81
Clase 4: Balance de Flujos Metabólicos 2 Prof: Guillermo R. Castro Lab de Nanobiomateriales – CINDEFI UNLP – CONICET, La Plata Materia de Articulación CEBI - E4b Ingeniería Metabólica CARRERA DE ESPECIALIZACION EN BIOTECNOLOGIA INDUSTRIAL . FCEyN-INTI

CARRERA DE ESPECIALIZACION EN BIOTECNOLOGIA …biotecnologiaindustrial.fcen.uba.ar/.../2011/...Bal-2-Ing-Me-UBAt-13.pdf · Clase 4: Balance de Flujos Metabólicos 2 Prof: Guillermo

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Clase 4: Balance de Flujos Metabólicos 2

    Prof: Guillermo R. Castro Lab de Nanobiomateriales – CINDEFI UNLP – CONICET, La Plata

    Materia de Articulación CEBI - E4b Ingeniería Metabólica

    CARRERA DE ESPECIALIZACION EN BIOTECNOLOGIA

    INDUSTRIAL . FCEyN-INTI

  • Flujo metabólico (def.)

    El flujo metabólico se define como la velocidad a la que un sustrato se convierte en un producto mediante reacciones y rutas metabólicas. Sustrato –> Metabolito Intermedio –> Producto

  • 3

    Vias en E. coli

    (A) This version of the overview shows all interconnections between occurren-ces of the same metabolite to communicate the complexity of the interconnections in the metabolic network.

    Ouzonis, Karp, Genome Res. 10, 568 (2000)

    Guillermo R. Castro

  • Guillermo R. Castro Page 4

    La Cascada “Omica” Que puede suceder?

    Que podría suceder?

    Que hace que eso suceda?

    Que ha sucedido y que pasara?

  • Estructuracion de modelos metabolicos

    Metabolic Networks Quantitative Model

    Omics data Molecular Biology data

    Integration of heterogenous data

    (BASE)

    Genomics Transcriptomics Proteomics Metabolomics Fluxomics Physiomics

    Page 5 Guillermo R. Castro

  • De genes a flujos metabolicos

    Page 6 Guillermo R. Castro

  • Construcción de un modelo biológico

    Guillermo R. Castro Page 7

  • Aplicaciones de los modelos

    Metabolic engineering

    Model-directed discovery

    Interpretation of phenotypic screens

    Analysis of network properties

    Studies of evolutionary processes

    Ej.: iAF1260 model Lycopene L-valine L-threonine

    Network analysis – how much value? What are the inputs and output? Buchnera has some high-value waste products. Missing biology?

    Evolution of reduced networks Pan genomes.

    Compare KO strains and/or Biolog data to model predictions - Improves model.

    Informing on the biological function of metabolism. Orphan enzymes and transporters.

    Page 8 Guillermo R. Castro

  • E. coli K12

    Guillermo R. Castro Page 9

    E. coli Metabolic Model IAF1260

    Metabolic Reactions

    2382

    Regulatory data RegulonDB

    Regulatory Interactions 1773

    Microarrays 907

    Total Genes in the model 1400

    Validation Data set 1875 growth phenotypes

  • Guillermo R. Castro 10

    Modelo iAF1260 de E. coli K 12

  • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information Mol Syst Biol. 2007; 3: 121.

    Guillermo R. Castro Page 11

  • Modelo iAF1260 de E. coli K 12

    Guillermo R. Castro Page 12

  • Guillermo R. Castro Page 13

    Glucosa, eje central del metabolismo

  • Guillermo R. Castro Page 14

    Glicólisis – fase preparatoria

  • Guillermo R. Castro Page 15

    Glicólisis – fase de síntesis

  • Guillermo R. Castro Page 16

    Glicólisis – resumen energético

    La glicólisis se encuentra muy regulada en la célula y coordinada con otras rutas metabólicas que producen energía para poder suministrar ATP. Las enzimas Hexokinasa, PFK-1 y Piruvato Kinasa se encuentran reguladas alostericamente, lo que permite controlar el flujo de C a través de la vía metabólica y mantiene constante los niveles de los intermediarios de la ruta.

    Detalle de los mecanismos: http://www.iubmb-nicholson.org/swf/glycolysis.swf

  • Un problema a ser resuelto S. cerevisae

    Page 17 Guillermo R. Castro

  • Un problema a ser resuelto

    Hauf, J., Zimmermann, F.K., Müller, S., 2000. Simultaneous genomic over expression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Ezyme. Microbiol. Technol. 26, 688-698.

    Page 18 Guillermo R. Castro

    Consumo de glucosa y prod de etanol en mutante sobreexpresada y WT

  • Se pueden determinar los flujos utilizando datos expresion genica

    Sin embargo NO existe correlacion lineal

    Page 19 Guillermo R. Castro

  • The PEP carboxykinase promoter region, showing the complexity of regulatory

    Guillermo R. Castro Page 20

  • Transcriptoma & proteoma Olivares R, Bordel S, Nielsen J. Codon usage variability determines the correlation between proteome and transcriptome fold changes. BMC Systems Biology.

    Page 21 Guillermo R. Castro

  • P Rj jf f=[ P ] k [ mRNA]=

    [ P ] k( )[ mRNA]µ=

    [ P ] k( , j )[ mRNA]µ= P Rj j jf fα=

    P Rj jf fα=

    Page 22 Guillermo R. Castro

    P, protein, R, mRNA

  • Page 23 Guillermo R. Castro

  • [ ][ ] [ ] [ ]j s , j d , jj j j

    d Pk mRNA k P P

    dtµ= − −

    [ ][ ] [ ] [ ]j Rj d , jj j j

    j

    d PmRNA k P P

    dt tρ

    µ= − −

    j ij ii

    t S τ= ∑

    Page 24 Guillermo R. Castro

    ks,j and kdj are the protein synthesis & degradation rate constants

    the number of ribosomes united to each mRNA molecule ρRj and the elongation time of the protein tj.

    Where Sij is the number of codons i in the gene j and Ʈi is the average time that will take to add the corresponding amino acid to the nascent peptide

  • Agrupamiento de genes por similaridad de secuencias

    Page 25 Guillermo R. Castro

  • Analisis de varianza

    2

    Pj

    j Rj

    fx log

    f= Total between within

    SS SS SS= +

    2

    within jc cc j

    SS x x

    = −

    ∑ ∑

    ( )2between c cc

    SS n x x= −∑

    Page 26 Guillermo R. Castro

    C, cluster, N, de Prot en el cluster

  • Resultados

    Usaite.snf1

    Usaite.snf4

    Usaite.snf1.4

    Griffin Ideker Washburn

    Within/Total 0.27 0.09 0.27 0.13 0.39 0.20

    Between/Total 0.73 0.91 0.73 0.87 0.61 0.80

    F-test (B/W) 2.70 10.06 2.75 6.63 1.54 4.09

    p-value 0.001 1E-06 4.5E-5 0.015 0.55 2E-5

    Page 27 Guillermo R. Castro

  • Statistical description of gene-expression and flux changes

    The RNA arrays provide measurements for the significance of the expression changes in every gene. We need a method to provide measurements for the significance of flux changes in every reaction.

    Bordel S, Agren R, Nielsen J. Sampling the Solution Space in Genome-Scale Metabolic Networks Reveals Transcriptional Regulation in Key Enzymes. 2010. PLoS Comput. Boil. 6: e1000859

    Page 28 Guillermo R. Castro

  • Page 29 Guillermo R. Castro

  • Geometry of the sampling method

    Page 30 Guillermo R. Castro

  • Comparison between the Hit and Run algorithm and the sampling of the convex basis.

    The Hit and Run algorithm seems to underestimate the variance. Page 31 Guillermo R. Castro

  • Assignment of regulatory characteristics

    Page 32 Guillermo R. Castro

  • Some results Deletion of HXK2

    Page 33 Guillermo R. Castro

    Gluc to Ethanol --- Transcritional reg (up) --- down regulation

  • Transcription factor enrichment (very significant for many TFs) Transition from glucose to ethanol or acetate: Gcr1, Gcr2 and Hap4.

    Glucose-Ethanol 19 enzymes TR, Gcr1 in 11 of them 22 enzymes PR, Gcr1 in none of them

    Wild type versus grr1∆ and hxk2 ∆ mutants: Pho2 and Bas1: Regulators of purine and histidine biosynthesis.

    Wild type- grr1∆ 26 enzymes TR, Pho2 in 10 of them 73 enzymes PR, Pho2 in 6 of them

    Wild type versus mig1∆ mig2∆ mutant: Gcn4 and Cbf1: response against starvation increases growth rate by stimulating amino-acid synthesis and ribosome proliferation

    Page 34 Guillermo R. Castro

    TR, transcriptional regulation

    PR, post-TR

  • Page 35 Guillermo R. Castro

  • The role of constraints

    Bordel S, Nielsen J. Identification of flux control in metabolic networks using non-equilibrium thermodynamics. 2010. Metab. Eng. 13, 369-377 Page 36 Guillermo R. Castro

  • How does the cell “choose” its metabolic state?

    Objective function +

    Set of constraints

    Metabolic state

    ?

    Page 37 Guillermo R. Castro

  • Aerobic and oxygen limited chemostats

    Page 38 Guillermo R. Castro

  • Anaerobic chemostat and glucose excess batch

    Vemuri et. al. 2006 Batch fermentation

    Page 39 Guillermo R. Castro NOX= NADPH oxidasas

  • Modelo dinamicos: Ecuaciones diferenciales, gran cantidad de parametros desconocidos

    Modelos Cuantitativos

    Modelos de estado estacionario: Ecuaciones Algebraicas lineales

    ( , , , ) d tdt

    =y F x y p

    0 = ⋅S v

    El analisis de flujos debe ser restringuido a estado estacionario

    40 Guillermo R. Castro

  • S: matriz estequiometrica

    V: distribucion de flujos

    3.- Restriccion :

    Prediccion de la distribucion de flujos en estado estacionario:

    X1

    X2

    X3

    100 v1

    v2

    v3

    v4

    v5

    v6

    5( )F v=v

    0 = ⋅S v

    2.- Definir funcion:

    Analisis de flujos

    Page 41 Guillermo R. Castro

    1.- Componentes del sistema: moleculas? (x=3) Flujos? (v=6)

  • X1

    X2

    X3

    100 v1

    v2

    v3

    v4

    v5

    v6

    12

    13

    24

    35

    6

    0 1 1 1 0 0 00 0 1 0 1 1 00 0 0 1 1 0 1

    vv

    Xv

    Xv

    Xvv

    − − = = − − −

    Analisis de flujos (cont)

    Page 42 Guillermo R. Castro

    1ra regla: balance de

    masas = CERO

    X1 = X2 + X3

  • Para mutantes con genes delecionados se empela un flujo de estado estacionario predecido mediante logica boleana

    0S v⋅ =Method Optimization Algorithm Additional information

    rFBA (regulatory FBA)

    Linear Programming Regulatory network (genomics)

    SR-FBA (Steady-state Regulatory-FBA)

    Mixed Integer Linear Programming

    Regulatory network

    MOMA (Minimization Of Metabolic Adjustment)

    Quadratic Programming Flux distribution of wild type (fluxomics)

    ROOM (Regulatory On/Off Minimization)

    Mixed Integer Linear Programming

    Flux distribution of wild type

    Reactions for knockout gene = 0 Other reactions =1

    Page 43 Guillermo R. Castro

  • Mayores problemas: En mutantes en donde se delecionaron genes muchas otras expresiones de genes varian. Como integrar el transcriptoma o proteoma en analisis de flujos metabolicos?.

    Propuesta: Metodo de analisis

    elemental para realizar

    la integracion.

    Page 44 Guillermo R. Castro

  • Modo Elemental de analisis (EMs)

    1

    2 1 2

    3

    1 11 0

    0 1

    vvv

    λ λ = − + −

    EM1 EM2

    A B 1v

    3v

    2vEM1

    EM2

    Minimiza la cantidad de enzimas en un grupo de

    cascadas enzimaticas compuestas por

    reacciones irreversibles en estado estacionario

    Page 45 Guillermo R. Castro

  • X1

    X2

    X3

    100

    60

    70

    20

    40 30

    v1

    v2

    v3

    v4

    v5

    v6

    v7

    30

    Modos Elemetales (Ems)

    Matrix estequiometrica

    1

    2

    3

    4

    5

    6

    7

    1

    1 2

    1 3

    3 2

    2

    3

    2 3

    v Xv X Xv X Xv X Xv Xv Xv X X

    →→→

    ME

    λ= ⋅v P

    Flujos

    Matriz Elemental

    Coeficiente EM

    Page 46 Guillermo R. Castro

  • 1

    2

    3

    4 1 2 3 4 5

    5

    6

    7

    1 1 1 1 01 0 0 1 00 1 1 0 00 0 1 0 11 0 1 0 00 1 0 1 00 0 0 1 1

    vvvvvvv

    λ λ λ λ λ

    = + + + +

    1

    2 1

    3 2

    4 3

    5 4

    6 5

    7

    1 1 1 1 01 0 0 1 00 1 1 0 00 0 1 0 11 0 1 0 00 1 0 1 00 0 0 1 1

    vvvvvvv

    λλλλλ

    =

    1 1 1 1 1

    100 1 1 1 1 060 1 0 0 1 040 0 1 1 0 0

    ( 30) (70 ) (60 ) ( 40)30 0 0 1 0 170 1 0 1 0 030 0 1 0 1 020 0 0 0 1 1

    λ λ λ λ λ

    = + − + − + − + −

    1 2 3 4 5

    Problema: el CEM is not uniquely determined.

    Matriz estequiometrica Flujo Flujo= ME ・ CEM

    λ= ⋅v P

    ES NECESARIO determinar un objetivo Page 47 Guillermo R. Castro

    (CEM, coef estequiometrico de la matriz)

  • Objetivos

    Maximizacion del crecimiento: pgm Lineal

    Funcion conveniente: programacion cuadratica

    2

    1

    ne

    ii

    Max λ=

    −∑

    ,1

    ne

    biomass biomass i ii

    Max v p λ=

    = ⋅∑

    Maximizar la Entropia (MEP)

    Page 48 Guillermo R. Castro

  • iλ ,substrate uptake ii isubstrateuptake

    pv

    ρ λ= ⋅

    Principio de Entropia Maxima (MEP)

    λ= ⋅v P

    Page 49 Guillermo R. Castro

    y se debe cumplir:

    iρSe define como la probabilidad de eventos al azar

  • 1log

    n

    i ii

    Maximize ρ ρ=

    − ∑1

    1n

    ii

    ρ=

    =∑

    ( ),1

    1, 2,...,n

    i r i ri

    x v r mρ=

    = =∑

    Principio de Entropia Maxima (MEP)

    ,1

    n

    i r i ri

    p vρ=

    =∑

    Shannon information entropy

    Restricciones

    λ= ⋅v PQ. Zhao, H. Kurata, Maximum entropy decomposition of flux distribution at steady state to elementary modes. J Biosci Bioeng, 107: 84-89, 2009

    Page 50 Guillermo R. Castro

  • ECF integra los perfiles actividad enzimatica en

    modos elementales. ECF es descripta por una ecuacion de poder.

    La ecuacion describe como los cambios en un perfil de

    actividad enzimatica entre la cepa salvaje y la mutada se

    relaciona con los cambios de los coef. de la matriz

    estequiometrica (EMCs).

    Control de Flujos por Enzimas (ECF)

    Kurata H, Zhao Q, Okuda R, Shimizu K. Integration of enzyme activities into metabolic flux distributions by elementary mode analysis. BMC Syst Biol. 2007;1:31.

    Page 51 Guillermo R. Castro

  • Modelo de flujo wild-type Enzyme activity profile

    Mutant / WT

    X1

    X2

    X3

    100

    60

    70

    20

    40 30

    v1

    v2

    v3

    v4

    v5

    v6

    v7

    30

    Estimation of a flux distribution of a mutant

    Power-Law formula

    Page 52 Guillermo R. Castro

    Control de Flujos por Enzimas (ECF)

  • ref refλ= ⋅v PModelo de Referencia

    Power Law Formula

    Change in enzyme activity profile

    target targetλ= ⋅v PPrediction of a flux distribution of a target cell

    ref targetλ λ→

    refλMEP

    1 2( , ,..., )na a a

    ECF Algorithmo

    Page 53 Guillermo R. Castro

  • a1 a5 a2

    ,1

    mtarget refi i j i

    j

    a βλ γ λ=

    = ⋅ ∏

    ,,

    ,

    ( 0)1 ( 0)

    j j ij i

    j i

    a if pif p

    α≠

    = =

    1100100

    1

    2

    5

    11

    11

    aa

    a

    1 1 2 5( )target ref1 a a aλ γλ=

    EMi

    Ecuacion de Poder

    EMi

    Enzyme activity profile

    Optimal β=1

    Page 54 Guillermo R. Castro

  • pykF knockout in a metabolic network

    74 EMs

    Glc

    G6P

    F6P

    GAP

    6PG

    Ru5P

    E4P

    Sed7P

    PEP

    AcCoA

    ICT

    AKGMAL

    OAA

    Acetate

    PYR

    glycolysis

    Pentose PhosphatePathways

    TCA cycle

    1, pts

    2, pfkA

    3, gapA

    4, pykF

    5, aceE6, pta

    7, gltA

    8, icdA

    9, sucA

    10, mdh

    11, ppc

    12, mez

    18, pgi

    13, zwf

    15, ktkA

    14, gnd

    16, tktB

    17, talB

    19

    20

    21

    22

    24

    25

    29

    30

    27

    28

    23

    26

    Page 55 Guillermo R. Castro

    pykF Piruvato kinasa

    Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli

  • Guillermo R. Castro Page 56

  • Effecto del numero de

    enzimas integradas en el

    error del modelo de

    Control de Flujo por

    Enzimas (ECF)

    5

    10

    15

    20

    25

    30

    0 2 4 6 8 10

    Mod

    el E

    rror

    Number of Integrated Enzymes

    => A mayor N de enzimas en el modelo => mayor

    exactitud de calculo.

    Page 57 Guillermo R. Castro

  • Exactitud de la Prediction del ECF

    Gene deletion Number of enzymes used for

    prediction

    Prediction accuracy (control: no enzyme activity

    profile is used) pykF 11 +++

    ppc 8 +++

    pgi 5 +

    cra 6 +++

    gnd 4 +

    fnr 6 +++

    FruR 6 +++

    58 Guillermo R. Castro

  • ECF provee una correlacion

    cuantitativa entre los perfiles de

    actividad enzimatica y la

    distribucion de flujos

    VENTAJAS del ECF

    Page 59 Guillermo R. Castro

  • Modificacion genetica

    de Flujos

    Quanyu Zhao, Hiroyuki Kurata, Genetic modification of flux for flux prediction of mutants, Bioinformatics, 25: 1702-1708, 2009

    Page 60 Guillermo R. Castro

  • Gene expression (enzyme activity) profile

    Metabolic Networks /gene deletion

    Distribucion de flujos Metabolicos

    Metabolic flux distribution for genetic mutants

    ECF MOMA/rFBA

    Prediccion de la distribucion de flujos en mutantes geneticos

    Page 61

    MOMA mimimalizacion

    de ajustes metabolicos

    (FBA Analisis de

    Balance de flujos)

    ECF Enzyme Control

    Flux

    Guillermo R. Castro

  • Flow chart of GMF

    Gene expression (enzyme activity) profile

    Metabolic networks /genetic modification

    Metabolic flux distribution

    Metabolic flux distribution for genetic mutants

    mCEF

    ECF

    Page 62 Guillermo R. Castro

    Control effective fluxes (CEFs)

    mCEF modified Control Effective

    Flux

  • Expected advantage of GMF

    • Available to gene knockout, over-expressing or under-expressing

    mutants

    • MOMA/rFBA are available only for gene deletion, because they use Boolean Logic.

    Page 63 Guillermo R. Castro

  • Control Effective Flux (CEF)

    Transcript ratio for the growth on glycerol versus glucose

    Stelling J, et al, Nature, 2002, 420, 190-193

    ( 2)( 1, 2)

    ( 1)i

    ii

    cef ss s

    cef sΘ =

    Transcript ratio of metabolic genes

    CEFs for different substrates glucose, glycerol and acetate.

    64 Guillermo R. Castro

  • GMF = mCEF+ECF

    m mv = P λ⋅

    ( )( , )( )

    ii

    i

    mCEF mw mmCEF w

    Θ =

    S (Stoichiometric matrix)

    w wv = P λ⋅

    P (EMs matrix) mCEF

    ECF

    mCEF

    WT

    Mutant

    wiλ λ

    1

    nmi p

    p

    γ=

    = ⋅ Θ∏

    Experimental data Page 65 Guillermo R. Castro

  • mCEF is an extension of CEF (control efectivo de flujo)

    (if reaction is modified)1 (if reaction is not modified)

    ii

    EAP ii

    η

    =

    , ,

    max,

    ( )1( )

    j CELLOBJ i jj

    iCELLOBJ j CELLOBJ

    j

    pmCEF w

    p

    ε

    ε

    ⋅=

    ∑∑

    ( )( , )( )

    ii

    i

    mCEF mutw mutmCEF w

    Θ =

    ( ),

    ,,

    CELLOBJ j jmj CELLOBJ

    i j ii

    p EA

    η

    ⋅=

    ⋅∑

    ( ), ,max

    ,

    1( )

    mj CELLOBJ i j i

    ji m

    CELLOBJ j CELLOBJj

    pmCEF mut

    p

    ε η

    ε

    ⋅ ⋅=

    ∑∑

    available for Genetically modification mutants:

    Up-regulation Down-regulation Deletion

    Page 66 Guillermo R. Castro

    En rojo: parametro que incopora el cambio en cada modifcacion de las reacciones. En azul: el costo que requiere para modificar el gen Y es usado para contrapesar los cambios de EM

  • Ishi

    i N, e

    t al.

    Sc

    ienc

    e 31

    6 :

    593-

    597,

    2007

    mCEF predicts the transcript ratio of a mutant to wild type

    67 Guillermo R. Castro

  • Comparison of GMF(CEF+ECF) with FBA and MOMA for E. coli gene deletion mutants

    Characterization of GMF

    Page 68 Guillermo R. Castro

  • • FBA

    • MOMA

    ,min ,max

    00

    [ , ] 1,...,

    biomass

    k

    i i i

    Maximize v subject to S vvv v v i n

    ⋅ ==

    ∈ =

    2

    1

    ,min ,max

    ( )

    00

    [ , ] 1,...,

    N

    i ii

    k

    i i i

    Minimize w x

    subject to S vvv v v i n

    =

    ⋅ ==

    ∈ =

    Vk is the flux of gene knockout reaction k

    Vk is the flux of gene knockout reaction k

    69 Guillermo R. Castro

  • Prediction of the flux distribution of an E. coli zwf mutant by GMF, FBA, and MOMA

    Zhao J, Baba T, Mori H, Shimizu K.

    Appl M icrobiol Biotechnol. 2004;64(1):91-8.

    Page 70 Guillermo R. Castro

  • Prediction of the flux distribution of an E. coli gnd mutant by CEF+ECF, FBA, and MOMA

    Zhao

    J, B

    aba

    T, M

    ori H

    , Shi

    miz

    u K.

    App

    l Mic

    robi

    ol

    Bio

    tech

    nol.

    2004

    ;64(

    1):9

    1-8.

    Page 71 Guillermo R. Castro

    gnd, gluconato P-DH

  • Prediction of the flux distribution of an E. coli ppc mutant by CEF+ECF, FBA, and MOMA

    Peng

    LF,

    Ara

    uzo-

    Brav

    o M

    J, S

    him

    izu

    K. F

    EMS

    Mic

    robi

    ol

    Lett

    ers,

    200

    4, 2

    35(1

    ): 1

    7-23

    Page 72 Guillermo R. Castro

    Ppc. PEP carboxylase

  • Prediction of the flux distribution of an E. coli pykF mutant by CEF+ECF, FBA, and MOMA

    Sidd

    ique

    e KA

    , Ara

    uzo-

    Brav

    o M

    J, S

    him

    izu

    K.

    App

    l Mic

    robi

    ol B

    iote

    chol

    200

    4, 6

    3(4)

    :407

    -417

    Page 73 Guillermo R. Castro

    pykF, Piruvate Kinase

  • Prediction of the flux distribution of an E. coli pgi mutant by CEF+ECF, FBA, and MOMA

    Hua

    Q, Y

    ang

    C, B

    aba

    T, M

    ori H

    , Shi

    miz

    u K.

    J

    Bac

    teri

    ol 2

    003,

    185

    (24)

    :705

    3-70

    67

    Page 74 Guillermo R. Castro

    pgi, Phosphoglucose isomerase

  • Prediction errors of FBA, MOMA and GMF for five mutants of E. coli

    Method zwf gnd pgi ppc pykF

    FBA 18.38 14.76 23.68 29.92 21.10

    MOMA 18.06 14.27 29.38 19.79 25.83

    GMF 6.43 9.21 18.47 18.95 20.46

    Model Error = Difference in the flux distributions between WT & a mutant

    75 Guillermo R. Castro

  • Is GMF applicable to over-expressing or less-expressing mutants?

    (FBA and MOMA are not applicable to these mutants.)

    Page 76 Guillermo R. Castro

  • Up/down-regulation mutants FBP over-expressing mutant of C. glutamicum G6P dehydrogenase over-expressing mutant of C. glutamicum gnd deficient mutant of C. glutamicum G6P dehydrogenase over-expressing mutant of E. coli

    77 Guillermo R. Castro

  • Summary of GMF • mCEF is combined to ECF for the accurate

    prediction of flux distribution of mutants. • GMF is applied to the mutants where an

    enzyme is over-expressed, less-expressed. It has an advantage over rFBA and MOMA.

    Page 78 Guillermo R. Castro

  • Conclusiones

    • ECF is available for the quantitative correlation between an enzyme activity profile and its associated flux distribution

    • GMF is a new tool for predicting a flux distribution for genetically modified mutants.

    Page 79 Guillermo R. Castro

  • Guillermo R. Castro Page 80

  • Guillermo R. Castro 81

    Clase 4: Balance de Flujos Metabólicos 2 Flujo metabólico �(def.)Vias en E. coliSlide Number 4Slide Number 5De genes a flujos metabolicos Slide Number 7Slide Number 8E. coli K12Modelo iAF1260 de E. coli K 12A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information�Mol Syst Biol. 2007; 3: 121. Modelo iAF1260 de E. coli K 12Glucosa, �eje central� del �metabolismoGlicólisis – fase preparatoriaGlicólisis – fase de síntesisGlicólisis – resumen energéticoUn problema a ser resuelto�S. cerevisaeUn problema� a ser resueltoSe pueden determinar los flujos utilizando datos expresion genicaSlide Number 20Transcriptoma & proteomaSlide Number 22Slide Number 23Slide Number 24Agrupamiento de genes por similaridad de secuenciasAnalisis de varianzaResultadosStatistical description of gene-expression and flux changesSlide Number 29Geometry of the sampling methodComparison between the Hit and Run algorithm and the sampling of the convex basis.Assignment of regulatory characteristicsSome resultsTranscription factor enrichment (very significant for many TFs)Slide Number 35The role of constraintsHow does the cell “choose” its metabolic state?Aerobic and oxygen limited chemostats Anaerobic chemostat and glucose excess batchSlide Number 40Slide Number 41Slide Number 42Para mutantes con genes delecionados se empela un flujo de estado estacionario predecido mediante logica boleanaSlide Number 44Slide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51Slide Number 52Slide Number 53Slide Number 54Slide Number 55Slide Number 56Slide Number 57Exactitud de la Prediction del ECFSlide Number 59Modificacion genetica �de FlujosSlide Number 61Flow chart of GMFExpected advantage of GMFControl Effective Flux (CEF)Slide Number 65Slide Number 66Slide Number 67Slide Number 68Slide Number 69Prediction of the flux distribution of an E. coli zwf mutant by GMF, FBA, and MOMAPrediction of the flux distribution of an E. coli gnd mutant by CEF+ECF, FBA, and MOMAPrediction of the flux distribution of an E. coli ppc mutant by CEF+ECF, FBA, and MOMAPrediction of the flux distribution of an E. coli pykF mutant by CEF+ECF, FBA, and MOMAPrediction of the flux distribution of an E. coli pgi mutant by CEF+ECF, FBA, and MOMASlide Number 75Slide Number 76Up/down-regulation mutantsSummary of GMFConclusionesSlide Number 80Slide Number 81