log sinπ‘₯) …(ii)

    and, 𝑣 = sinβˆ’1 √π‘₯, therefore,

    1

    𝑣

    𝑑𝑣

    𝑑π‘₯= log π‘₯.

    𝑑

    𝑑π‘₯log π‘₯ + log π‘₯.

    𝑑

    𝑑π‘₯log π‘₯

    = log π‘₯.1

    π‘₯+ log π‘₯.

    1

    π‘₯

    𝑑𝑣

    𝑑π‘₯=

    1

    √1βˆ’π‘₯.𝑑

    𝑑π‘₯√π‘₯ =

    1

    √1βˆ’π‘₯.1

    2√π‘₯=

    1

    2√π‘₯βˆ’π‘₯2 …(iii)

    Putting the value of 𝑑𝑒

    𝑑π‘₯ from (ii) and

    𝑑𝑣

    𝑑π‘₯ from (iii) in equation (i), we get

    𝑑𝑦

    𝑑π‘₯= (sinπ‘₯)π‘₯(π‘₯ cot π‘₯ + log sinπ‘₯) +

    1

    2√π‘₯βˆ’π‘₯2

    9. Differentiate the functions given

    π‘₯sinπ‘₯ + (sin π‘₯)cosπ‘₯

    Solution:

    Given function is π‘₯sinπ‘₯ + (sinπ‘₯)cosπ‘₯

    Let 𝑒 = π‘₯sinπ‘₯ and 𝑣 = (sin π‘₯)cosπ‘₯ therefore, 𝑦 = 𝑒 + 𝑣

    Differentiating with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯=

    𝑑𝑒

    𝑑π‘₯+𝑑𝑣

    𝑑π‘₯ …(i)

    Here, 𝑒 = π‘₯sinπ‘₯ , taking log on both the sides

    log 𝑒 = sin π‘₯ log π‘₯, therefore,

    1

    𝑒

    𝑑𝑒

    𝑑π‘₯= sinπ‘₯.

    𝑑

    𝑑π‘₯log π‘₯ + log π‘₯.

    𝑑

    𝑑π‘₯sin π‘₯ = sinπ‘₯.

    1

    π‘₯+ log π‘₯. cos π‘₯ =

    sinπ‘₯

    π‘₯+ log π‘₯ cos π‘₯

    𝑑𝑒

    𝑑π‘₯= π‘₯sinπ‘₯ [

    sinπ‘₯

    π‘₯+ log π‘₯ cosπ‘₯] = π‘₯sinπ‘₯βˆ’1(sin π‘₯ + π‘₯ log π‘₯ cos π‘₯) …(ii)

    and 𝑣 = (sinπ‘₯)cosπ‘₯ , taking log on both the sides

    log 𝑣 = cos π‘₯ log sin π‘₯, therefore,

    1

    𝑣

    𝑑𝑣

    𝑑π‘₯= cos π‘₯.

    𝑑

    𝑑π‘₯log sin π‘₯ + log sin π‘₯.

    𝑑

    𝑑π‘₯cosπ‘₯ = cos π‘₯.

    1

    sinπ‘₯cos π‘₯ + log sinπ‘₯(βˆ’ sin π‘₯)

    𝑑𝑣

    𝑑π‘₯= 𝑣[cos π‘₯ cot π‘₯ βˆ’ sin π‘₯ log sinπ‘₯] = (sin π‘₯)cosπ‘₯(cos π‘₯ cot π‘₯ βˆ’ sinπ‘₯ log sin π‘₯) …(iii)

    Putting the value of 𝑑𝑒

    𝑑π‘₯ from (ii) and

    𝑑𝑣

    𝑑π‘₯ from (ii) in equation (i), we get

    𝑑𝑦

    𝑑π‘₯= π‘₯sinπ‘₯βˆ’1(sin π‘₯ + π‘₯ log π‘₯ cos π‘₯) + (sin π‘₯)cosπ‘₯(cos π‘₯ cot π‘₯ βˆ’ sinπ‘₯ log sin π‘₯)

  • Class-XII-Maths Continuity and Differentiabil ity

    44 Practice more on Continuity and Differentiability www.embibe.com

    10. Differentiate the functions given

    π‘₯π‘₯ cosπ‘₯ +π‘₯2+1

    π‘₯2βˆ’1

    Solution:

    Given function is π‘₯π‘₯ cosπ‘₯ +π‘₯2+1

    π‘₯2βˆ’1

    Let 𝑒 = π‘₯π‘₯ cosπ‘₯ and 𝑣 =π‘₯2+1

    π‘₯2βˆ’1 therefore, 𝑦 = 𝑒 + 𝑣

    Differentiating with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯=

    𝑑𝑒

    𝑑π‘₯+𝑑𝑣

    𝑑π‘₯ …(i)

    Here, 𝑒 = π‘₯π‘₯ cosπ‘₯ , taking log on both the sides

    log 𝑒 = π‘₯ log π‘₯, therefore,

    1

    𝑒

    𝑑𝑒

    𝑑π‘₯= π‘₯ cos π‘₯.

    𝑑

    𝑑π‘₯log π‘₯ + log π‘₯.

    𝑑

    𝑑π‘₯π‘₯ cos π‘₯ = π‘₯ cosπ‘₯.

    1

    π‘₯+ log π‘₯. (βˆ’π‘₯. sin π‘₯ + cos π‘₯)

    = cos π‘₯ βˆ’ π‘₯ sin π‘₯ log π‘₯ + cos π‘₯ log π‘₯

    𝑑𝑒

    𝑑π‘₯= 𝑒[cos π‘₯ βˆ’ π‘₯ sinπ‘₯ log π‘₯ + cos π‘₯ log π‘₯]

    = π‘₯π‘₯ cosπ‘₯[cos π‘₯ βˆ’ π‘₯ sin π‘₯ log π‘₯ + cosπ‘₯ log π‘₯] …(ii)

    and 𝑣 =π‘₯2+1

    π‘₯2βˆ’1, taking log on both the sides

    log 𝑣 = log(π‘₯2 + 1) βˆ’ log(π‘₯2 βˆ’ 1), therefore,

    1

    𝑣

    𝑑𝑣

    𝑑π‘₯=

    1

    π‘₯2+1Β· 2π‘₯ βˆ’

    1

    π‘₯2βˆ’1Β· 2π‘₯ =

    2π‘₯(π‘₯2βˆ’1)βˆ’2π‘₯(π‘₯2+1)

    (π‘₯2+1)(π‘₯2βˆ’1)=

    βˆ’4π‘₯

    (π‘₯2+1)(π‘₯2βˆ’1)

    𝑑𝑣

    𝑑π‘₯= 𝑣 [

    βˆ’4π‘₯

    (π‘₯2+1)(π‘₯2βˆ’1)] =

    π‘₯2+1

    π‘₯2βˆ’1[

    βˆ’4π‘₯

    (π‘₯2+1)(π‘₯2βˆ’1)] = βˆ’

    4π‘₯

    (π‘₯2βˆ’1)2 …(iii)

    Putting the value of 𝑑𝑒

    𝑑π‘₯ from (ii) and

    𝑑𝑣

    𝑑π‘₯ from (iii) in equation (i), we get

    𝑑𝑦

    𝑑π‘₯= π‘₯π‘₯ cosπ‘₯[cos π‘₯ βˆ’ π‘₯ sin π‘₯ log π‘₯ + cosπ‘₯ log π‘₯] βˆ’

    4π‘₯

    (π‘₯2βˆ’1)2

    11. Differentiate the functions given

    (π‘₯ cos π‘₯)π‘₯ + (π‘₯ sin π‘₯)1

    π‘₯

    Solution:

    Given function is (π‘₯ cos π‘₯)π‘₯ + (π‘₯ sinπ‘₯)1

    π‘₯

    Let 𝑒 = (π‘₯ cos π‘₯)π‘₯ and 𝑣 = (π‘₯ sinπ‘₯)1

    π‘₯, therefore, 𝑦 = 𝑒 + 𝑣

  • Class-XII-Maths Continuity and Differentiabil ity

    45 Practice more on Continuity and Differentiability www.embibe.com

    Differentiating with respect to π‘₯, we get

    𝑑𝑦

    𝑑π‘₯=

    𝑑𝑒

    𝑑π‘₯+𝑑𝑣

    𝑑π‘₯ …(i)

    Here, 𝑒 = (π‘₯ cos π‘₯)π‘₯ , taking log on both the sides

    log 𝑒 = π‘₯ log(π‘₯ cos π‘₯), therefore,

    1

    𝑒

    𝑑𝑒

    𝑑π‘₯= π‘₯.

    𝑑

    𝑑π‘₯log(π‘₯ cosπ‘₯) + log(π‘₯ cos π‘₯).

    𝑑

    𝑑π‘₯π‘₯

    = π‘₯.1

    (π‘₯ cos π‘₯)(βˆ’π‘₯ sin π‘₯ + cosπ‘₯) + log(π‘₯ cos π‘₯). 1 = βˆ’π‘₯ tan π‘₯ + 1 + log(π‘₯ cos π‘₯)

    𝑑𝑒

    𝑑π‘₯= (π‘₯ cos π‘₯)π‘₯[1 βˆ’ π‘₯ tan π‘₯ + log(π‘₯ cos π‘₯)]

    = (π‘₯ cos π‘₯)π‘₯[1 βˆ’ π‘₯ tan π‘₯ + log(π‘₯ cos π‘₯)] …(ii)

    and, 𝑣 = (π‘₯ sin π‘₯)1

    π‘₯, taking log on both the sides

    log 𝑣 =1

    π‘₯log(π‘₯ sin π‘₯) , therefore,

    1

    𝑣

    𝑑𝑣

    𝑑π‘₯=1

    π‘₯.𝑑

    𝑑π‘₯log(π‘₯ sin π‘₯) + log(π‘₯ sin π‘₯).

    𝑑

    𝑑π‘₯

    1

    π‘₯

    =1

    π‘₯.

    1

    π‘₯ sinπ‘₯(π‘₯ cos π‘₯ + sinπ‘₯) + log(π‘₯ sinπ‘₯) (βˆ’

    1

    π‘₯2)

    𝑑𝑣

    𝑑π‘₯= 𝑣 [

    π‘₯ cot π‘₯ + 1 βˆ’ log(π‘₯ sinπ‘₯)

    π‘₯2]

    = (π‘₯ sinπ‘₯)1

    π‘₯ [π‘₯ cotπ‘₯+1βˆ’log(π‘₯ sinπ‘₯)

    π‘₯2] …(iii)

    Putting the value of 𝑑𝑒

    𝑑π‘₯ from (ii) and

    𝑑𝑣

    𝑑π‘₯ from (iii) in equation (i), we get

    𝑑𝑦

    𝑑π‘₯= (π‘₯ cosπ‘₯)π‘₯[1 βˆ’ π‘₯ tan π‘₯ + log(π‘₯ cos π‘₯)] + (π‘₯ sin π‘₯)

    1

    π‘₯ [π‘₯ cotπ‘₯+1βˆ’log(π‘₯ sinπ‘₯)

    π‘₯2]

    12. Find 𝑑𝑦

    𝑑π‘₯ of the functions given

    π‘₯𝑦 + 𝑦π‘₯ = 1

    Solution:

    Given function is π‘₯𝑦 + 𝑦π‘₯