28
ClassXICBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction www.embibe.com CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 Back of Chapter Questions 1. Prove the following by using the principle of mathematical induction for all ∈ : 1+3+3 2 +⋯+3 −1 = (3 − 1) 2 Solution: Step 1: Considering the given statement as (),i.e., (): 1 + 3 + 3 2 +⋯+3 −1 = (3 − 1) 2 For =1, we have (1) ≔ (3 1 −1) 2 = 3−1 2 = 2 2 =1.Which is true. Consider, () be true for some positive integer ,i.e., 1+3+3 2 +⋯+3 −1 = (3 −1) 2 …(i) Now to prove that ( + 1)is true. 1+3+3 2 +⋯+3 −1 +3 (+1)−1 = (1 + 3 + 3 2 +⋯+3 −1 )+3 = (3 −1) 2 +3 [Using (i)] = (3 − 1) + 2 × 3 2 = 3 (1 + 2) − 1 2 = 3×3 −1 2 = 3 +1 −1 2 Therefore, ( + 1) is true when ever () is true.

CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

1 Practice more on Mathematical Induction www.embibe.com

CBSE NCERT Solutions for Class 11 Mathematics Chapter 04

Back of Chapter Questions

1. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:

1 + 3 + 32 + ⋯ + 3𝑎−1 =(3𝑛 − 1)

2

Solution:

Step 1:

Considering the given statement as 𝑃(𝑛),i.e.,

𝑃(𝑛): 1 + 3 + 32 + ⋯ + 3𝑎−1 =(3𝑛 − 1)

2

For 𝑛 = 1, we have

𝑃(1) ≔(31−1)

2=

3−1

2=

2

2= 1.Which is true.

Consider, 𝑃(𝑘) be true for some positive integer 𝑘,i.e.,

1 + 3 + 32 + ⋯ + 3𝑘−1 =(3𝑘−1)

2…(i)

Now to prove that 𝑃(𝑘 + 1)is true.

1 + 3 + 32 + ⋯ + 3𝑘−1 + 3(𝑘+1)−1

= (1 + 3 + 32 + ⋯ + 3𝑘−1) + 3𝑘

=(3𝑘−1)

2+ 3𝑘 [Using (i)]

=(3𝑘 − 1) + 2 × 3𝑘

2

=3𝑘(1 + 2) − 1

2

=3 × 3𝑘 − 1

2

=3𝑘+1 − 1

2

Therefore, 𝑃(𝑘 + 1) is true when ever 𝑃(𝑘) is true.

Page 2: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

2 Practice more on Mathematical Induction www.embibe.com

Therefore,𝑃(𝑘 + 1)is true when ever 𝑃(𝑘) is true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛) is true for all natural numbers

i.e.,𝑁.

OVERALL HINT: Add 3𝐾 on both sides

2. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:

13 + 23 + 33 + ⋯ + 𝑛3 = (𝑛(𝑛 + 1)

2)

2

Solution:

STEP 1:

Consider the given statement as 𝑃(𝑛),i.e.,

𝑃(𝑛): 13 + 23 + 33 + ⋯ + 𝑛3 = (𝑛(𝑛 + 1)

2)

2

For 𝑛 = 1, we have

𝑃(1): 13 = 1 = (1(1+1)

2)

2= (

2

2)

2= 12 = 1,which is true.

Let’s 𝑃(𝑘) be true for some positive integer 𝑘,i.e.,

13 + 23 + 33 + ⋯ . +𝑘3 = (𝑘(𝑘+1)

2)

2…(i)

Now to prove that 𝑃(𝑘 + 1)is true.

STEP 2:

Consider

13 + 23 + 33 + ⋯ + 𝑘3 + (𝑘 + 1)3

= (13 + 23 + 33 + ⋯ + 𝑘3) + (𝑘 + 1)3

= (𝑘(𝑘+1)

2)

2+ (𝑘 + 1)3 [ Using(i) ]

=𝑘2(𝑘 + 1)2

4+ (𝑘 + 1)3

Page 3: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

3 Practice more on Mathematical Induction www.embibe.com

=𝑘2(𝑘 + 1)2 + 4(𝑘 + 1)3

4

=(𝑘 + 1)2{𝑘2 + 4(𝑘 + 1)}

4

=(𝑘 + 1)2{𝑘2 + 4𝑘 + 4}

4

=(𝑘 + 1)2(𝑘 + 2)2

4

=(𝑘 + 1)2(𝑘 + 1 + 1)2

4

= ((𝑘 + 1)(𝑘 + 1 + 1)

2)

2

Therefore, 𝑃(𝑘 + 1) is true when 𝑃(𝑘) is true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛) is true for all natural numbers

i.e., 𝑁.

𝑃(𝑛): 13 + 23 + 33 + ⋯ + 𝑛3 = (𝑛(𝑛 + 1)

2)

2

3. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:

1 +1

(1 + 2)+

1

(1 + 2 + 3)+ ⋯ +

1

(1 + 2 + 3 + ⋯ 𝑛)=

2𝑛

(𝑛 + 1)

Solution:

Step 1:

Consider the given statement as 𝑃(𝑛),i.e.,

𝑃(𝑛): 1 +1

(1 + 2)+

1

(1 + 2 + 3)+ ⋯ +

1

(1 + 2 + 3 + ⋯ 𝑛)=

2𝑛

(𝑛 + 1)

For 𝑛 = 1,we have

𝑃(1): 1 =2.1

1+1=

2

2= 1,which is true.

And, 𝑃(𝑘)be true for some positive integer 𝑘,i.e.,

Page 4: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

4 Practice more on Mathematical Induction www.embibe.com

1 +1

1+2+ ⋯ +

1

1+2+3+ ⋯ +

1

1+2+3+⋯+𝑘=

2𝑘

𝑘+1…(i)

Now to prove that 𝑃(𝑘 + 1)is true.

STEP 2

Consider

1 +1

1 + 2+

1

1 + 2 + 3+ ⋯ +

1

1 + 2 + 3 + ⋯ + 𝑘+

1

1 + 2 + 3 + ⋯ + 𝑘 + (𝑘 + 1)

= (1 +1

1 + 2+

1

1 + 2 + 3+ ⋯ +

1

1 + 2 + 3 + ⋯ 𝑘) +

1

1 + 2 + 3 + ⋯ + 𝑘 + (𝑘 + 1)

=2𝑘

𝑘+1+

1

1+2+3+⋯+𝑘+(𝑘+1) [Using(i)]

=2𝑘

𝑘+1+

1

((𝑘+1)(𝑘+1+1)

2) [∵ 1 + 2 + 3 + ⋯ + 𝑛 =

𝑛(𝑛+1)

2]

=2𝑘

(𝑘 + 1)+

2

(𝑘 + 1)(𝑘 + 2)

=2

(𝑘 + 1)(𝑘 +

1

𝑘 + 2)

=2

(𝑘 + 1)(

𝑘2 + 2𝑘 + 1

𝑘 + 2)

=2

(𝑘 + 1)[(𝑘 + 1)2

𝑘 + 2]

=2(𝑘 + 1)

(𝑘 + 2)

Therefore,𝑃(𝑘 + 1)is true whenever 𝑃(𝑘) is true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛) is true for all natural numbers

i.e.,𝑁.

OVER ALL HINT: TO FIND P(n); where n=1.

𝑃(𝑛): 1 +1

(1 + 2)+

1

(1 + 2 + 3)+ ⋯ +

1

(1 + 2 + 3 + ⋯ 𝑛)=

2𝑛

(𝑛 + 1)

4. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:123 + 2.3.4 +

⋯ + 𝑛(𝑛 + 1)(𝑛 + 2) =𝑛(𝑛+1)(𝑛+2)(𝑛+3)

4

Page 5: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

5 Practice more on Mathematical Induction www.embibe.com

Solution:

STEP1:

Consider the given statement be 𝑃(𝑛),i.e.,

𝑃(𝑛): 1.2.3 + 2.3.4 + ⋯ + 𝑛(𝑛 + 1)(𝑛 + 2) =𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)

4

For 𝑛 = 1,we have

𝑃(1): 1.2.3 = 6 =1(1+1)(1+2)(1+3)

4=

1.2.3.4

4= 6,which is true.

Consider,𝑃(𝑘) be true for some positive integer 𝑘,i.e.,

1.2.3 + 2.3.4 + ⋯ + 𝑘(𝑘 + 1)(𝑘 + 2) =𝑘(𝑘+1)(𝑘+2)(𝑘+3)

4…(i)

Now to prove that 𝑃(𝑘 + 1) is true.

STEP2:

Consider

1.2.3 + 2.3.4 + ⋯ + 𝑘(𝑘 + 1)(𝑘 + 2) + (𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

= {1.2.3 + 23.4 + ⋯ + 𝑘(𝑘 + 1)(𝑘 + 2)} + (𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

=𝑘(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

4+ (𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

= (𝑘 + 1)(𝑘 + 2)(𝑘 + 3) (𝑘

4+ 1)

=(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)(𝑘 + 4)

4

=(𝑘 + 1)(𝑘 + 1 + 1)(𝑘 + 1 + 2)(𝑘 + 1 + 3)

4

Therefore,𝑃(𝑘 + 1)istruewhen𝑃(𝑘)istrue.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛) is true for all natural numbers

i.e., 𝑁.

𝑃(𝑛): 1.2.3 + 2.3.4 + ⋯ + 𝑛(𝑛 + 1)(𝑛 + 2) =𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)

4

5. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:1.3 + 2.32 +

3.33 + ⋯ + 𝑛. 3𝑛 =(2𝑛−1)3𝑛+1+3

4

Page 6: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

6 Practice more on Mathematical Induction www.embibe.com

Solution:

STEP1:

Consider the given statement be 𝑃(𝑛),i.e.,

P(𝑛): 1.3 + 2.32 + 3.33 + ⋯ + 𝑛. 39 =(2𝑛 − 1)3𝑛+1 + 3

4

For𝑛 = 1,we have

𝑃(1): 1.3 = 3 ⇒(2(1)−1)31+1+3

4=

32+3

4=

12

4= 3,which is true.

Consider,𝑃(𝑘)be true for some positive integer 𝑘,i.e.,

1.3 + 2.32 + 3.33 + ⋯ + 𝑘36 =(2𝑘 − 1)3𝑘+1 + 3

4

Now to prove that 𝑃(𝑘 + 1)istrue.

STEP2:

Consider

1.3 + 2.32 + 3.33 + ⋯ + 𝑘3𝑘+(𝑘 + 1) · 3𝑘+1

= (1.3 + 2.32 + 3.33 + ⋯ + 𝑘. 3𝑘) + (𝑘 + 1) · 3𝑘+1

=(2𝑘 − 1)3𝑘+1 + 3

4+ (𝑘 + 1)3𝑘+1

=(2𝑘 − 1)3𝑘+1 + 3 + 4(𝑘 + 1)3𝑘+1

4

=3𝑘+1{2𝑘 − 1 + 4(𝑘 + 1)} + 3

4

=3𝑘+1{6𝑘 + 3} + 3

4

=3𝑘+1 · 3{2𝑘 + 1} + 3

4

=3(𝑘+1)+1{2𝑘 + 1} + 3

4

={2(𝑘 + 1) − 1}3(𝑘+1)+1 + 3

4

Therefore,𝑃(𝑘 + 1)is true whenever 𝑃(𝑘) is true.

Page 7: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

7 Practice more on Mathematical Induction www.embibe.com

Thus, by the principle of mathematical induction statement 𝑃(𝑛) is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

P(𝑛): 1.3 + 2.32 + 3.33 + ⋯ + 𝑛. 39 =(2𝑛 − 1)3𝑛+1 + 3

4

6. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:

1.2 + 2.3 + 3.4 + ⋯ + 𝑛(𝑛 + 1) = [𝑛(𝑛 + 1)(𝑛 + 2)

3]

Solution:

STEP1:

Consider the given statement be 𝑃(𝑛),i.e.,

1.2 + 2.3 + 3.4 + ⋯ + 𝑘(𝑘 + 1) = [𝑘(𝑘+1)(𝑘+2)

3]…(i)

Now to prove that𝑃(𝑘 + 1)is true.

MARKS:1

DL1:L

STEP2:

Consider

1.2 + 2.3 + 3.4 + ⋯ + 𝑘. (𝑘 + 1) + (𝑘 + 1). (𝑘 + 2)

= [1.2 + 2.3 + 3.4 + ⋯ + 𝑘. (𝑘 + 1)] + (𝑘 + 1). (𝑘 + 2)

=𝑘(𝑘+1)(𝑘+2)

3+ (𝑘 + 1)(𝑘 + 2) [using(i)]

= (𝑘 + 1)(𝑘 + 2) (𝑘

3+ 1)

=(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

3

=(𝑘 + 1)(𝑘 + 1 + 1)(𝑘 + 1 + 2)

3

Thus,𝑃(𝑘 + 1) is true whenever 𝑃(𝑘)is true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

Page 8: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

8 Practice more on Mathematical Induction www.embibe.com

OVERALL HINT: 1.2 + 2.3 + 3.4 + ⋯ + 𝑘(𝑘 + 1) = [𝑘(𝑘+1)(𝑘+2)

3] AND P(K+1)

7. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:1.3 + 3.5 +

5.7 + ⋯ + (2𝑛 − 1)(2𝑛 + 1) =𝑛(4𝑛2+6𝑛−1)

3

Solution:

STEP1:

Consider the given statement be 𝑃(𝑛),i.e.,

𝑃(𝑛): 1.3 + 3.5 + 5.7 + ⋯ + (2𝑛 − 1)(2𝑛 + 1) =𝑛(4𝑛2 + 6𝑛 − 1)

3

For𝑛 = 1,we have

𝑃(1): 1.3 = 3 =1(4(12)+6(1)−1)

3=

4+6−1

3=

9

3= 3,which is true.

Consider𝑃(𝑘)be true for some positive integer𝑘,i.e.,

1.3 + 3.5 + 5.7+. . . . . +(2𝑘 − 1)(2𝑘 + 1) =𝑘(4𝑘2+6𝑘−1)

3…(i)

Now to prove that 𝑃(𝑘 + 1)istrue.

STEP:2

Consider

(1.3 + 3.5 + 5.7+. . . +(2𝑘 − 1)(2𝑘 + 1) + {2(𝑘 + 1) − 1}{2(𝑘 + 1) + 1})

=𝑘(4𝑘2+6𝑘−1)

3+ (2𝑘 + 2 − 1)(2𝑘 + 2 + 1) [Using(i)]

=𝑘(4𝑘2 + 6𝑘 − 1)

3+ (2𝑘 + 1)(2𝑘 + 3)

=𝑘(4𝑘2 + 6𝑘 − 1)

3+ (4𝑘2 + 8𝑘 + 3)

=𝑘(4𝑘2 + 6𝑘 − 1) + 3(4𝑘2 + 8𝑘 + 3)

3

=4𝑘2 + 6𝑘2 − 𝑘 + 12𝑘2 + 24𝑘 + 9

3

Page 9: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

9 Practice more on Mathematical Induction www.embibe.com

=𝑘(4𝑘2 + 14𝑘 + 9) + 1(4𝑘2 + 14𝑘 + 9)

3

=(𝑘 + 1)(4𝑘2 + 14𝑘 + 9)

3

=(𝑘 + 1){4𝑘2 + 8𝑘 + 4 + 6𝑘 + 6 − 1}

3

=(𝑘 + 1){4(𝑘3 + 2𝑘 + 1) + 6(𝑘 + 1) − 1}

3

=(𝑘 + 1){4(𝑘 + 1)2 + 6(𝑘 + 1) − 1}

3

Therefore,𝑃(𝑘 + 1)is true when 𝑃(𝑘)is true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

𝑃(𝑛): 1.3 + 3.5 + 5.7 + ⋯ + (2𝑛 − 1)(2𝑛 + 1) =𝑛(4𝑛2 + 6𝑛 − 1)

3

8. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁: 1.2 + 2.22 +

3.22+. . . +𝑛. 2𝑛 = (𝑛 − 1)2𝑛+1 + 2

Solution:

STEP1:

Considering the given principle as 𝑝(𝑛): 1.2 + 2.23 + 3.22+. . . +𝑛. 2𝑛 = (𝑛 − 1)2𝑛+1 + 2

For𝑛 = 1,wehave

𝑃(1): 1.2 = 2 ∵ (1– 1)21+1 + 2 = 0 + 2 = 2,which is true.

Consider𝑃(𝑘)be true for some positive integer 𝑘,i.e.,

1.2 + 2.22 + 3.22 + … + 𝑘. 2𝑘 = (𝑘 – 1)2𝑘+1 + 2…(i)

We shall now prove that 𝑃(𝑘 + 1)is true.

STEP2:

Consider

{1.2 + 2.22 + 3.23+. . . +𝑘. 2𝑘} + (𝑘 + 1). 2𝑘+1

= (𝑘 − 1)2𝑘+1 + 2 + (𝑘 + 1)2𝑘+1 [from (i)]

Page 10: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

10 Practice more on Mathematical Induction www.embibe.com

= 2𝑘+1{(𝑘 − 1) + (𝑘 + 1)} + 2

= 2𝑘+1. 2𝑘 + 2

= 𝑘. 2(𝑘+1)+1 + 2

= {(𝑘 + 1) − 1}2(𝑘+1)+1 + 2

Therefore,𝑃(𝑘 + 1)is true whenever 𝑃(𝑘)is true.

Thus, by the principle of mathematical induction statement 𝑃(𝑛)is true for al natural numbers

i.e.,𝑁.

OVERALL HINT: as 𝑝(𝑛): 1.2 + 2.23 + 3.22+. . . +𝑛. 2𝑛 = (𝑛 − 1)2𝑛+1 + 2

9. Prove the following by using the principle of mathematical induction for all𝑛 ∈ 𝑁:

1

2+

1

4+

1

8+. . . +

1

2𝑛= 1 −

1

2𝑛

Solution:

STEP:1

Consider the given statement be 𝑃(𝑛),i.e.,

𝑃(𝑛): 1

2+

1

4+

1

8+. . . +

1

2𝑛= 1 −

1

2𝑛

For𝑛 = 1,wehave

𝑃(1):1

2= 1 ⇒ −

1

21 =1

2,which is true.

Consider𝑃(𝑘)be true for some positive integer 𝑘,i.e.,

1

2+

1

4+

1

8+. . . . +

1

2𝑘 = 1 −1

2𝑘…(i)

Now to prove that𝑃(𝑘 + 1)is true.

Consider

(1

2+

1

4+

1

8+. . . . . . +

1

2𝑘) +

1

2𝑘+1

= (1 −1

2𝑘) +1

2𝑘+1 [Using(i)]

= 1 −1

2𝑘(1 −

1

2)

Page 11: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

11 Practice more on Mathematical Induction www.embibe.com

= 1 −1

2𝑘(

1

2)

= 1 −1

2𝑘+1

Therefore,𝑃(𝑘 + 1)istruewhen𝑃(𝑘)istrue.

Thus, by the principle of mathematical induction, statement𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

𝑃(𝑛): 1

2+

1

4+

1

8+. . . +

1

2𝑛= 1 −

1

2𝑛

10. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:

1

2.5+

1

5.8+

1

8.11+. . . +

1

(3𝑛 − 1)(3𝑛 + 2)=

𝑛

(6𝑛 + 4)

Solution:

STEP:1

Consider the given statement be 𝑃(𝑛),i.e.,

𝑃(𝑛):1

2.5+

1

5.8+

1

8.11+. . . +

1

(3𝑛 − 1)(3𝑛 + 2)=

𝑛

(6𝑛 + 4)

For𝑛 = 1,wehave

𝑃(1) =1

2.5=

1

10⇒

1

6(1)+4=

1

10,whichistrue

Consider𝑃(𝑘)betrueforsomepositiveinteger𝑘,i.e.,

1

2.5+

1

5.8+

1

8.11+. . . +

1

(3𝑘−1)(3𝑘+2)=

𝑘

6𝑘+4…(i)

We shall now prove that 𝑃(𝑘 + 1) is true.

STEP:2

Consider

1

2.5+

1

5.8+

1

8.11+. . . . +

1

(3𝑘 − 1)(3𝑘 + 2)+

1

{3(𝑘 + 1) − 1}{3(𝑘 + 1) + 2}

=𝑘

6𝑘+4+

1

(3𝑘+3−1)(3𝑘+3+2) [Using(i)]

Page 12: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

12 Practice more on Mathematical Induction www.embibe.com

=𝑘

6𝑘 + 4+

1

(3𝑘 + 2)(3𝑘 + 5)

=𝑘

2(3𝑘 + 2)+

1

(3𝑘 + 2)(3𝑘 + 5)

=𝑘

(3𝑘 + 2)(

𝑘

2+

1

3𝑘 + 5)

=1

(3𝑘 + 2)(

𝑘(3𝑘 + 5) + 2

2(3𝑘 + 5))

=1

(3𝑘 + 2)(

(3𝑘 + 2)(𝑘 + 1)

2(3𝑘 + 5))

=(𝑘 + 1)

6𝑘 + 10

=(𝑘 + 1)

6(𝑘 + 1) + 4

Therefore,𝑃(𝑘 + 1) is true when 𝑃(𝑘) is true.

Thus, by the principle of mathematical induction, statement𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

𝑃(𝑛):1

2.5+

1

5.8+

1

8.11+. . . +

1

(3𝑛 − 1)(3𝑛 + 2)=

𝑛

(6𝑛 + 4)

11. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:1

1.2.3+

1

2.3.4+

1

3.4.5+ ⋯ +

1

𝑛(𝑛+1)(𝑛+2)=

𝑛(𝑛+3)

4(𝑛+1)(𝑛+2)

Solution:

Consider the given statement be 𝑃(𝑛),i.e.,

𝑃(𝑛) =1

1.2.3+

1

2.3.4+

1

3.4.5+ ⋯ +

1

𝑛(𝑛 + 1)(𝑛 + 2)=

𝑛(𝑛 + 3)

4(𝑛 + 1)(𝑛 + 2)

For𝑛 = 1,we have

𝑃(1):1

1⋅2⋅3=

1⋅(1+3)

4(1+1)(1+2)=

1⋅4

4⋅2⋅3=

1

1⋅2⋅3,which is true.

Let𝑃(𝑘)be true for some positive integer k,i.e.,

Page 13: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

13 Practice more on Mathematical Induction www.embibe.com

1

1⋅2⋅3+

1

2⋅3⋅4+

1

3⋅4⋅5+ ⋯ +

1

𝑘(𝑘+1)(𝑘+2)=

𝑘(𝑘+3)

4(𝑘+1)(𝑘+2)……(𝑖)

We shall now prove that 𝑃(𝑘 + 1)is true.

STEP:2

Consider

[1

1 ⋅ 2 ⋅ 3+

1

2 ⋅ 3 ⋅ 4+

1

3 ⋅ 4 ⋅ 5+ ⋯ +

1

𝑘(𝑘 + 1)(𝑘 + 2)] +

1

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

=𝑘(𝑘+3)

4(𝑘+1)(𝑘+2)+

1

(𝑘+1)(𝑘+2)(𝑘+3) [Using (i)]

=1

(𝑘 + 1)(𝑘 + 2){𝑘(𝑘 + 3)

4+

1

𝑘 + 3}

=1

(𝑘 + 1)(𝑘 + 2){

𝑘(𝑘 + 3)2 + 4

4(𝑘 + 3)}

=1

(𝑘 + 1)(𝑘 + 2){

𝑘(𝑘2 + 6𝑘 + 9) + 4

4(𝑘 + 3)}

=1

(𝑘 + 1)(𝑘 + 2){

𝑘3 + 6𝑘2 + 9𝑘 + 4

4(𝑘 + 3)}

=1

(𝑘 + 1)(𝑘 + 2){

𝑘3 + 2𝑘2 + 𝑘 + 4𝑘2 + 8𝑘 + 4

4(𝑘 + 3)}

=1

(𝑘 + 1)(𝑘 + 2){

𝑘(𝑘2 + 2𝑘 + 1) + 4(𝑘2 + 2𝑘 + 1)

4(𝑘 + 3)}

=1

(𝑘 + 1)(𝑘 + 2){

𝑘(𝑘 + 1)2 + 4(𝑘 + 1)2

4(𝑘 + 3)}

=(𝑘 + 1)2(𝑘 + 4)

4(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

=(𝑘 + 1){(𝑘 + 1) + 3}

4{(𝑘 + 1) + 1}{(𝑘 + 1) + 2}

Therefore,𝑃(𝑘 + 1)is true whenever 𝑃(𝑘) is true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛) is true for al natural numbers

i.e.,𝑁.

OVERALL HINT:

𝑃(𝑛) =1

1.2.3+

1

2.3.4+

1

3.4.5+ ⋯ +

1

𝑛(𝑛 + 1)(𝑛 + 2)=

𝑛(𝑛 + 3)

4(𝑛 + 1)(𝑛 + 2)

Page 14: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

14 Practice more on Mathematical Induction www.embibe.com

12. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:𝑎 + 𝑎𝑟 +

𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1 =𝑎(𝑟𝑛−1)

𝑟−1

Solution:

STEP:1

Consider the given statement be𝑃(𝑛),i.e.,

𝑃(𝑛) = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1 =𝑎(𝑟𝑛 − 1)

𝑟 − 1

For𝑛 = 1,wehave

P(1): 𝑎 ⇒𝑎(𝑟1−1)

(𝑟−1)= 𝑎,whichistrue.

Consider𝑃(𝑘)betrueforsomepositiveinteger𝑘,i.e.,

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ … . +𝑎𝑟𝑘−1 =𝑎(𝑟𝑘 − 1)

𝑟 − 1. . . (𝑖)

Now to provethat𝑃(𝑘 + 1)is true.

STEP:2

Consider

{𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ … + 𝑎𝑟𝑘−1} + 𝑎𝑟(𝑘+1)−1

=𝑎(𝑟𝑘−1)

𝑟−1+ 𝑎𝑟𝑘 [Using(𝑖)]

=𝑎(𝑟𝑘 − 1) + 𝑎𝑟𝑘(𝑟 − 1)

𝑟 − 1

=𝑎(𝑟𝑘 − 1) + 𝑎𝑟𝑘+1 − 𝑎𝑟𝑘

𝑟 − 1

=𝑎𝑟𝑘 − 𝑎 + 𝑎𝑟𝑘+1 − 𝑎𝑟𝑘

𝑟 − 1

=𝑎𝑟𝑘+1 − 𝑎

𝑟 − 1

=𝑎(𝑟𝑘+1 − 1)

𝑟 − 1

Therefore,𝑃(𝑘 + 1) is true whenever 𝑃(𝑘) is true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛) is true for all natural numbers

i.e.,𝑁.

Page 15: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

15 Practice more on Mathematical Induction www.embibe.com

OVERALL HINT:

USE THE GIVEN FORMULA

𝑃(𝑛) = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1 =𝑎(𝑟𝑛 − 1)

𝑟 − 1

13. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:(1 +3

1) (1 +

5

4) (1 +

7

9) … (1 +

(2𝑛+1)

𝑛2 ) = (𝑛 + 1)2

Solution:

STEP:1

Consider the given statement be 𝑃(𝑛),i.e.,

P(𝑛): (1 +3

1) (1 +

5

4) (1 +

7

9) … (1 +

(2𝑛 + 1)

𝑛2 ) = (𝑛 + 1)2

For𝑛 = 1,we have

P(1): (1 +3

1) = 4 ⇒ (1 + 1)2 = 22 = 4whichistrue.

Consider𝑃(𝑘)betrueforsomepositiveinteger𝑘,i.e.,

(1 +3

1) (1 +

5

4) (1 +

7

9) … (1 +

(2𝑘 + 1)

𝑘2 ) = (𝑘 + 1)2. . . (𝑖)

Now to provethat𝑃(𝑘 + 1)istrue.

STEP:2

Consider

[(1 +3

1) (1 +

5

4) (1 +

7

9) … (1 +

(2𝑘 + 1)

𝑘2 )] {1 +{2(𝑘 + 1) + 1}

(𝑘 + 1)2 }

= (𝑘 + 1)2 (1 +2(𝑘+1)+1

(𝑘+1)2 )[Using(𝑖)]

= (𝑘 + 1)2 [(𝑘 + 1)2 + 2(𝑘 + 1) + 1

(𝑘 + 1)2]

= (𝑘 + 1)2 + 2(𝑘 + 1) + 1

= {(𝑘 + 1) + 1}2

Therefore,𝑃(𝑘 + 1)is true whenever𝑃(𝑘)is true.

Page 16: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

16 Practice more on Mathematical Induction www.embibe.com

Thus, by the principle of mathematical induction, statement 𝑃(𝑛) is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

USE THE GIVEN FORMULA

P(𝑛): (1 +3

1) (1 +

5

4) (1 +

7

9) … (1 +

(2𝑛 + 1)

𝑛2 ) = (𝑛 + 1)2

14. Prove the following by using the principle of mathematical induction for all𝑛 ∈ 𝑁:(1 +1

1) (1 +

1

2) (1 +

1

3) … (1 +

1

𝑛) = (𝑛 + 1)

Solution:

STEP:1

Consider the given statement be 𝑃(𝑛),i.e.,

(1 +1

1) (1 +

1

2) (1 +

1

3) … (1 +

1

𝑛) = (𝑛 + 1)

For𝑛 = 1,we have

P(1): (1 +1

1) = 2 = (1 + 1),which is true.

Consider𝑃(𝑘)be true for some positive integer 𝑘,i.e.,

P(𝑘): (1 +1

1) (1 +

1

2) (1 +

1

3) … (1 +

1

𝑘) = (𝑘 + 1) … . (1)

Now to provethat𝑃(𝑘 + 1)istrue.

STEP:2

Consider

(1 +1

1) (1 +

1

2) (1 +

1

3) … (1 +

1

𝑘) (1 +

1

𝑘 + 1)

⇒ [(1 +1

1) (1 +

1

2) (1 +

1

3) … (1 +

1

𝑘)] (1 +

1

𝑘 + 1)

= (𝑘 + 1) (1 +1

𝑘+1)[Using(1)]

= (𝑘 + 1) ((𝑘 + 1) + 1

(𝑘 + 1))

Page 17: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

17 Practice more on Mathematical Induction www.embibe.com

= (𝑘 + 1) + 1

Therefore ,𝑃(𝑘 + 1) is true whenever 𝑃(𝑘) is true.

Thus, by the principle of mathematical induction, statement𝑃(𝑛)is true for all natural numbers

i.e.,𝑁

OVERALL HINT:

USE THE FORMULA: P(𝑘): (1 +1

1) (1 +

1

2) (1 +

1

3) … (1 +

1

𝑘) = (𝑘 + 1)

15. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:

12 + 32 + 52 + ⋯ + (2𝑛 − 1)2 =𝑛(2𝑛 − 1)(2𝑛 + 1)

3

Solution:

Consider the given statement be 𝑃(𝑛),i.e.,

𝑃(𝑛) = 12 + 32 + 52 + ⋯ + (2𝑛 − 1)2 =𝑛(2𝑛 − 1)(2𝑛 + 1)

3

For 𝑛 = 1,wehave

𝑃(1) = 12 = 1 ⇒1(2(1)−1)(2(1)+1)

3=

(1)(1)3

3= 1,which is true.

STEP:2

Consider

𝑃(𝑘) be true for some positive integer 𝑘,i.e.,

𝑃(𝑘) = 12 + 32 + 52 + ⋯ + (2𝑘 − 1)2 =𝑘(2𝑘 − 1)(2𝑘 + 1)

3… (1)

Now to prove that 𝑃(𝑘 + 1)is true.

STEP:3

Consider

12 + 32 + 52 + ⋯ + (2𝑘 − 1)2 + {2(𝑘 + 1) − 1}2

⇒ {12 + 32 + 52 + ⋯ + (2𝑘 − 1)2} + {2(𝑘 + 1) − 1}2

=𝑘(2𝑘−1)(2𝑘+1)

3+ (2𝑘 + 2 − 1)2 [Using(1)]

=𝑘(2𝑘 − 1)(2𝑘 + 1)

3+ (2𝑘 + 1)2

Page 18: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

18 Practice more on Mathematical Induction www.embibe.com

=𝑘(2𝑘 − 1)(2𝑘 + 1) + 3(2𝑘 + 1)2

3

=(2𝑘 + 1){𝑘(2𝑘 − 1) + 3(2𝑘 + 1)}

3

=(2𝑘 + 1){2𝑘2 − 𝑘 + 6𝑘 + 3}

3

=(2𝑘 + 1){2𝑘2 + 5𝑘 + 3}

3

=(2𝑘 + 1){2𝑘2 + 2𝑘 + 3𝑘 + 3}

3

=(2𝑘 + 1){2𝑘(𝑘 + 1) + 3(𝑘 + 1)}

3

=(2𝑘 + 1)(𝑘 + 1)(2𝑘 + 3)

3

=(𝑘 + 1){2(𝑘 + 1) − 1}{2(𝑘 + 1) + 1}

3

Therefore,𝑃(𝑘 + 1) is true whenever 𝑃(𝑘) is true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛) is true for all natural numbers

i.e.,𝑁.

OVERALL HINT: USE THE FORMULA

𝑃(𝑛) = 12 + 32 + 52 + ⋯ + (2𝑛 − 1)2 =𝑛(2𝑛 − 1)(2𝑛 + 1)

3

AND 𝑃(𝑘) = 12 + 32 + 52 + ⋯ + (2𝑘 − 1)2 =𝑘(2𝑘−1)(2𝑘+1)

3

16. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:1

1.4+

1

4.7+

1

7.10+ ⋯ +

1

(3𝑛−2)(3𝑛+1)=

𝑛

(3𝑛+1)

Solution:

STEP:1

Consider the given statement be 𝑃(𝑛),i.e.,

𝑃(𝑛):1

1.4+

1

4.7+

1

7.10+ ⋯ +

1

(3𝑛 − 2)(3𝑛 + 1)=

𝑛

(3𝑛 + 1)

For 𝑛 = 1 we get,

Page 19: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

19 Practice more on Mathematical Induction www.embibe.com

𝑃(1) =1

1.4=

1

4⇒

1

3(1)+1=

1

4, which is true

Consider 𝑃(𝑘)be true for some positive integer 𝑘,i.e.,

𝑃(𝑘) =1

1.4+

1

4.7+

1

7.10+ ⋯ +

1

(3𝑘 − 2)(3𝑘 + 1)=

𝑘

3𝑘 + 1. . . (1)

Now to prove that 𝑃(𝑘 + 1)is true.

STEP:2

Consider

{1

1.4+

1

4.7+

1

7.10+ ⋯ +

1

(3𝑘 − 2)(3𝑘 + 1)} +

1

{3(𝑘 + 1) − 2}{3(𝑘 + 1) + 1}

=𝑘

3𝑘+1+

1

(3𝑘+1)(3𝑘+4)[Using(1)]

=1

(3𝑘 + 1){𝑘 +

1

(3𝑘 + 4)}

=1

(3𝑘 + 1){

𝑘(3𝑘 + 4) + 1

(3𝑘 + 4)}

=1

(3𝑘 + 1){

3𝑘2 + 4𝑘 + 1

(3𝑘 + 4)}

=1

(3𝑘 + 1){

3𝑘2 + 3𝑘 + 𝑘 + 1

(3𝑘 + 4)}

=(3𝑘 + 1)(𝑘 + 1)

(3𝑘 + 1)(3𝑘 + 4)

=(𝑘 + 1)

3(𝑘 + 1) + 1

Therefore,𝑃(𝑘 + 1) is true whenever 𝑃(𝑘)is true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT :

USE THE FORMULA:

𝑃(𝑛):1

1.4+

1

4.7+

1

7.10+ ⋯ +

1

(3𝑛−2)(3𝑛+1)=

𝑛

(3𝑛+1) AND

𝑘

3𝑘+1+

1

(3𝑘+1)(3𝑘+4)

Page 20: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

20 Practice more on Mathematical Induction www.embibe.com

17. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:1

3.5+

1

5.7+

1

7.9+ ⋯ +

1

(2𝑛+1)(2𝑛+3)=

𝑛

3(2𝑛+3)

Solution:

STEP:1

Consider the given statement be𝑃(𝑛),i.e.,

𝑃(𝑛):1

3.5+

1

5.7+

1

7.9+ ⋯ +

1

(2𝑛 + 1)(2𝑛 + 3)=

𝑛

3(2𝑛 + 3)

For𝑛 = 1,we get

𝑃(1):1

3.5=

1

3(2×1+3)=

1

3×5,whichistrue.

STEP:2

Consider 𝑃(𝑘)be true for some positive integer𝑘,i.e.,

𝑃(𝑘):1

3.5+

1

5.7+

1

7.9+ ⋯ +

1

(2𝑘 + 1)(2𝑘 + 3)=

𝑘

3(2𝑘 + 3). . . (1)

Now to prove that 𝑃(𝑘 + 1)is true.

STEP:3

Consider

[1

3.5+

1

5.7+

1

7.9+ ⋯ +

1

(2𝑘 + 1)(2𝑘 + 3)] +

1

{2(𝑘 + 1) + 1}{2(𝑘 + 1) + 3}

=𝑘

3(2𝑘+3)+

1

(2𝑘+3)(2𝑘+5) [Using(1)]

=1

(2𝑘 + 3)[𝑘

3+

1

(2𝑘 + 5)]

=1

(2𝑘 + 3)[𝑘(2𝑘 + 5) + 3

3(2𝑘 + 5)]

=1

(2𝑘 + 3)[2𝑘2 + 5𝑘 + 3

3(2𝑘 + 5)]

=1

(2𝑘 + 3)[2𝑘2 + 2𝑘 + 3𝑘 + 3

3(2𝑘 + 5)]

=1

(2𝑘 + 3)[2𝑘(𝑘 + 1) + 3(𝑘 + 1)

3(2𝑘 + 5)]

Page 21: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

21 Practice more on Mathematical Induction www.embibe.com

=(𝑘 + 1)(2𝑘 + 3)

3(2𝑘 + 3)(2𝑘 + 5)

=(𝑘 + 1)

3{2(𝑘 + 1) + 3}

Therefore,𝑃(𝑘 + 1)is true whenever 𝑃(𝑘)is true.

Thus, by the principle of mathematical induction, statement𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

Use the formula:

𝑃(𝑛):1

3.5+

1

5.7+

1

7.9+ ⋯ +

1

(2𝑛+1)(2𝑛+3)=

𝑛

3(2𝑛+3)and

𝑘

3(2𝑘+3)+

1

(2𝑘+3)(2𝑘+5)

18. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:1 + 2 + 3 +

⋯ + 𝑛 <1

8(2𝑛 + 1)2

Solution:

Step:1

Consider the given statement be 𝑃(𝑛),i.e.,

P(𝑛): 1 + 2 + 3 + ⋯ + 𝑛 <1

8(2𝑛 + 1)2

this note d that 𝑃(𝑛)is true for 𝑛 = 1since

1 <1

8(2 × 1 + 1)2 =

9

8

Consider𝑃(𝑘)betrueforsomepositiveinteger𝑘,i.e.,

1 + 2 + ⋯ + 𝑘 <1

8(2𝑘 + 1)2 … (1)

We shall now prove that 𝑃(𝑘 + 1)is true whenever 𝑃(𝑘)is true.

STEP:2

Consider

(1 + 2 + ⋯ + 𝑘) + (𝑘 + 1) <1

8(2𝑘 + 1)2 + (𝑘 + 1) [Adding (𝑘 + 1) both the sides]

Page 22: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

22 Practice more on Mathematical Induction www.embibe.com

(1 + 2 + ⋯ + 𝑘) + (𝑘 + 1) <1

8{(2𝑘 + 1)2 + 8(𝑘 + 1)}

(1 + 2 + ⋯ + 𝑘) + (𝑘 + 1) <1

8{4𝑘2 + 4𝑘 + 1 + 8𝑘 + 8}

(1 + 2 + ⋯ + 𝑘) + (𝑘 + 1) <1

8{4𝑘2 + 12𝑘 + 9}

(1 + 2 + ⋯ + 𝑘) + (𝑘 + 1) <1

8(2𝑘 + 3)2

(1 + 2 + ⋯ + 𝑘) + (𝑘 + 1) <1

8{2(𝑘 + 1) + 1}2

Therefore,(1 + 2 + 3 + ⋯ + 𝑘) + (𝑘 + 1) <1

8(2𝑘 + 1)2 + (𝑘 + 1)

Therefore, 𝑃(𝑘 + 1) is true when 𝑃(𝑘) is true.

Thus, by the principle of mathematical induction, statement𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:use the formula:

P(𝑛): 1 + 2 + 3 + ⋯ + 𝑛 <1

8(2𝑛 + 1)2

19. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:𝑛(𝑛 + 1)(𝑛 +

5)is a multiple of 3.

Solution:

Step:1

Consider the given statement be 𝑃(𝑛),i.e.,

𝑃(𝑛): 𝑛(𝑛 + 1)(𝑛 + 5),which is a multiple of 3.

Itis noted that 𝑃(𝑛) is true for 𝑛 = 1 since,

1(1 + 1)(1 + 5) = 12,which Is a multiple of 3.

Consider, 𝑃(𝑘)be true for some positive integer𝑘,i.e.,

𝑘(𝑘 + 1)(𝑘 + 5)is a multiple of 3.

∴ 𝑘(𝑘 + 1)(𝑘 + 5) = 3𝑚,where 𝑚 ∈ 𝑁 … (1)

Now to prove that𝑃(𝑘 + 1)is true when 𝑃(𝑘)is true.

Page 23: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

23 Practice more on Mathematical Induction www.embibe.com

STEP:2

Consider

(𝑘 + 1){(𝑘 + 1) + 1}{(𝑘 + 1) + 5}

= (𝑘 + 1)(𝑘 + 2){(𝑘 + 5) + 1}

= (𝑘 + 1)(𝑘 + 2)(𝑘 + 5) + (𝑘 + 1)(𝑘 + 2)

= {𝑘(𝑘 + 1)(𝑘 + 5) + 2(𝑘 + 1)(𝑘 + 5)} + (𝑘 + 1)(𝑘 + 2)

= 3𝑚 + (𝑘 + 1){2(𝑘 + 5) + (𝑘 + 2)}

= 3𝑚 + (𝑘 + 1){2𝑘 + 10 + 𝑘 + 2}

= 3𝑚 + (𝑘 + 1)(3𝑘 + 12)

= 3𝑚 + 3(𝑘 + 1)(𝑘 + 4)

= 3{𝑚 + (𝑘 + 1)(𝑘 + 4)} = 3 × 𝑞,where 𝑞 = {𝑚 + (𝑘 + 1)(𝑘 + 4)}is some natural number

Thus,(𝑘 + 1){(𝑘 + 1) + 1}{(𝑘 + 1) + 5}is a multiple of3.

Therefore,𝑃(𝑘 + 1)is true whenever 𝑃(𝑘)is true.

Thus, by the principle of mathematical induction, statement𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

Use the given formula: 𝑃(𝑛): 𝑛(𝑛 + 1)(𝑛 + 5) and 𝑘(𝑘 + 1)(𝑘 + 5) = 3𝑚,where 𝑚 ∈ 𝑁

20. Prove the following by using the principle of mathematical induction for all𝑛 ∈ 𝑁:102𝑛–1 + 1is

divisible by 11.

Solution:

STEP:1

Consider the given statement be𝑃(𝑛),i.e.,

𝑃(𝑛): 102𝑛–1 + 1 is divisible by11.

It is observed that𝑃(𝑛)is true for 𝑛 = 1

since 𝑃(1) = 102×1–1 + 1 = 11,which is divisible by11.

STEP:2

Consider 𝑃(𝑘) be true for some positive integer 𝑘,

Page 24: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

24 Practice more on Mathematical Induction www.embibe.com

i.e.,102𝑘–1 + 1is divisible by11.

∴ 102𝑘–1 + 1 = 11𝑚,where 𝑚 ∈ 𝑁 … (1)

Now to prove that𝑃(𝑘 + 1)is true whenever 𝑃(𝑘)is true.

STEP:3

Consider

102(𝑘+1)−1 + 1

= 102𝑘+2−1 + 1

= 102𝑘+1 + 1

= 102(102𝑘−1 + 1 − 1) + 1

= 102(102𝑘−1 + 1) − 102 + 1

= 102 × 11𝑚 − 100 + 1 [Using(1)]

= 100 × 11𝑚 − 99

= 11(100𝑚 − 9)

= 11𝑟,where 𝑟 = (100𝑚 − 9)is some natural number

Thus,102(𝑘+1) + 1is divisible by11

Therefore,𝑃(𝑘 + 1)is true whenever 𝑃(𝑘)is true.

Thus, by the principle of mathematical induction, statement𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

USING THE FORMULA: 𝑃(𝑛): 102𝑛–1 + 1 AND102(𝑘+1) + 1

21. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:𝑥2𝑛 − 𝑦2𝑛Is

divisible by 𝑥 + 𝑦.

Solution:

STEP:1

Consider 𝑥2𝑛 − 𝑦2𝑛as 𝑃(𝑛).

It is observed that𝑃(𝑛)is true for 𝑛 = 1.

It’s because𝑥2×1 − 𝑦2×1 = 𝑥2 − 𝑦2 = (𝑥 + 𝑦)(𝑥 − 𝑦)is divisible by(𝑥 + 𝑦)

Page 25: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

25 Practice more on Mathematical Induction www.embibe.com

Consider 𝑝(𝑘)be true for some positive integer 𝑘,i.e.,

𝑥2𝑘 − 𝑦2𝑘is divisible by𝑥 + 𝑦

Therefore, Let𝑥2𝑘 − 𝑦2𝑘 = 𝑚(𝑥 + 𝑦), where 𝑚 ∈ 𝑁…(1)

Now to prove that𝑃(𝑘 + 1)is true whenever𝑃(𝑘)is true.

STEP:2

Consider

𝑥2(𝑘+1) − 𝑦2(𝑘+1)

= 𝑥2𝑘 ∙ 𝑥2 − 𝑦2𝑘 ∙ 𝑦2

𝑥2(𝑥2𝑘 − 𝑦2𝑘 + 𝑦2𝑘) − 𝑦2𝑘 ∙ 𝑦2 [∵ 𝑎𝑑𝑑𝑖𝑛𝑔 𝑎𝑛𝑑 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ𝑦2𝑘]

= 𝑥2{𝑚(𝑥 + 𝑦) + 𝑦2𝑘} − 𝑦2𝑘 ∙ 𝑦2 [Using(1)]

𝑚(𝑥 + 𝑦)𝑥2 + 𝑦2𝑘 ∙ 𝑥2 − 𝑦2𝑘 ∙ 𝑦2

𝑚(𝑥 + 𝑦)𝑥2 + 𝑦2𝑘(𝑥2 − 𝑦2)

𝑚(𝑥 + 𝑦)𝑥3 + 𝑦2𝑘(𝑥 + 𝑦)(𝑥 − 𝑦)

(𝑥 + 𝑦){𝑚𝑥2 + 𝑦2𝑘(𝑥 − 𝑦)},which is a factor of(𝑥 + 𝑦).

Therefore,𝑃(𝑘 + 1)is true whenever𝑃(𝑘)is true.

Thus, by the principle of mathematical induction, statement P(n)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

USING THE FORMULA: 𝑥2𝑛 − 𝑦2𝑛as 𝑃(𝑛).

22. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:32𝑛+2 − 8𝑛 −9 is divisible by 8.

Solution:

Step:1

Consider the given statement be 𝑃(𝑛),i.e.,

𝑃(𝑛): 32𝑛+2 − 8𝑛 − 9is divisible by8.

It is observed that𝑃(𝑛)is true for n = 1

Page 26: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

26 Practice more on Mathematical Induction www.embibe.com

Since 32×1+2 − 8 × 1 − 9 = 64,which is divisible by 8

Consider𝑃(𝑘)be true for some positive integer

𝑘,i.e.,32𝑘+2 − 8𝑘 − 9 is divisible by 8

∴ 32𝑘+2 − 8𝑘 − 9 = 8𝑚; where 𝑚 ∈ 𝑁 …(1)

Now to prove that 𝑃(𝑘 + 1) is true whenever 𝑃(𝑘)is true.

STEP:2

Consider

32(𝑘+1)+2 − 8(𝑘 + 1) − 9

⇒ 32𝑘+2 ∙ 32 − 8𝑘 − 8 − 9

= 32(32𝑘+2 − 8𝑘 − 9 + 8𝑘 + 9) − 8𝑘 − 17 [adding and subtracting8𝑘 + 9]

32(32𝑘+2 − 8𝑘 − 9) + 32(8𝑘 + 9) − 8𝑘 − 17

9 × 8𝑚 + 9(8𝑘 + 9) − 8𝑘 − 17

9 × 8𝑚 + 72𝑘 + 81 − 8𝑘 − 17

9 × 8𝑚 + 64𝑘 + 64

8(9𝑚 + 8𝑘 + 8)

= 8𝑟,Where 𝑟 = (9𝑚 + 8𝑘 + 8)is a natural number

Thus,32(𝑘+1)+2 − 8(𝑘 + 1) − 9is divisible by 8.

Therefore,P(k + 1)is true when P(k)is true.

Thus, by the principle of mathematical induction, statement𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

USE THE FORMULA: 𝑃(𝑛): 32𝑛+2 − 8𝑛 − 9 AND 𝑟 = (9𝑚 + 8𝑘 + 8)

23. Prove the following by using the principle of mathematical induction for all𝑛 ∈ 𝑁:41𝑛 − 14𝑛is a

multiple of 27.

Solution:

STEP:1

Consider the given statement be𝑃(𝑛),i.e.,

𝑃(𝑛): 41𝑛 − 14𝑛is a multiple of 27.

Page 27: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

27 Practice more on Mathematical Induction www.embibe.com

It is observed that𝑃(𝑛)is true for 𝑛 = 1

Since 411 − 141 = 27,which is a multipleof27.

Consider 𝑃(𝑘)be true for some positive integer k,i.e.,

41k − 14𝑘is a multiple of27.

∴ 41𝑘 − 14𝑘 = 27𝑚, where 𝑚 ∈ 𝑁 …(1)

Now to prove that𝑃(𝑘 + 1)is true whenever 𝑃(𝑘)istrue.

STEP:2

Consider

41𝑘+1 − 14𝑘+1

= 41𝑘 ∙ 41 − 14𝑘 ∙ 14

= 41(41𝑘 − 14𝑘 + 14𝑘) − 14𝑘 × 14

= 41(41𝑘 − 14𝑘) + 41 × 14𝑘 − 14𝑘 × 14

= 41 × 27𝑚 + 14𝑘(41 − 14)

= 41 × 27𝑚 + 27 × 14𝑘

= 27(41𝑚 − 14𝑘)

= 27 × 𝑟,where 𝑟 = (41𝑚 − 14𝑘)is a natural number

Thus,41𝑘+1 − 14𝑘+1 𝑖𝑠 𝑎 multipleof 27

Therefore,𝑃(𝑘 + 1)is true whenever𝑃(𝑘)IS true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT:

Use the given formula: 𝑃(𝑛): 41𝑛 − 14𝑛

24. Prove the following by using the principle of mathematical induction for all 𝑛 ∈ 𝑁:(2𝑛 + 7) <

(𝑛 + 3)2

Solution:

Step:1

Consider the given statement be 𝑃(𝑛),i.e.,

Page 28: CBSE NCERT Solutions for Class 11 Mathematics Chapter 04 · Class–XI–CBSE-Mathematics Principle of Mathematical Induction 1 Practice more on Mathematical Induction CBSE NCERT

Class–XI–CBSE-Mathematics Principle of Mathematical Induction

28 Practice more on Mathematical Induction www.embibe.com

𝑃(𝑛): (2𝑛 + 7) < (𝑛 + 3)2

It is observed that 𝑃(𝑛)is true for 𝑛 = 1

Since2.1 + 7 = 9 < (1 + 3)2 = 16,which is true

Consider 𝑃(𝑘)be true for some positive integer 𝑘,i.e.,S

(2𝑘 + 7) < (𝑘 + 3)2…(1)

Now to prove that𝑃(𝑘 + 1)is true whenever 𝑃(𝑘)is true.

STEP:2

Consider

{2(𝑘 + 1) + 7} = (2𝑘 + 7) + 2

∴ {2(𝑘 + 1) + 7} = (2𝑘 + 7) + 2 < (𝑘 + 3)2 + 2 [using(1)]

2(𝑘 + 1) + 7 < 𝑘2 + 6𝑘 + 9 + 2

2(𝑘 + 1) + 7 < 𝑘2 + 6𝑘 + 11

And,𝑘2 + 6𝑘 + 1 < 𝑘2 + 8𝑘 + 16

Therefore, 2(𝑘 + 1) + 7 < (𝑘 + 4)2

2(𝑘 + 1) + 7 < {(𝑘 + 1) + 3}2

Therefore, 𝑃(𝑘 + 1)is true whenever 𝑃(𝑘)is true.

Thus, by the principle of mathematical induction, statement 𝑃(𝑛)is true for all natural numbers

i.e.,𝑁.

OVERALL HINT: use the given formula:

𝑃(𝑛): (2𝑛 + 7) < (𝑛 + 3)2 and

{2(𝑘 + 1) + 7} = (2𝑘 + 7) + 2

∴ {2(𝑘 + 1) + 7} = (2𝑘 + 7) + 2 < (𝑘 + 3)2 + 2