30
Calculus of Variations Functional Euler’s equation V-1 Maximum and Minimum of Functions V-2 Maximum and Minimum of Functionals V-3 The Variational Notaion V-4 Constraints and Lagrange Multiplier Euler’s equation Functional V-5 Approximate method 1. Method of Weighted Residuals Raleigh-Ritz Method 2. Variational Method Kantorovich Method Galerkin method

Calculus of Variations

  • Upload
    may

  • View
    58

  • Download
    4

Embed Size (px)

DESCRIPTION

Calculus of Variations. Functional Euler’s equation V-1 Maximum and Minimum of Functions V-2 Maximum and Minimum of Functionals V-3 The Variational Notaion V-4 Constraints and Lagrange Multiplier Euler’s equation Functional - PowerPoint PPT Presentation

Citation preview

Page 1: Calculus of Variations

Calculus of VariationsFunctional Euler’s equationV-1 Maximum and Minimum of FunctionsV-2 Maximum and Minimum of FunctionalsV-3 The Variational NotaionV-4 Constraints and Lagrange Multiplier

Euler’s equation FunctionalV-5 Approximate method 1. Method of Weighted Residuals

Raleigh-Ritz Method

2. Variational MethodKantorovich Method

Galerkin method

Page 2: Calculus of Variations

2

V-1 Maximum and Minimum of Functions

Maximum and Minimum of functions

(a) If f(x) is twice continuously differentiable on [x0 , x1] i.e.

Nec. Condition for a max. (min.) of f(x) at is that

Suff. Condition for a max (min.) of f(x) at are that also ( )

(b) If f(x) over closed domain D. Then nec. and suff. Condition for a max. (min.) i = 1,2…n and also that is a negative infinite .

0 1[ , ]x x x 0F x

0 1[ , ]x x x 0F x

0F x 0F x

D D 0

0x xi

fx

of f(x) at x0 are that

0

2

x xi j

fx x

Part A Functional Euler’s equation

Page 3: Calculus of Variations

3

(c) If f(x) on closed domain D If we want to extremize f(x) subject to the constraints i=1,2,…k ( k < n )

Ex :Find the extrema of f(x,y) subject to g(x,y) =0 (i) 1st method : by direct diff. of g

1( , , ) 0i ng x x

0x ydg g dx g dy

x

y

gdy dx

g

0x ydf f dx f dy

( ) 0xx y

y

gf f dxg

To extremize f

Page 4: Calculus of Variations

4

We have and

to find (x0,y0) which is to extremize f subject to g = 0

0x y y xf g f g 0g

(ii) 2nd method : (Lagrange Multiplier)

extrema of v without any constraint extrema of f subject to g = 0

To extremize v

( , , ) ( , ) ( , )v x y f x y g x y

0x xv f gx

0y y

v f gy

0x y y xf g f g

0v g

Let

We obtain the same equations to extrimizing. Where is called The Lagrange Multiplier.

Page 5: Calculus of Variations

5

V-2 Maximum and Minimum of Functionals

2.1 What are functionals.

Functional is function’s function.

2.2 The simplest problem in calculus of variations.Determine such that the functional :

where over its entire domain , subject to y(x0) = y0 , y(x1) = y1at the end points.

1

0

, ,x

xI y x F x y x y x dx

20 1( ) [ , ]y x c x x

2F c

as an extrema

1y 2y

( )y x

1x 2x( )x

( ) ( )y x x

x

y

Page 6: Calculus of Variations

6

On integrating by parts of the 2nd term

------- (1)

since and since is arbitrary.

-------- (2) Euler’s Equation

Natural B.C’s

or /and

The above requirements are called national b.c’s.

0)],,(),,([]),,([ 1

0

1

0 dxyyxFyyxF

dxdyyxF

x

x yyxxy

0 1( ) ( ) 0x x ( )x

( , , ) ( , , ) 0y yd F x y y F x y ydx

0

0x

Fy

1

0x x

Fy

Page 7: Calculus of Variations

7

Variations

Imbed u(x) in a “parameter family” of function the variation of u(x) is defined as

The corresponding variation of F , δF to the order in ε is ,

since

and

( , ) ( ) ( )x u x x

( )u x

1

0

( ) ( , , ) ( )x

xI u F x u u dx G

( , ) ( , , )F F x y y F x y y F Fy yy y

1

0

( , , )x

xI F x y y dx

1

0

( , , )x

xF x y y dx

Then

1

0

x

x

F Fy y dxy y

V-3 The Variational Notation

Page 8: Calculus of Variations

8

Thus a stationary function for a functional is one for which the first variation = 0.

For the more general cases

,

11

00

xx

xx

F d F Fydx yy dx y y

1

0

( , , z ; , z )x

xI F x y y dx Ex :

Ex : ( , , , , )x yRI F x y u u u dxdy

Euler’s Eq.

Euler’s Eq.

Fy

( ) 0F d Fy dx y

( ) 0F d F

z dx z

(b) Several Independent variables.

(a) Several dependent variables.

( ) ( ) 0x y

F F Fu x u y u

Page 9: Calculus of Variations

9

Variables Causing more equation.

Order Causing longer equation.

Ex :1

0

( , , , )x

xI F x y y y dx

Euler’s Eq.2

2( ) ( ) 0F d F d Fy dx y dx y

(C) High Order.

Page 10: Calculus of Variations

10

V-4 Constraints and Lagrange Multiplier

Lagrange multiplier can be used to find the extreme value of a multivariate function f subjected to the constraints.

Ex : (a) Find the extreme value of

------------(1) From -----------(2)

1

0

( , , , , )x

x xxI F x u v u v dx

1 1( )u x u 2 2( )u x u1 1( )v x v 2 2( )v x v

where

and subject to the constraints

( , , ) 0G x u v

2

1

0x

xx x

F d F F d FI u v dxv dx u v dx v

Lagrange multiplier

Page 11: Calculus of Variations

11

Because of the constraints, we don’t get two Euler’s equations.

From

The above equations together with (1) are to be solved for u , v.

0G GG u vu v

v

u

G v uG

So (2)

1

0

0x

v

xu x x

G F d F F d FI vdxG u dx u v dx v

0x x

G F d F G F d Fv u dx u u v dx v

Page 12: Calculus of Variations

12

(b) Simple Isoparametric Problem

To extremize , subject to the constraint :(1)

(2) y (x1) = y1 , y (x2) = y2

Take the variation of two-parameter family :(where and are some equations which satisfy )

2

1

, ,x

xI F x y y dx

2

1

, , .x

xJ G x y y dx const

1 1 2 2y y y x x 1 x 2 x

1 1 2 1 1 2 2 2 0x x x x

Then ,

To base on Lagrange Multiplier Method we can get :

2

11 2 1 1 2 2 1 1 2 2( , ) ( , , )

x

xI F x y y dx

2

11 2 1 1 2 2 1 1 2 2( , ) ( , , )

x

xJ G x y y dx

Page 13: Calculus of Variations

13

1 2 0

1

0I J

1 2 0

2

0I J

2

1

0x

ix

F d F G d G dxy dx y y dx y

i = 1,2

So the Euler equation is :

when , is arbitrary numbers.

The constraint is trivial, we can ignore .

0dF G F Gy dx y

0G d Gy dx y

Page 14: Calculus of Variations

14

( , , ) ( , )sin( )f x y t P x y t

( , )sin( )u v x y t

2 2

2 22 2( ) 0v vc v px y

Euler’s equation Functional

Examples

we may write the steady state disp u in the form

if the forcing function f is of the form

(1)

2 2 22

2 2 2( ) ( , , )u u uc f x y tt x y

Ex : Force vibration of a membrane.

-----(1)

Helmholtz Equation

Page 15: Calculus of Variations

15

2 22 2

2 2( ) 0R

v vc v p vdxdyx y

-----(2)

2xxR

c v vdxdy2 [( ) ]x x x xRc v v v v dxdy

Consider

2yyR

c v vdxdy2

y y y y[( ) ]R

c v v v v dxdy ( )x x xx x xv v v v v v ( )y y yy y yv v v v v v

cos sinn i j

x yV V i V j x xV v v

y yV v v

yx( v)( v)=yx

VVVx y x y

Note that

Page 16: Calculus of Variations

16

2 2xx yyR R

c v vdxdy c v vdxdy

2 2 21sin ( )2y yR

c v v ds c v dxdy

(2)

2 2 2 21( cos sin ) [( ) ( ) ]2x y x yR

c v v vds c v v dxdy

2

21 ( ) 02R R

v dxdy P vdxdy

2 2 2 2 21 1[ ( ) ] 02 2R

vc vds c v v Pv dxdyn

( )V da V nds ( cos sin )dsx yv v v v

2 2 21cos ( )2x xR

c v v ds c v dxdy

Page 17: Calculus of Variations

17

Hence : (i) if is given on i.e. on

then the variational problem

-----(3)

(ii) if is given on the variation problem is same as (3)

(iii) if is given on

( , )v f x y0v

2

2 2 21[ ( ) ] 02 2R

c v v pv dxdy

0vn

( )v sn

2 2 2 2 21 1[ ( ) ] 02 2Rc v v pv dxdy c vdx

Page 18: Calculus of Variations

18

Ex : Steady state Heat condition

in D( ) ( , )k T f x T

B.C’s : on B1

on B2

on B3

multiply the equation by , and integrate over the domain D. After integrating by parts, we find the variational problem as follow.

with T = T1 on B1

1T T2kn T q

3( )kn T h T T

T

0

21[ ( ) ( , )2

T

D Tk T f x T dT d

2 3

22 3

1 ( ) ] 02B B

q Td h T T d

Diffusion Equation

Page 19: Calculus of Variations

19

2 2 0 on

in R

Ex : Torsion of a primatri Bar

where is the Prandtl stress function and , The variation problem becomes

with on

z Gy

zy x

2[( ) 4 ] 0RD dxdy

0

Poison Equation

Page 20: Calculus of Variations

20

V-5-1 Approximate Methods

(I) Method of Weighted Residuals (MWR)

in D+homo. b.c’s in BAssume approx. solution

where each trial function satisfies the b.c’sThe residual

In this method (MWR), Ci are chosen such that Rn is forced to be zero in an average

sense.

i.e. < wj, Rn > = 0, j = 1,2,…,nwhere wj are the weighting functions..

[ ] 0L u

1

n

n i ii

u u C

i

[ ]n nR L u

Page 21: Calculus of Variations

21

(II) Galerkin Method wj are chosen to be the trial functions hence the trial functions is chosen as members of a complete set of functions.

Galerkin method force the residual to be zero w.r.t. an orthogonal complete set.

j

Ex: Torsion of a square shaft2 2

0 ,on x a y a

(i) one – term approximation2 2 2 2

1 1( )( )c x a y a 2 2 2

1 12 2 [( ) ( ) ] 2iR c x a y a 2 2 2 2

1 ( )( )x a y a

Page 22: Calculus of Variations

22

From 1 1 0a a

a aR dxdy

1 2

5 18

ca

therefore

2 2 2 21 2

5 ( )( )8

x a y aa

the torsional rigidity

41 2 0.1388 (2 )

RD G dxdy G a

the exact value of D is

40.1406 (2 )aD G a

the error is only -1.2%

Page 23: Calculus of Variations

23

2 2 2 2 2 22 1 2( )( )[ ( )]x a y a c c x y

By symmetry → even functions

2 2 2R 2 2 2 2

1 ( )( )x a y a 2 2 2 2 2 2

2 ( )( )( )x a y a x y

From 2 1 0RR dxdy

and 2 2 0RR dxdy

we obtain

1 22 2

1295 1 525 1,2216 4432

c ca a

therefore4

2 22 0.1404 (2 )R

D G dxdy G a the error is only -0.14%

(ii) two – term approximation

Page 24: Calculus of Variations

24

(I) Kantorovich Method

1

( )n

i n ii

u C x U

Assuming the approximate solution as :

where Ui is a known function decided by b.c. condition.

Ex : The torsional problem with a functional “I”.

2 2( ) [( ) ( ) 4 ]a b

a b

u uI u u dxdyx y

V-5-2 Variational Methods

Ci is a unknown function decided by minimal “I”. Euler Equation of Ci

Page 25: Calculus of Variations

25

Assuming the one-term approximate solution as :

2 2( , ) ( ) ( )u x y b y C x Then,

2 2 2 2 2 2 2 2(C) {( ) [C ( )] 4 C ( ) 4( )C( )}a b

a bI b y x y x b y x dxdy

Integrate by y

5 2 3 2 316 8 16(C) [ C C C]15 3 3

a

aI b b b dx

Euler’s equation is

2 2

5 5C ( ) C( )2 2

x xb b

where b.c. condition is C( ) 0a

General solution is

1 25 5C( ) A cosh( ) A sinh( ) 12 2x xxb b

Page 26: Calculus of Variations

26

1 21A , A 0

5cosh( )2ab

where

and

5cosh( )2C( ) 15cosh( )2

xbxab

So, the one-term approximate solution is

2 2

5cosh( )2u 1 ( )5cosh( )2

xb b yab

Page 27: Calculus of Variations

27

(II) Raleigh-Ritz Method

This is used when the exact solution is impossible or difficult to obtain.

First, we assume the approximate solution as :

Where, Ui are some approximate function which satisfy the b.c’s.Then, we can calculate extreme I .

choose c1 ~ cn i.e.

1

n

i ii

u CU

1( , , )nI I c c 1

0n

I Ic c

y xy x (0) (1) 0y y

1

00y xy x ydx

1 2 2

0

1 12 2

I y xy xy dx

Ex: , Sol :From

Page 28: Calculus of Variations

28

Assuming that

(1)One-term approx

(2)Two-term approx

21 2 31y x x c c x c x

21 11y c x x c x x 1 1 2y c x

1 2 2 2 2 3 4 21 1 1 10

1 1 4 4 22 2

xI c c x x c x x x c x x x dx 2 2

1 11

4 1 2 1 1 11 22 3 2 4 5 6 3 4c c c

2 1

119

120 12cc

1

0Ic

1

19 1 060 12c

1 2(1 )( )y x x c c x 2 2 31 2( ) ( )c x x c x x

(1) 0.263 (1 )y x x 1 0.263c

Then,

Page 29: Calculus of Variations

29

Then 21 2(1 2 ) (2 3 )y c x c x x

1 2 2 2 31 2 1 1 20

1( , ) [ 1 4 4 2 2 7 62

I c c c x x c c x x x 2 2 3 4 2 3 4 5 4 5 6

3 1 1 21(4 12 9 ) 2 2 22

c x x x c x x x c c x x x

2 5 6 7 2 3 3 42 1 2( 2 ) ]c x x x c x x c x x dx

21

1 24 1 2 1 7 3 1 1 11 2 1

2 3 4 5 6 3 2 5 3 7c c c

2

1 1 24 9 1 2 932 3 5 6 7 8 12 20c c c

2 2 1 2

1 1 2 219 11 107120 70 1680 12 20

c cc c c c

Page 30: Calculus of Variations

30

0.317 c1 + 0.127 c2 = 0.05 c1 = 0.177 , c2 = 0.173

1

0Ic

1 2

19 11 160 70 12c c

2(2) (0.177 0.173 )(1 )y x x x

( It is noted that the deviation between the successive approxs. y(1) and y(2) is found to be smaller in magnitude than 0.009 over (0,1) )

2

0Ic

1 211 109 170 840 20c c