45
University of Pennsylvania University of Pennsylvania ScholarlyCommons ScholarlyCommons Senior Design Reports (CBE) Department of Chemical & Biomolecular Engineering 4-2016 C4 Operations Optimization C4 Operations Optimization Michael Moroney University of Pennsylvania, [email protected] Evan M. Smith University of Pensylvania, [email protected] Marissa E. Thompson University of Pennsylvania, [email protected] Fernando Torres University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cbe_sdr Part of the Biochemical and Biomolecular Engineering Commons Moroney, Michael; Smith, Evan M.; Thompson, Marissa E.; and Torres, Fernando, "C4 Operations Optimization" (2016). Senior Design Reports (CBE). 80. https://repository.upenn.edu/cbe_sdr/80 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/80 For more information, please contact [email protected].

C4 Operations Optimization

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: C4 Operations Optimization

University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Senior Design Reports (CBE) Department of Chemical & Biomolecular Engineering

4-2016

C4 Operations Optimization C4 Operations Optimization

Michael Moroney University of Pennsylvania, [email protected]

Evan M. Smith University of Pensylvania, [email protected]

Marissa E. Thompson University of Pennsylvania, [email protected]

Fernando Torres University of Pennsylvania, [email protected]

Follow this and additional works at: https://repository.upenn.edu/cbe_sdr

Part of the Biochemical and Biomolecular Engineering Commons

Moroney, Michael; Smith, Evan M.; Thompson, Marissa E.; and Torres, Fernando, "C4 Operations Optimization" (2016). Senior Design Reports (CBE). 80. https://repository.upenn.edu/cbe_sdr/80

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/80 For more information, please contact [email protected].

Page 2: C4 Operations Optimization

C4 Operations Optimization C4 Operations Optimization

Abstract Abstract The primary objective of the project chronicled in this report was to design a model that optimizes C4 operations. This model will optimize the options for processing both “crude C4” and “Cat BB” streams, taking the feed stream makeup, market pricings, and capacity constraints into account. Crude C4 streams contain butanes, butenes, and butadienes, while “Cat BB” streams are similar in makeup but do not include butadienes.

It is assumed that the equipment for all unit operations is readily available. In addition, the plant will already have a baseload of feedstock that does not fully utilize all the equipment in the plant, which allows for the purchase of feedstock that could potentially be profitable.

Available unit operations include Butadiene extraction, MTBE production, Metathesis, 1-Butene distillation, Skeletal Isomerization, Olefin Isomerization, and Alkylation. The model will be required to make choices about which unit operations to utilize based on the constraints input by the user. While the model will not directly produce revenue, it will allow the company to optimize processes within the plant, finding the most profitable situation. Thus, it will be possible to assess the program’s value based on its accuracy.

Disciplines Disciplines Biochemical and Biomolecular Engineering | Chemical Engineering | Engineering

This working paper is available at ScholarlyCommons: https://repository.upenn.edu/cbe_sdr/80

Page 3: C4 Operations Optimization

UniversityofPennsylvaniaSchoolofEngineeringandAppliedScienceDepartmentofChemicalandBiomolecularEngineering220South33rdStreetPhiladelphia,PA19104

April12,2016

DearProfessorFabiano,Dr.Shieh,andMr.Sawyer,

Thefollowingreportcontainsourproject,C4OperationsOptimization,whichwas

recommendedbyMr.GarySawyer.TheoptimizationprogramusesMicrosoftExcelto

determinetheoptimalprocessingofacrudeC4stream,andutilizesunitoperationsatan

existingpetrochemicalplant.Givenfeedstreammakeup,marketpricings,andcapacity

constraints,theoptimizationprogramwedesignedisabletodeterminethemostprofitable

courseofactionforthepetrochemicalplantinquestion.

Ourreportcontainsdetailedinformationontheprogramthatwasdesigned,aswellas

informationonunitoperations,marketanalysis,utilityandcapacityrequirements,and

customerrequirements.Adiscussionoftypicalscenariosisalsoincluded,aswellasasensitivity

analysisandaninvestmentopportunityanalysis.Theprogramisuser-friendlyandcanbe

modifiedtofitthespecificationsofthepetrochemicalplantinquestion,meetingthe

requirementslaidoutintheprojectstatement.Thegrouprecommendsthatthecompany

beginuseofthisprogramimmediatelybecauseitcansignificantlyincreasecompanyprofits.

Suggestionsforimprovementstothecodeoftheprojectprogramareincludedinthisreportas

well.

Sincerely,

________________________________________________________

MichaelMoroney EvanSmith MarissaThompson FernandoTorres

Page 4: C4 Operations Optimization

OptimizationModelforaCrudeC4Refinery

ReportAuthoredby:MichaelMoroney,UniversityofPennsylvania

EvanSmith,UniversityofPennsylvaniaMarissaThompson,UniversityofPennsylvaniaFernandoTorres,UniversityofPennsylvania

FacultyConsultant:

Dr.WenShieh,Professor,UniversityofPennsylvania

PrimaryIndustryConsultant:Mr.GarySawyer

April12th,2016

Page 5: C4 Operations Optimization

Table of Contents

Abstract..................................................................................................................................1

Introduction...........................................................................................................................1ProjectCharter.................................................................................................................................3

MarketandCompetitiveAnalyses..........................................................................................3MarketAnalysisforCompounds.......................................................................................................3

EffectofdecreaseinoilpricesoncrackersinEurope.........................................................................4Ethylene...............................................................................................................................................4Propylene.............................................................................................................................................41-Butene..............................................................................................................................................4Methanol.............................................................................................................................................5MTBE....................................................................................................................................................6Butadiene............................................................................................................................................6N-Butaneandi-Butane........................................................................................................................6

CompetitiveAnalysisforModel.......................................................................................................7

CustomerRequirements.........................................................................................................7

ProductConcepts....................................................................................................................7SuperiorConcept.............................................................................................................................8Assumptions....................................................................................................................................8DescriptionofModel........................................................................................................................9

SpreadsheetLayout.............................................................................................................................9TheLandingPage...............................................................................................................................103DSensitivityAnalysis.......................................................................................................................13InvestmentAnalysis...........................................................................................................................13ProfitBreakdown...............................................................................................................................16DetailedFlowDiagram......................................................................................................................17FeedInformation...............................................................................................................................19PricingInformation............................................................................................................................20ProcessSheets(ExtractiveDistillation)..............................................................................................21

UsingtheModel.............................................................................................................................22CaseStudy.....................................................................................................................................24UnitOperationsDescriptions.........................................................................................................29

ButadieneExtraction.........................................................................................................................29MTBEProduction...............................................................................................................................29Metathesis.........................................................................................................................................301-ButeneDistillation..........................................................................................................................30SkeletalIsomerization........................................................................................................................30OlefinIsomerization..........................................................................................................................31Alkylation...........................................................................................................................................32

Page 6: C4 Operations Optimization

Hydrogenation...................................................................................................................................32UtilityandCapacityRequirements.................................................................................................32

Metathesis(UOPOleflex)..................................................................................................................33Alkylation(DupontSTRATCO)............................................................................................................33MTBEProduction(UOPEthermax)....................................................................................................33ButadieneExtraction(BASF)..............................................................................................................34Hydrogenation(HülsSelectiveHydrogenationProcess)...................................................................34SkeletalHydrogenation(SKIPProcess)..............................................................................................341-ButeneDistillation..........................................................................................................................35

ConclusionandRecommendations.......................................................................................36

Acknowledgements..............................................................................................................36

WorksCited..........................................................................................................................38

Page 7: C4 Operations Optimization

1

AbstractTheprimaryobjectiveoftheprojectchronicledinthisreportwastodesignamodelthat

optimizesC4operations.Thismodelwilloptimizetheoptionsforprocessingboth“crudeC4”

and“CatBB”streams,takingthefeedstreammakeup,marketpricings,andcapacityconstraints

intoaccount.CrudeC4streamscontainbutanes,butenes,andbutadienes,while“CatBB”

streamsaresimilarinmakeupbutdonotincludebutadienes.

Itisassumedthattheequipmentforallunitoperationsisreadilyavailable.Inaddition,the

plantwillalreadyhaveabaseloadoffeedstockthatdoesnotfullyutilizealltheequipmentin

theplant,whichallowsforthepurchaseoffeedstockthatcouldpotentiallybeprofitable.

AvailableunitoperationsincludeButadieneextraction,MTBEproduction,Metathesis,1-Butene

distillation,SkeletalIsomerization,OlefinIsomerization,andAlkylation.Themodelwillbe

requiredtomakechoicesaboutwhichunitoperationstoutilizebasedontheconstraintsinput

bytheuser.

Whilethemodelwillnotdirectlyproducerevenue,itwillallowthecompanytooptimize

processeswithintheplant,findingthemostprofitablesituation.Thus,itwillbepossibleto

assesstheprogram’svaluebasedonitsaccuracy.

IntroductionCrudeC4sandCatBBsareproductsofthesteamcrackingprocessdesignedtoproduce

petrochemicals.Thesestreamscontainamixofbutanes,butenesandbutadienes.Often,

chemicalrefineryplantsopttoprocessandselltheseproducts,whichcallsfortheuseofan

optimizationprogramtodeterminethemostprofitablepathway.Bothbutadiene,whichcanbe

recoveredthroughextractivedistillation,and1-butene,whichcanberecoveredthrough

conventionaldistillation,arevaluablemonomersifhighinpurity.Inaddition,isobutylenecan

Page 8: C4 Operations Optimization

2

beprofitableasamonomer,butisoftenconvertedtomethyl-tertiarybutylether(MTBE),a

highoctanefueladditivethatistypicallymoreprofitable.Furthermore,therearemultiple

optionsfortheprocessingofcis-andtrans-2-butene.Theseoptionsincludealkylation,skeletal

isomerization,metathesis,andolefinisomerization.Alkylationrequiresisobutaneandproduces

alkylate,amotorfuel.Skeletalisomerizationallowsforanequilibriummixtureofbuteneand

isobutylenetoberecycledbacktotheMTBEreactionunittoincreaseprofit.Metathesis

requiresethyleneandproducespropylene,achemicaltypicallymorevaluablethanethylene.

Olefinisomerization,alsocommonlyknownasbuteneisomerizationorpositional

isomerization,allowsfortheproductionandrecuperationof1-butene,whichcanthenbesold.

Hydrogenationof2-buteneton-butaneisanadditional,albeitlessdesirable,option,wherethe

n-butaneissoldasfeedstock.

Thefocusofthisprojectwastocreateaprogramthatmadedecisionsbasedonfeedstock

composition,marketpricesofproducts,andcapacityconstraintsofunitoperationsintheplant

inordertomaximizeprofit.Theprogramwastoalsoexploretheopportunityofbuying

additionalfeedstockintheeventthatthebaseloaddidnotfullyutilizeequipmentcapacity.

Thisrequiredresearchonutilitycosts,capacityinformation,andthepetrochemicalmarket,as

wellasthecharacterizationoftypicalcrudeC4andcatBBstreams.Thesefactorsarediscussed

inthereport.ThemajorityoftheprojectinvolvedusingMicrosoftExceltobuildauser-friendly

modelthatcouldoptimizerefineryplantoperations.Additionalcalculationsincludedmaterial

balancesandprofitanalysis.

ThemodelinMicrosoftExcelwillbeusedbyalargepetrochemicalscompany.Itwillbe

designedtofitthespecificneedsofthecompany,andwillbeassessedbasedoneaseofuse

andonaccuracy.Itisassumedthatthecompanyinquestionalreadypossessesallofthe

necessaryequipmentfortheunitoperations,thusitwillnotbenecessarytopurchase

additionalunits.

Page 9: C4 Operations Optimization

3

ProjectCharter

Name:C4OperationsOptimization

ProjectStudents:MichaelMoroney,EvanSmith,MarissaThompson,andFernandoTorres

ProjectAdvisors:Mr.LeonardFabiano,Dr.WenK.Shieh,andMr.GarySawyer

SpecificGoals:ThedevelopmentofanoptimizationprogramtobeusedforC4optimization.

Scope:[InScope]

Capacityandutilitycostsofunitoperations

Typicalmarketpricingofproducts

EconomicAnalysis

ProgrammingandcodingtodesignoptimizationsprograminMicrosoftExcel

Massandenergybalances

[OutofScope]

ReactorDesign

Labworkandexperimentalprocedures

Deliverables:

Fullyfunctionaloptimizationprogramthatallowscustomizableuserinputs

Economicandmarketanalysis

Massandenergybalances(Incorporatedintomodel)

Timeline:Completionofdesignprojectwithinthe3monthsemester.

MarketandCompetitiveAnalyses

MarketAnalysisforCompoundsVolatilityinoilpricesgloballyfactorsintothepetrochemicalindustry.Withrecenthistorically

lowoilprices,manypetrochemicalcompanies,especiallythoseinEurope,havebenefitedfrom

anincreaseintheirmargins.

Page 10: C4 Operations Optimization

4

EffectofdecreaseinoilpricesoncrackersinEurope

CrackersinEurope(companieswhotakefeedstockandbreakitdowntomakeolefins)have

benefitedmostsincetheirmainfeedstockisnaphtha(C5-C8),adirectproductfromcrude.

Theirenergycostshavealsogonedown,sincetheyuseoiltofueltheircrackingoperations,as

opposedtotheUnitedStates,whichusesshalegas(andhasusuallyenjoyedmuchgreater

competitivenessthankstoitsprice).Thedropinoilpricesthencomesasareliefto

petrochemicalscompanies,consideringashowfeedstockandenergycostsaccountforcloseto

85%oftheoperatingcost.

However,theircustomershavenotenjoyedtheeffectsofthispricedrop.Manyofthese

companies,underthefinancialstraintheyusuallyface,failedtomakeadequateinvestments

thathavenowcostthemintheformofunprecedentedshutdowns.Thesehaveledtoa

decreaseinthesupplyoftheirproducts(ethylene,propylene,byproducts,andderivatives),

resultinginanincreaseinprice.16

Ethylene

Supplyforethylenewastightin2015,andlookstoremaintightin2016aswell.Priceshave

droppedingeneral,althoughthemarginfortheproducerhasincreasedbecauseofthelowoil

priceandthetightsupply.TheUSisexpectingtobeginatleast7large-scaleprojectstoincrease

theproductioncapacityofethyleneby50%overthenextfewyears.Itcanbeexpectedthatthe

increaseofethyleneproductioncapacitymayresultinagreaterquantityofcrudeC4.10,16

Propylene

Propylenesupplyisnotexpectedtobetightin2016.Demandforithasfallenrelativetothatof

ethylene,asitsderivatives’marketsdonothaveaspositive/steadyoutlooks.Themargingap

betweenethyleneandpropylenecontinuestobroaden.16,20

1-Butene

Linearlow-densitypolyethylene(LLDPE)iscurrentlythefastestgrowingapplicationforalpha

olefinssuchas1-butene,drivenbytheincreasingdemandforhigh-qualityplastics.Assuch,the

Page 11: C4 Operations Optimization

5

demandforalphaolefinsisexpectedtogrowglobally.Pricing,however,isinherently

dependentonthevolatilepricesoftherawmaterialsrequiredforproduction.

Methanol

Whilemethanolpricingshouldbeindependentofoilprices,becauseofMethanoltoOlefins

(MTO)andMethanoltoPropylene(MTP)processesthatareoperationalinChina,thepriceof

Methanolhasbeenimpacted.MTOandMTPprocessesthatproduceethyleneandpropylene

competewiththemoretraditionalapproachthatusesnaphthaasafeedstock.Sincethecosts

ofthistraditionalapproachwentdownbecauseofthedropincrudeprices,inorderto

compete,thepriceofmethanolalsodecreased.In2015,capacityintheUSformethanol

productionincreasedbymorethan75%.2016isexpectedtobestable.Pricingwasveryvolatile

duetotheuncertaintyinsupply,althoughcurrentpricesareata6-yearlow.3,21

Table 1: Chemical and Utility Prices

Material MED LOW HIGH CUSTOM Source Month YearEthylene $0.18 $0.15 $0.20 $0.18 Platt January 2016Propylene $0.30 $0.26 $0.34 $0.30 Platt January 20161-Butene $0.67 $0.64 $0.69 $0.67 Argus August 2015Methanol $0.41 $0.34 $0.29 $0.41 Platt January 2016MTBE $0.23 $0.20 $0.26 $0.23 Platt January 2016Butadiene $0.42 $0.36 $0.47 $0.42 Argus August 2015n-Butane $0.51 $0.51 $0.51 $0.51 Argus August 2015i-Butane $0.51 $0.51 $0.51 $0.51 Argus August 2015CrudeC4 $0.01 $1.26 $1.51 $0.01 Argus August 2015isobutylene $0.58 $0.55 $0.60 $0.58 Argus August 2015Alkylate $0.20 $0.20 $0.27 $0.20 OPIS February 2016Hydrogen $8.00 $8.00 $8.00 $8.00 Electricity $0.06 $0.06

“CostSheetOutline”onpage604ofDr.WarrenSeider’s

ProductandProcessDesign

Principles.

NA 2016

Steam(150psig) $10.50 $10.50Coolingwater $0.02 $0.02Processwater $0.20 $0.20boilerfeedwater $0.50 $0.50NaturalGas $3.20 $3.20ChilledWater $4.00 $4.00Steam(50psig) $6.60 $6.60

Page 12: C4 Operations Optimization

6

MTBE

ThemajorityofMTBE(95%)isusedtooxygenategasolineandboostitsoctanes.Althoughthe

supplyofMTBEisexpectedtodecreaseinEuropenextyear(2016),itisexpectedtogrowin

otheremergingeconomies.AsChinaandIndiaimposestricterenvironmentalrules,the

demandforMTBEisexpectedtoincrease.Throughout2015priceswerefairlyvolatile.7

Butadiene

MostButadieneisobtainedbyextractingitfromthecrudeC4whichresultsfromnaphtha

crackingtomakeolefins.IntheUS,roughly75%ofbutadieneisusedtoproducestyrene

butadienerubber(SBR),whichisusedintheproductionoftires.Ofthisabout80%isusedin

thereplacementtiremarket,whichhassufferedadropindemand.TheremainingButadiene

producedintheUSisusedtomakeacrylonitrile-butadiene-styrene(ABS),whichisusedto

makeplasticsforcars,amongstotherthings.Formostof2015,supplyremainedamplewitha

steadybutmediocredemand.Ingeneral,thepriceofButadienefellwiththepriceofoil,

althoughforperiodsin2015thepriceincreased,mostprobablyduetosupplyconstraints.

AnotherdevelopmenthasbeeninthetechnologiesusedtomakeButadiene.Whilethe

traditionalmethodemploysanaphthafeedstock,newmethodsexploreusinglighterfeedstocks

likeethane,whileothersexplorethedehydrogenationofn-butane.Overall,theviewofthe

Butadienemarketfromparticipantsispessimistic.ThemarketsofButadienecustomersare

expectedtodecrease,anddemandisexpectedtofurtherslow.6

N-Butaneandi-Butane

Abouttwo-thirdsofthebutaneproducedgloballyisusedinliquefiedpetroleumgas(LPG).

DemandforLPGasadomesticfuelhassurgedinbothcommercialandresidentialsectors,

leadingtothegrowthofthebutanemarket.Thetightsupplyofethylenehasalsocontributed

tothegrowthofthebutanemarket,sincebutanesareusedintheproductionofethylene.

Exceptionalgrowth,however,hasbeenheldbackbythevolatilecrudeoilmarketand

environmentalconcerns.Overall,themarketisexpectedtoincreasemodestly.16

Page 13: C4 Operations Optimization

7

CompetitiveAnalysisforModel

Althoughsimilarmodelsexistatcompetitorplants,becausethismodelisdesignedspecifically

fortheplantinquestion,thereisnodirectcompetitor.Sincethemodelhasbeencreatedfrom

scratchinMicrosoftExcel,therearenoconcernsaboutpatentinfringement.Thecompany

musthavealicenseforMicrosoftExceltorunthemodel,buttherearenootherroyaltiesor

feestooutsidepartiesthatthecompanyneedstopay.However,itisessentialthatthemodel

fitsallstandardssetbythecompanysothattheplantisabletoearnmoreprofitsandcompete

againstotherpetroleumplants.

CustomerRequirementsOurgrouphasbeenhiredbytheOperationsPlanningdepartmentofapetrochemicalcompany.

Aspreviouslystated,theprojectistodesignanoptimizationmodelthatwilldetermine

profitableopportunitiestobuyfeedstock.Thisprogrammustbeuser-friendly,andmustbe

demonstratedatthefinalpresentationsinAprilof2016.Thecustomerhasrequiredthatthe

modelfindoptimalprocessconfigurationsgivencapacityinformation,pricinginformation,and

thefeedcomposition.Typicalutilityinformationisalsorequiredforthemodeltofunction

correctly.Allofthesecustomerrequirementsareclassifiedasfitness-to-standard(FTS).Easeof

usecouldpotentiallybecategorizedasnew-unique-difficult(NUD),ascouldothervariables

suchaswarningsaboutunrealisticpricinginputs,orinfeasiblecapacityrestraintinputs.

Becausethisproductistobedesignedforaspecificcompany,itdoesnothavetocompetewith

thoseatothercompanies.However,itmustbeefficientandaccurate.Itmustoutperform

whateverpreviousmodelsthecompanyhasbeenusing,potentiallygivingthemacompetitive

edgeandallowingthemtoincreaseprofitsthroughthemostefficientuseofunusedcapacity.

ProductConceptsSeveraldifferentprogrammingtoolswereavailablefortheproductdesign.Thesetoolsincluded

MicrosoftExcel,Matlab,andpotentiallyASPENPlus.MicrosoftExcelfeaturesanadd-incalled

Page 14: C4 Operations Optimization

8

Solverthatservesasanoptimizationtool.Matlabcanalsobeusedtocreateextensive

operationsoptimization.Finally,ASPENPlusisanadditionaloption,howeveritrequires

differentinputsthantheMicrosoftExcelandMatlaboptions.

SuperiorConcept

TheprogrammingtoolselectedforthisproductdesignwasMicrosoftExcelandtheSolveradd-

in.Thisallowsforthedesignofanoptimizationmodelusingmultiplespreadsheetsforeachof

themassbalances.Inaddition,auser-friendly“landingpage”canbecreatedthatallowsthe

usertoinputthenecessaryconstraintsandprices.Furthermore,Solverblockscanbeeasily

troubleshootedandthefileitselfeasilyshared.TheExcelformatrequirescertainassumptions,

namelyutilitiesthatscalelinearlywithprocessthroughputinorderforthemodeltoprovidea

suggestedC4purchaseamountinatimelymanner.Whiletheassumptionofproportional

utilitiesintroducessomeerrorinthecostcalculations,particularlyinthe1-butenedistillation

andanyprocessunitrunningatverylowthroughput,themodelcanbeeasilyupdatedwith

utilityrequirementsobservedbyprocessoperators.

MatlabandASPENweredecidedagainstbecausetheydidnoteasilyallowforthesame

accessibilityandvisualoutputthatanExcelmodelcouldpossess.Matlabwouldhaverequired

theusertokeeptrackofaverylargeworkspaceofvariablesthatcouldcauseconfusionand

erroriftheuserdidnottakeextremecarewhenchangingmultipleprocessparameters.More

ofthecodingforgraphicalanalysiswouldhavebeenleftfortheusertoinput,restrictingthe

potentialuserstothoseinthecompanywithproficientMatlabskills.

Assumptions

Severalassumptionswerenecessaryinordertocreateaworkingoptimizationmodel.First,it

wasassumedthatutilitiesscalelinearlywiththroughput.Thisallowedthemodeltoquickly

provideapurchaseamountusingtheinformationavailabletothegroup.Itisalsoassumedthat

allunitoperationsexistatthegivenpetrochemicalsplant,andthattheseunitoperationsare

readilyavailable.Thereactorsintheseprocesseswereassumedtooperateunderthesame

Page 15: C4 Operations Optimization

9

conditionsregardlessofthroughput.Anyadditionalreactants,i.e.hydrogen,wereaddedin

stoichiometricproportion.Bydoingthis,thegroupisassumingthatthereisalreadyexcess

reactantthatisbeingrecycledintheprocess,requiringonlystoichiometricmakeupofthe

reactantfortheprocesstooperate. Varyingreactorconditionswasnotconsideredasan

optimizationparameter.Fortheprogramtofunction,itwasnecessarytoassumethattheunit

operationswerealreadyheatintegratedandnofurtherheatintegrationwasnecessary.For

theinvestmentpageoftheprogram,itwasassumedthattheinterestratewasconstant,the

pricesandutilitycostswereconstant,andthattherewasnoinflation.

DescriptionofModel

Theoptimizationmodelmustmakeaseriesofchoicesregardingthepossibleprocessesthat

canbecarriedoutintheplant.Bothbutadieneand1-butenecanbesoldasmonomers,andare

quiteprofitablewhensoldinpureform.Isobutylenecanalsobesoldasamonomer,butitis

oftenusedinthereactiontoformMTBE.2-buteneisnotasvaluableasamonomer,butthere

areseveralprocessesthatcanserveasprofitableoptionsfor2-butene.Theseoptionsinclude:

Alkylation,whichcreatesamotorfuelknownas“alkylate”;skeletalisomerizationtoform

isobutyleneandbutenes,whichinturncanbeconvertedtoMTBE;Metathesis,whichcreates

propylenethatcanbesoldforprofit;andolefinisomerization,whichcreatesanequilibriummix

ofboth1-and2-butenes,wherethe1-butenecanberecoveredandsold.Themodeloptimizes

theplantbyvaryingthesplitfractionsoftheRaffinate2streamleavingtheMTBEunit,thesplit

fractionsoftheRaffinate3streamleavingthe1-butenedistillation,andtheamountof

additionalcrudeC4purchased.

SpreadsheetLayout

Themodelcomespresetwithcapacity,utility,andchemicalpricevaluesascitedinthe

followingsectionsofthereport.However,theuserisfreetochangetheseparameters,

denotedbybluecellshading,towhatevervaluestheuserseesfit.Thisallowstheuserto

updatethemodeltoreflectchangesinpricesinthechemicalmarketplaceand/orchangesin

theoperatingcharacteristicsoftheplantbroughtonbymaintenance,fouling,etc.

Page 16: C4 Operations Optimization

10

TheLandingPage

OpeningthemodeldisplaystheLandingPage(Figure1),whichcontainsadetailedsummaryof

theplantoperationsattheprocesslevelwiththethroughput,throughputconstraints,capacity,

product,andprofitofeachunitdisplayedinthe“ProcessInformation”table.Inthetopleftof

theLandingPageisthe“FeedInformation”table,whichallowstheusertomanuallyinput:the

amountofcrudeC4incomingfromtheupstreamprocesses,aswellasthecompositionofthe

C4feeds.TheamountofExternalFeedisdeterminedbythemodelandisnotauserinput.

Compositioninputsarechangedusingdropdownmenus,whichreferencepresetstandard

compositionsanduserselectedcompositionslocatedintheFeedInformationsheet(the6th

sheetlisted).Totherightofthe“FeedInformation”table,the“PriceScenario”tableprovides

theuserwithdropdownmenusforeachoftherelevantreactants/productsintheplant.These

pricesreferencethePricingInformationsheet,whichcontainsthemostup-to-datepricesthe

teamcouldfind.Aspricescanvarygeographicallyandwillvaryovertime,acustompriceinput

isavailableforeachchemical.The“ResetPrice”buttonwillautomaticallyresetthepriceofall

chemicalstothe“Mid”valueaslistedinthePricingInformationsheet.Totherightofthe

“PriceScenario”tableisthe“UtilityInformation”table,whichhasutilitycostsfortherelevant

utilitiesintheunitsspecifiedinthetable.Thetablevaluesarepresetaccordingtothe“Cost

SheetOutline”onpage604ofDr.WarrenSeider’sProductandProcessDesignPrinciples.18Like

chemicalpricing,utilitycostscanvarybyregionandwillvaryovertime,sothemodelallowsthe

usertoinputupdatedutilityvaluesinthe‘PricingInformation’Sheet,automaticallyupdating

thoseintheLandingPage.Thecolumntotherightoftheaforementionedtablescontainsthe

buttonthattheuserclickstoruntheoptimizationsimulationwiththeselectedinputs.

Displayedbelowthebuttonisthetotalprofitfortheplantforaweekofoperation.The

opportunitycostlistedbelowthetotalprofitistheamountofmoneythecompanycouldexpect

tomakefromsellingaweek’sworthofupstreamcrudeC4productionatmarketpriceinstead

ofrunningitthroughtheplant.Thetabledirectlybelowtheopportunitycostisasummaryof

theprofitbreakdownbyproduct.Itshouldbenotedthattheprofitbreakdownforthe

productsreflectsthedifferencebetweentheproductrevenueandthetotalcostofoperation

fortheunitwhichdirectlyproducesthatproduct.Tomakethesumoftheprofitsequaltothe

Page 17: C4 Operations Optimization

11

totalprofit,theprofitofMTBEincludestheutilitiesoftheskeletalisomerizationunit,andthe1-

buteneprofitincludestheutilitiesoftheolefinisomerizationunit.Amoreaccurate

representationoftheprofitfromproducingeachchemicalwouldbegivenbyspreadingthe

utilitycostsofupstreamprocesseslikebutadieneextractiontodownstreamproductslike

propyleneandalkylate,whichneedtheseupstreamprocessesinordertobeproduced.Putting

apriceontheintermediatestreamscouldalsobeusedtoobtainmoreaccurateprofitmargins

forthechemicals.Theteamwouldmakethisimprovementinthenextversionofthemodelby

distributingutilitycosts,aspricingintermediatestreamsaccuratelywouldrequiremarketdata

fromtheuser,whichisexpensiveandmaynotbedirectlyavailable.Finally,thetwotablesat

thebottomoftherightcolumndisplaythesplitfractionsofthe

Page 18: C4 Operations Optimization

12

Figu

re 1

: Lan

ding

Pag

e

Page 19: C4 Operations Optimization

13

Raffinate2andRaffinate3streams,respectively.TheRaffinate2istheproductoftheMTBE

unit,andtheRaffinate3isthebottomsproductofthe1-butenedistillation.

3DSensitivityAnalysis

Thesecondsheetisthe3DSensitivityAnalysis.Thissheetallowstheusertoquicklyvisualize

theimpactofpricechangesoftwochemicalsand/orutilities,selectedbytheuser,onthetotal

weeklyprofitoftheplant.Theuseralsoselectsthepercentchangeintheselected

material/utilityprices.Themodelwillapplythispercentchangetotheaveragepriceofthe

material/utility,asgiveninthe‘PriceInformation’sheet,inordertogeteightdatapoints.The

“RunAnalysis”buttonexecutesamacrowhichrunstheoptimizationprogramvaryingthe

pricesoftheselectedchemicalsbythespecifiedincrements.Themacroalsoplotsthedata

automaticallyina3Dsurfaceplot.Whiletheusercanselectanytwopricestovary,themost

interestingandimportantresultsarisefromthevaryingofpricesoftwoproductsthatrequire

Raffinate2orRaffinate3asinputs.Thissetupwouldallowtheusertoseewhichproductholds

moreinfluenceovertheprofitabilityoftheplantandisthereforevitalindecidingwherethe

majorityoftheraffinategoeswhentheplantisrunningoptimally.Byvaryingthepriceofan

inputandproductofoneprocess,forexampleethyleneandpropylene,theuserwillbeableto

observehowchangesinprofitabilityofoneunitoperationimpactsoverallplantprofitability.

Thisanalysiscouldbeusedinconjunctionwitheconometricforecastingofchemicalpricesto

producearangeofforecastedprofitsfortheplant.Theoptimalsplitfractionsfortheunits

couldalsobeforecastedandpreparationscouldbemadetoscaleunitsupordowndepending

ontheanalysisresults.

InvestmentAnalysis

Thethirdsheet,InvestmentAnalysis,providestheuserwithawaytoquicklyexaminethe

cost/benefitanalysisofexpandingthecapacityofabottleneckedprocess.Theuserdecidesby

whatpercentagetoincreasecapacityandhowmuchitwillcostonaperpoundbasis.Theuser

alsoselectstheinterestrateusedtoevaluatethenetpresentvalueoftheinvestmentaswellas

thenumberofyearsthattheinvestmentwilllast.Theprocesstobeexpandedischosenbythe

user,butitisrecommendedthattheuserchooseaprocessthatisoperatingat100%capacity.

Page 20: C4 Operations Optimization

14

Basedontheseinputs,thesheetwillcalculatethenewcapacityoftheselectedprocessandthe

costofprocessexpansion.

Figu

re 2

: Sen

sitiv

ity A

naly

sis

Page 21: C4 Operations Optimization

15

Figu

re 3

: Inv

estm

ent A

naly

sis

Page 22: C4 Operations Optimization

16

Clickingonthe“InvestmentAnalysis”buttonwillexecutethatrunsthemacro.Itfirstoptimizes

theprocessusingtheoriginalcapacities.Themacrowillthenoptimizetheprocessusingthe

newcapacityfortheselectedprocess.Itwillthentaketheprofitbeforetheexpansionandafter

theexpansion,calculateanincrementalweeklyprofit,andannualizeitinordertodoa

discountedcashflowanalysisusingtheinterestrateandyearspreviouslyselectedbytheuser.

Theoutputofthisanalysisincludestheinvestmentcost,thediscountedfuturecashflows,the

yearbywhichtheinvestmentisexpectedtobreakeven,andthenetpresentvalueofthe

investment.

Anumberofassumptionshavebeenmadewhenconstructingtheinvestmentanalysisfeature.

Theinterestrateisassumedtoremainconstantthroughoutthelifeoftheinvestment.Future

versionscouldallowforavariableinterestratethatcouldbeprovidedbythecompany’s

econometricforecastingforeachyearintheperiod,increasingtheaccuracyofthediscounted

cashflowanalysis.Anotherassumptionisthatpricesforutilitiesandchemicalsareconstant

overthistimeframe.Thisassumptionreducesthecalculationaccuracy,aspricesarealmost

certaintochange.Futureversionscouldincludetheoptionofchangingthesetofchemical

pricesyearlyastheforecastingwingofthecompanyseesfit.Addingthisfunctionalitywould

onlyimprovethecalculationsforthefirstfewyearsatbest,however.Sincepricevolatility,

especiallyinthecurrenteconomicclimate,makeslongtermforecastinglosealotofpredictive

power,addingthisfunctionalitywouldonlyimprovethecalculationsforthefirstfewyearsat

best.Capacityexpansionalsoassumesthatconstructionwillnotimpactcurrentoperations.The

userisexpectedtoconsiderallcostsintheexpansionprocess,includinganystartupcosts

whentheexpansionisintegratedintotheexistingprocess.Ideallythesearecondensedinthe

perpoundcostthattheuserinputs.

ProfitBreakdown

TheProfitBreakdownsheetgivesagraphicaldepictionoftheprofitbreakdownbyproduct.

Thewaterfallchartautomaticallyupdateswhentheoptimizationmodelisrunand/orwhenthe

userchangesthepriceinputsinthelandingpage.AswasnotedintheLandingPagesection,

theprofitbreakdowniscalculatedbasedonthedifferencebetweentheproductrevenueand

Page 23: C4 Operations Optimization

17

theoperatingcostoftheunitthatproducesit.InthecaseoftheMTBEproduction,thecostsof

skeletalisomerizationhavebeenincludedwhencalculatingtheprofit.Similarly,thecostof

olefinisomerizationhasbeentakenintoaccountwhendeterminingtheprofitof1-butene

distillation.Thesecombinationsweremadebecausetheisomerizationunitsdonotdirectly

produceasellableproduct,astheirfunctionsaretoincreaseproductionoftheprocessunits

theircostshavebeencombinedwith.Thismethodofcalculatingprofitresultsinanaccurate

totalplantprofit,butitdoesnotincludethecostofrequisiteupstreamprocessesinthe

productionofdownstreamproductslikealkylateandpropylene.Futureversionsofthe

optimizationprogramwouldspreadthesecostsoutandprovideamoreaccurateaccountof

theprofitbreakdown.

Figure 4: Profit Analysis

DetailedFlowDiagram

Theusercangetaclearervisualoftheplantoperationsonthissheet.Thepossibleconnections

betweentheplantprocessesareshownalongwiththepercentageofaunit’soutput

intermediatestreamthatissentalongaparticularpath.Thepercentagesupdateautomatically

witheveryrunoftheoptimizationmacrofromtheLandingPage.Productstreamsareshown

asdashedlines,buttheflowratesmustberecordedfromtheLandingPage.Thegroup

Page 24: C4 Operations Optimization

18

Figu

re 5

: Pro

cess

Flo

w D

iagr

am

Page 25: C4 Operations Optimization

19

excludedtheproductflowratesbecausethelargenumberswouldovercrowdthediagram

whileonlyprovidinginformationthattheusercouldeasilyfindonanotherpage.

FeedInformation

ThissheetispreloadedwithdifferentcompositionsofcrudeC4basedontheproduction

specificationsoftheDowChemicalCompany.Themedium,high,andlowbutadienecontent

compositionsdisplayedinthetablearetheonesreferencedinthedropdownmenuonthe

LandingPage.Additionally,therearetwocolumnsforcustomcompositionsofcrudeC4.These

columnshavebeenincludedbecauseitisunlikelythatthecompany’sowncrudeC4

compositionandthecompositionofthecrudeC4availableforpurchasewillmatchthoseofthe

selectedDowChemicaloptions.AfterlabsamplingofboththeinternalandexternalcrudeC4,

theusercaninputtheresultsinthecustomcolumnsofthetable.Thesecanalsobereferredto

inthedropdownmenusontheLandingPage.Ifthecompositionsinputtedbytheuserlie

outsidetheDowChemicalspecsshownbelowthetable,thegreencirclewillturnrednextto

theoutlierspecies.Tohelppreventusererror,ifthesumofthecustompercentagesdoesnot

equal100%,thecellinthelastrowwillturnred.

Figure 6: Feed Information

Page 26: C4 Operations Optimization

20

PricingInformation

Themostrecentpricesthegroupcouldlocateforthechemicalsandutilitiesrelevanttothe

plantarelocatedinthetableontheleftofthissheet.Sourceanddateinformationarelocated

ineachrow,withthemajorityofpricescomingfromPlattandArguswithintheseveralmonths

ofthereport’spublishing.Itshouldbenotedthatthesepricesarenotfromthesamepointin

time,andwiththerecentvolatilityintheindustry,thevariedtimeframesmaycausetheresults

oftheoptimizationprogramtoreturnunrealisticprofitmargins,aswellasinaccuratesplit

fractions.Itisthereforerecommendedthatthecompanyfrequentlyupdatethepricesofthe

chemicalswiththeirmostuptodateinformation.Thecustomcolumnwascreatedforthis

purpose,althoughallothercolumnscanalsobeupdated.ForsomechemicalslikeMTBE,crude

C4,andalkylate,thepricesquotedareoftenonavolumebasis.Sincetheoptimization

programoperatesonamassflowbasis,thePricingInformationsheetconvertsthepriceper

volumetopriceperpoundinthetableontheright.Theusersimplyneedstoinputtheprice

pergallonandtheremainingcellsinthetablewillautofillwiththepriceperpoundincents.

Figure 7: Pricing Information

Page 27: C4 Operations Optimization

21

ProcessSheets(ExtractiveDistillation)

Thesheetsforeachoftheplantprocesseshavethesamebasicstructureandfunction,sofor

brevitythereportwillbasethediscussionoftheprocesssheetsontheExtractiveDistillation

sheet.Anydifferencesinotherprocesssheetswillbenoted.

Sinceextractivedistillationisthefirstprocessintheplant,itssheetisuniqueinthatitissetup

withadditionalinformationaboutthecrudeC4feed.Theselectedcompositionsfortheinternal

andexternalcrudeC4feedsaredisplayedinthetopleftofthesheet.Belowthepercentage

compositionsarethemassflowsforeachoftherelevantchemicalsineachofthefeeds.The

blockdiagramfortheprocessisseentotherightofthesetables.Forthestreamsshown,the

massflowratesareshowninthelargetableunderneaththediagram.Allprocesseshavea

maintablesimilartothisoneinwhichthemassflowsofinput,intermediate,andoutput

streamsarecalculated.TheoutputstreamforbutadieneextractionisRaffinate-1,whosemass

flowratesarereferencedasoneoftheinputflowstreamsoftheMTBEproductionsheet.The

restoftheintermediatestreamsarelinkedbetweenprocessesasdepictedintheDetailedFlow

Diagram.

Theprocessparametersof:distillationeffectiveness,cellJ33;fractionofunrecovered

butadienehydrogenated,cellO49;andfractionalconversionofhydrogenatedbutadiene,cells

R49-51,areusedincalculatingthemassflowsoftheintermediatestreamsandhydrogeninput.

Therequiredhydrogenisthenconvertedtolbsperlbbutadieneproductforthebutadiene

materialcostcellontheLandingPage.ForotherprocesseswithadditionalinputslikeMTBE

production,metathesis,andalkylation,theadditionalinputisalsocalculatedontherightofthe

mainprocessstreamtableandischangedtoalbperlbsproductbasis.Otherprocessesalso

haveparametersthataffectperformancethatcanbetunedtotheuser’spreference.This

freedomallowstheusertoaccountforchangesintheplant’sefficiencyastheplantagesor

betweenroutinemaintenance.

Page 28: C4 Operations Optimization

22

Thebutadieneextractionutilitydataiscollectedontherightofthesheet.Thedataforeach

processhasbeenselectedfromthesourceslistedineachprocessdescription.Theutility

requirementsarethencombinedwiththeutilitypricesontheLandingPagetoprovideatotal

utilitybillperlbofproductforagivenprocess.Thisnumberisthenbroughtbacktothe

LandingPageintheutilitycostrowfortheprocesses.Capacityconversionsareshownnextto

theutilityinformation.

UsingtheModel

Whenusingthemodel,theusermustfirstprovidetheamountofavailablecrudeC4feed

comingfromupstreamprocessesinthecompany,aswellasitscompositionandthe

compositionofthecrudeC4availableforpurchase.Themodelwillupdatetheprofitandmass

flowratesforthegivensplitfractionsimmediatelyaftereachinputvalueischanged.The

resultswillnotbeoptimized,however,untiltheuserclicksonthe“RunSimulation”button.

OncetheuserhasselectedthedesiredchemicalandutilitypricesonthePricingInformation

sheet,theusercanselectcapacityrestraintsforeachoftheprocesses.Itshouldbenotedthat

overconstrainingtheprocessescancausetheavailablecrudeC4flowtobeinsufficientor

overloadtheprocesses,dependingontheconstraintsselected.Forexample,ifahighflow

requirementisdesiredforeveryprocessthatreceivesaninputfrom1-butenedistillation,there

mightnotbeenoughflowthroughthedistillationprocesstosatisfytheconstraintsforthe

otherprocesses.Conversely,ifahighflowminimumisimposedonthe1-butenedistillation

andlowmaximumsareimposedonthedownstreamunits,theremightbetoomuchflowto

meettheconstraintsdownstream.Iftheselectedconstraints,whichcanbechangedbythe

user,arenotmet,thecircleinthe“percentcapacityused”columnwillchangefromgreento

redfortheprocess.Oncethepricesandcapacityconstraintshavebeenselected,theusercan

runthesimulationtooptimizetheplantbyclickingonthe“RunSimulation”button.The

ProcessInformationtablewillthendisplaytheoptimalsplitfractionsfortheplantalongwith

capacityusageandproductinformation.TheexternalC4willthenbesettotheoptimalvalue,

resultinginthetotalprofitbeingmaximized.IfthechangeinexternalC4andthesplitfractions

cannotsatisfycapacityconstraints,anerrorwindowwillpopupafterrunningtheoptimization

Page 29: C4 Operations Optimization

23

statingthattheconstraintscouldnotbemet.Adjustmentstothecapacityconstraintsor

externalC4compositioncanbemadetoattempttosatisfytheconstraints,rerunningthe

simulationaftereachchange.Inthedesignteam’sexperience,overloadedprocessesinthe

downstreampartoftheplantcanberectifiedbyincreasingbutadienecontentintheexternal

crudeC4compositionifadjustingthecapacityconstraintsisnotpossible.Iftheuserexhausts

allpossibleadjustmentoptionsandtheconstraintsarenotsatisfied,theyshouldconsider

takingactionlikesellingavailablecrudeC4orinputtingadditionalfeedatdifferentpointsinthe

plant,dependingoniftheplantisoverfullorrunningdry.Theusercanperformtrial-and-error

todeterminehowmuchavailablecrudeneedstobesold,butthemodeldoesnoteasilyallow

fortheadditionofexternalfeedatmultiplepointsintheplant.

Assumingtheconstraintsaremet,theusernowhastheoptimalamountofexternalcrudeC4to

bepurchasedandtheresultingprofits.NowtheusermayturntheirattentiontotheSensitivity

Analysispage.Theusercanthenselectthetwopricesthattheywanttovaryfromthedrop

downmenus.Theincrementsofchangecanbeinputtedaspercentagesforeachvariable.

Clickingonthe“RunAnalysis”buttonwillpresenttherelationshipbetweenthevariables’prices

andthetotalprofit.

TheInvestmentAnalysispageisstraightforwardtouse.Afterrunningtheoptimizationonthe

LandingPage,runningtheInvestmentAnalysisbyclickingthebuttonwillautomaticallylocate

thebottleneckoftheplantunderthecurrentconditions.Ifthereisnobottleneck,whichis

unlikelygiventheproportionalutilityassumption,theanalysiswillreportbackthatthereis

none.Theuserneedstosimplyinputthepercentexpansionoftheunit’scapacity,theinterest

rate,andthelifetimeoftheexpansion.Thecostperlbaddedcapacitymustalsobeprovided

bytheuserthroughanoutsidecostinganalysisfortheunit.Oncetheinputsareentered,the

additionalprofitperyeararedisplayed,andthepresentvaluefortheadditionalprofitandthe

expansionprojectaregiveninthetable.Therequisitelifetimefortheprojecttoturnaprofitis

displayedabovethetable.

Page 30: C4 Operations Optimization

24

CaseStudy

Togiveamoreconcreteexampleofhowthemodelisused,considerthepricingscenarioas

showninFigure8.

Figure 8: Pricing Scenario for Case Study

Assumeanavailablefeedof15,000,000lb/weekofcrudeC4atthecompositiongivenbyhigh

butadieneDowChemicalcrudeC4,andthecrudeC4availableforpurchasehasthesame

composition.Figure9hastheresultsoftheoptimizationmodelforthissituation,withthe

processflowconstraintsgivenintheProcessInformationtable.Theoptimizationhasthe

optimalpurchaseoftheexternalcrudeC4at4.57*10^6lbs/week.Thevaluationofaweek’s

worththeinternalC4,theopportunitycost,iscalculatedat$6,000,000.Theweeklyprofitfrom

operatingtheplantiscalculatedat$8,951,659.Therefore,thebenefitfromrunningtheplantis

$2,951,659/weekorroughly$153.5millionperyear.NotableresultsarethattheMTBEunit

and1-butenedistillationareat100%capacity.ThisarisesfromthefactthattheMTBEunithas

ahighercapacitythanthe1-butenedistillationcolumn,andtheMTBEunitcansendthe

differenceincapacitytothemetathesisunit.Theolefinisomerizationunitisalsooperatingat

maximumcapacity,whiletheskeletalisomerizationunitisoperatingagainstthelowerbound

ofitsflowconstraints.Thissuggeststhattheplantwouldneedtooperatebelowthelower

constraintoftheskeletalisomerizationunitfortheplanttoreachanunconstrainedprofit

maximum.

Page 31: C4 Operations Optimization

25

Figu

re 9

: Lan

ding

Pag

e af

ter s

imul

atio

n w

as d

one

usin

g th

e pr

ice

scen

ario

for t

he c

ase

stud

y.

Page 32: C4 Operations Optimization

26

Examiningthe3DSensitivityAnalysispage,aninterestingrelationshiptoexamineistheeffect

ofvaryingisobutaneandalkylatepricesonthetotalprofitoftheplant.Thegeneraltrendof

the3Dgraph(Figure10)isrisingprofitsasthepricespreadbetweenthechemicalsisthe

largest,withthealkylateatahighpriceandisobutaneatalowprice.Thisisshownonthe

graphwithlowerprofitatthenearrightcornerandhigherprofittowardsthebackleftofthe

graph.Thesteeperslopefromrighttoleftindicatesthatachangeinalkylatepricehasmuch

moreofanimpactoftheprofitthanachangeinisobutaneprice.Thisrelationshipmakessense

becausetheisobutanerequirementroughlyonepoundofisobutaneperfourpoundsof

alkylate.Thestandarddeviationoftheprofitrangesis$73,336,whichisarelativelysmallfigure

comparedtotheprofitsinthe$8millionrange.Thissmallstandarddeviationindicatesthatthe

plantprofitisrelativelyrobusttofivepercentvariationsinthepricesofisobutaneandalkylate.

LookingattheProfitBreakdownsheet(Figure11),thealkylaterepresentsasmallportionofthe

overallprofit.Therefore,thesmalldeviationsinoverallprofitinresponsetochemicalprice

changesinthealkylateprocessmakessense.ButadieneandMTBEpricechangeswouldshowa

greaterstandarddeviationintheoverallprofit.

TheInvestmentAnalysispageshowsaninterestingbutnotunexpectedresult(Figure12).The

bottleneckselectedbytheuseristheMTBEproduction.Althoughthe1-butenecolumnisalso

operatingat100%capacity,additionalflowthroughtheMTBEcolumnwouldallowthe

metathesisandalkylationprocessestofilloutmorewhilestillkeepingthe1-butenecolumn

operatingatmaxcapacity.Expandingthe1-butenecolumnwouldonlytakeawayflowfrom

themetathesispathway,sincetheMTBEprocessbottleneckrestrictsthedownstreamflow.In

thisscenariotheuserisevaluatinga15%expansionoftheMTBEunit.Forasampleexpansion

cost,$45.00perlb/weekisused.Notethatthisvaluehasnotbeencalculatedusingcosting

modelsandissolelyintendedforthepurposeofhighlightingtheInvestmentAnalysisfunction.

TheuserwouldhavetoperformthesecalculationswhenusingtheInvestmentAnalysissheet.

Aninterestrateof12%annuallyandaprojectlifetimeof15yearsisselected.Thecostof

expansioniscalculatedatroughly$57million,andthebreakevenpointoftheexpansionis

Page 33: C4 Operations Optimization

27

betweenyearstwoandthreeafterthecapacityisexpanded.Thenetpresentvalueofthe

processoverits15yearlifespanis$123million.

Figu

re 1

1: S

ensi

tivity

Ana

lysi

s res

ults

for t

he p

rici

ng sc

enar

ion

in th

e ca

se st

udy

Figu

re 1

0: P

rofit

Bre

akdo

wn

for t

he p

rice

scen

ario

in th

e ca

se st

udy.

Page 34: C4 Operations Optimization

28

Figu

re 1

2: In

vest

men

t Ana

lysi

s res

ults

from

pri

cing

scen

ario

in c

ase

stud

y.

Page 35: C4 Operations Optimization

29

UnitOperationsDescriptions

ButadieneExtraction

ExtractiveButadieneDistillationisthefirstprocessintheblockdiagram,andthusthefirst

decisionpointfortheprocessoptimizationsmodel.Thisprocessremovesbutadienefromthe

mixedcrudeC4stream.Theresultingbutadienestreamishighinpurity.Butadieneisusedto

produceseveraltypesofrubbers.Extractivedistillationisnecessarybecausethesimilaritiesin

volatilitiesbetweentheproductsintheC4streampreventtheuseofconventionaldistillation.

ThespecificprocessdescribedinthisreportistheBASFbutadieneprocess,whichrequiresthe

useofN-methylpyrrolidinone(NMP)asasolvent.11NMPisnotcorrosive,whichallowsfor

carbonsteeltobeusedintheplantwithouttheriskofcorrosion.2

BASFbutadieneextractivedistillationrequiresthreeprocesses.Theseprocessesareextractive

distillation,degassing,anddistillation.Theextractivedistillationhasanoverheadproduct

containingbutenesandabottomsproductcontainingcrudebutadiene.Thesolventis

recoveredduringthedegassingprocess,whilethebutadieneispurifiedusingthedistillation

process,whichallowsforapurityof99.7%orhigher.Theunrecoveredbutadieneisthen

selectivelyhydrogenatedto90%butenesand10%butanesbeforeproceedingontothe

subsequentprocessesoftheplant.18

MTBEProduction

Methyltertiarybutylether(MTBE)isanoxygenatecommonlyusedingasoline,althoughitsuse

hasbeendecliningasenvironmentalconcernshavesurfaced.MTBEandotheroxygenates

becamepopularinthe1990sasconcernsaroseabouttheairpollutionresultingfromlead

octaneenhancers,aproblempartiallyalleviatedbytheuseofoxygenates.However,bythelate

1990sandearly2000s,thepopularityofMTBEdeclinedduetoproblemswithgroundwater

contaminationandleaksinundergroundstoragetanks.

Page 36: C4 Operations Optimization

30

ThespecificprocessusedinthisreportistheEthermaxProcess,licensedbyUOP.15Thisprocess

converts99%ofisobutylene.Theprocessrequiresanadiabaticreactor,wheretheprimary

reactionoccurs.Theeffluentrunstoadistillationcolumn,wherethebottomsistheMTBE

product.Unreactedcomponentsarefedthroughafractionatortopromoteconversion.The

methanolintheoverheadfromthedistillationcolumnisthenrecoveredthroughasystemof

separations.Althoughthiswastheprocesswiththebestcharacteristicsthegroupcouldfind,its

capacitycreatedacripplingbottleneckontherestoftheplant.Inordertoshowoffthe

model’scapabilities,thegroupassumedthattheplanthadaccesstomultipletrainsofthe

Ethermaxprocess.

Metathesis

Themetathesisreactionproducespropylenefrom2-butene,1-buteneandethylene.The

specificprocessdetailedinthisprojectreportistheUOPOleflexProcess.12Inthepropylene

productionprocess,afeedofliquefiedpetroleumgasisdepropanizedtoseparateandremove

thebutanesandotherhydrocarbons.ItisthensenttoanOleflexunitandreacted.Thetwo

resultingproductstreamsareavaporthatisrichinhydrogen,aswellasaliquidthatisrichin

bothpropaneandpropylene.

1-ButeneDistillation

1-Butenedistillationallowsfortherecoveryofhighpurity1-butene.The1-butenemonomer

canbeveryprofitableifitispure.Inaseriesoftwodistillationcolumns,theheavy

hydrocarbonsareremovedinthebottomsstreamfirst,while1-buteneisremovedasthe

bottomsfromtheseconddistillationcolumn.Thisprocessrequiresnobutadieneor

isobutene.17

SkeletalIsomerization

SkeletalIsomerizationinvolvesisobutylene,1-butene,and2-butene.Athightemperature,

theseconstituentsreachchemicalequilibrium.Skeletalisomerizationallowsfortheproductto

befedtoanMTBEunitandconverttheisobutyleneintoprofit.Theprocessdescribedinthis

Page 37: C4 Operations Optimization

31

reportistheskeletalisomerizationprocess(SKIP)process,introducedbytheTexasOlefins

Company.9Afeedof1and2-butenesarefirstvaporized,andsteamisadded.Thestreamis

heatedtoreactiontemperature,whichfallsbetween480-550°C.Next,thestreamisreactedin

afixed-bedreactor,wheresomeofthe1-and2-butenesareconvertedtoisobutylene.

Followingreactionandequilibrium,thestreamiscooledinaheatexchangerandawater-

quenchcolumn.Thehydrocarbonsarethenseparatedfromthestreamanddepropanizedto

recovertheisobutyleneforuseinotherprocesses.

TheSKIPprocess,likeothersimilarprocessesintroducedbyothercompanies,isoftenincluded

followinganMTBEprocess.TheisobutyleneisthenrecycledbacktotheMTBEunitforfurther

productionoftheprofitableMTBE.AnalternativeoptionforsetupistoincludetwoMTBEunits

withaSKIPunitbetweenthem.

OlefinIsomerization

OlefinIsomerization,alsocommonlyknownasbuteneisomerizationorpositional

isomerization,involvestheconversionof2-buteneto1-butene.Theprocessdescribedhereis

theComonomerProductionTechnology(CPT)byCB&I.4However,specificutilityrequirements

wereunavailableforanycommercialolefinisomerizationtechnology.Usingaratiocomparing

theutilitycostsofexistingskeletalandolefinisomerizationtechnologies,itwaspossibleto

obtainanestimateforolefinisomerization,atapproximately38%oftheutilitycostofskeletal

isomerization.8TheCPTProcessincludestwosections.Inthefirstsection,2-buteneis

isomerizedto1-butene.Thestreamisvaporizedandpreheatedbeforebeingfedtoareactor

wherethe2-buteneisisomerizedoveracatalyst.Theproductstreamcontainsboth1-and2-

buteneatthermalequilibrium.Thesecondsectionisthefractionationsectionwhere1-and2-

buteneareseparatedusingabutenefractionator.The1-buteneistheoverheadproduct,while

the2-buteneisthebottomswhichisthenrecycledtotheisomerizationreaction.However,

sinceourplantalreadyhasitsown1-butenedistillation,ourolefinprocessonlyrepresentsthis

firstsection.

Page 38: C4 Operations Optimization

32

Olefinisomerizationallowsforalargeincreasein1-butenerecovery,whichthenallowsittobe

soldforprofit.

Alkylation

Alkylationisaprocessbywhichtrimethylpentaneor“alkylate”isformedfromisobutane,

isobutyleneand2-butene.Alkylateisacomponentformotorfuel,whichwaspopularinthe

1940s.However,withthedeclineinpopularityofMTBEduetoseriousenvironmentalconcerns,

itispossiblethatalkylatewillincreaseinvalueinthecomingyears.Thespecificprocesslisted

hereistheSTRATCOAlkylationprocessbyDupont,whichusessulfuricacid.13Accordingtothe

processdescription,therearefivesectionsoftheprocess,whichincludethereactionsection,

therefrigeratorsection,theeffluenttreatingsection,thefractionationsectionandthe

blowdownsection.Thereactionsectionincludesthereactionbetweenthehydrocarbonstream

andthesulfuricacidcatalyst.Therefrigerationsectionremovesbothheatofreactionaswellas

lighthydrocarbons.Intheeffluenttreatingsection,freeacid,alkylsulfatesanddialkylsulfates

areremovedfromthestream.Thefractionationsectionfollowstheeffluenttreatingsection,

whereisobutaneisremovedandrecycledtothereactionsection.Finally,intheblowdown

section,theacidisdegassedandthepHofthewastewaterisadjusted.

Hydrogenation

Butenescanbehydrogenatedton-butane,whichallowsthemtobereturnedtothesteam

crackerasafeed.Thisoptionistypicallylessdesirablethantheotherunitoperationsthatcan

beusedtoprocess2-butene.ThehydrogenationprocesslistedhereistheHülsSelective

HydrogenationProcess(SHP).14Theselectivehydrogenationprocesscanbeusedwithvarious

feedstreams,includingC3-C5streams.

UtilityandCapacityRequirements

Overallutilityinformationisincludedbelowforeachoftheunitprocesses.Pricinginformation

wasobtainedfromtheProductandProcessDesignPrinciplesTextbookforthecostof

electricity,water,gasandsteam.11Pricingforvariousacidsolutions,includingthesulfuricacid

andsodiumhydroxidefortheAlkylationprocess,wereobtainedfromAlibaba.Itshouldbe

Page 39: C4 Operations Optimization

33

notedthatthisprojectcreatesanoptimizationprogramforanalreadyexistingpetrochemicals

plant,thusitisnotnecessarytopurchaseadditionalequipmentfortheunitoperationsbecause

itisassumedthatthecompanyalreadypossessesallnecessaryequipment.

Metathesis(UOPOleflex)

Utility Requirement

ElectricPower 6500kW/hBoilerFeedWater 10metrictonsperhourCoolingwater 6000m3/hFuelGas 13.1millionkcal/hCapacity 350,000MTA

Alkylation(DupontSTRATCO)

Utility Requirement(unit/barrel)ElectricPower 15kWCoolingwater 1370galProcesswater 4galSteam 194lbFreshacid 13lbNaOH .05lbCapacity 240MTperstreamday

MTBEProduction(UOPEthermax)

Utility Requirement

ElectricPower 177kWh

Medium-PressureSteam 7.9mtperhour

CoolingWater 52cubicmetersperhour

Condensate 7.9metrictonsperhour

Capacity 50,000MTA

Page 40: C4 Operations Optimization

34

ButadieneExtraction(BASF)

Utility Requirement

ElectricPower 100-200kWh

Medium-pressure 1.5-2.5t

CoolingWater 100-200cubicmeters

Solvent(Cost) $0.60(permetrictonproduct)

OtherChemicals(Cost) $2.50(permetrictonproduct)

Capacity 29,000to430,000MTA

Hydrogenation(HülsSelectiveHydrogenationProcess)

Utility Requirement

Power 46kWh

Mediumpressuresteam 798kg/hr

Condensate 798kg/hr

Coolingwater 51m^3/hr

Capacity 6373BPD

SkeletalHydrogenation(SKIPProcess)

Utility Requirement

ElectricPower 234.16kWh

Medium-pressure 1.735mt

Low-Pressure 1.739mt

CoolingWater 6.576GJ

NaturalGas 1.679GJ

Capacity 2400BPD

Page 41: C4 Operations Optimization

35

1-ButeneDistillation

Utility Requirement(unitperton1-butene)

Steam 4t

Water,cooling 110m3

Power 43kWh

Page 42: C4 Operations Optimization

36

ConclusionandRecommendationsThisreportchroniclesaprojectentitledC4OperationsOptimization,whichinvolvedthe

creationofacomputermodelthatcanoptimizeoperationsandprocessesforanexisting

petrochemicalsplant.Otherfeaturesoftheprojectincludeasensitivityanalysisand

investmentanalysisthatprovidetheuserwithanideaofhowtheplantprofitabilitywill

respondtochangesintheeconomicclimateandplantcapacity.Itisrecommendedthatthe

plantinquestionbeginusingthismodelpromptly,asitcanincreaseprofitsbyaconsiderable

margin.Forfurtherdevelopmentsinthemodel,werecommendmodificationstothemethod

bywhichittakesutilitycostsintoaccount.Insteadofassumingproportionalutilities,functions

relatingutilityrequirementstothroughputcouldbeincorporatedintothemodel.These

functionscouldbederivedfromplantobservationorfromASPENsimulations.

Withthecurrentmodel,profitabilityislistedbyproduct,butsubsequentversionscouldspread

theutilitycostssothatoneproductisnotabsorbingalltheutilitycosts.Anotherfeaturethat

couldbeaddedisasetofpurityconstraintsforeachproductasspecifiedbythe

company.Thesewouldbemostapplicableinthe1-buteneandn-butaneproductstreams,as

traceamountsofisobutyleneandisobutane,respectively,canentertheseproductstreamsand

lowerpurity.

AcknowledgementsWehavebeenluckytohavehadtheguidanceandsupportofseveralfacultymembersatthe

UniversityofPennsylvaniaaswellasfromindustryconsultants.Withouttheseindividuals,our

projectwouldnothavebeenpossible.

WewouldliketofirstthankMr.GarySawyerforintroducingourprojectandforhisconstant

adviceandhelpthroughoutthesemester.Herespondedtoallemailsandquestionsinatimely

andhelpfulmanner,andhissuggestionsonhowtoformattheprogramwereespecially

valuable.

Page 43: C4 Operations Optimization

37

Wewouldalsoliketothankourfacultyadvisor,Dr.WenK.Shieh,forhisassistancethroughout

thesemester.Dr.Shiehattendedallofourweeklymeetingsandprovidedadviceandsupport

forourproject.

WewouldliketothankDr.WarrenSeiderandDr.SeanHolleranfortheirguidanceandadvice

duringtheCBE459and460designcourses.Withoutthisintroductiontotheseniordesign

process,wewouldnothavebeenabletosuccessfullycompleteourproject.

WewouldliketothankProfessorLeonardFabianoforhissupportandguidancethroughthe

seniordesignprocess.Weespeciallyappreciatehimtakingthetimetoreviewourprojectand

report.

Weoweadditionalthankstothemanyindustryconsultantswhometwithusonaweeklybasis.

OursincerethanksgoestoDr.IvanBaldychev,Mr.DavidKolesar,Mr.StevenTieri,andMr.

BruceVrana.

Page 44: C4 Operations Optimization

38

WorksCited

1. "PetrochemicalsBusinessBriefing|February2016."PetrochemicalsBusinessBriefing|

February2016.Platts,n.d.Web.05Apr.2016.

2. ButadieneExtractionTechnology.N.p.:ChicagoBridge&IronCompany,2014.Print.

3. Clark,Bobbie."USmethanolcapacitytostabalisefollowingsurge."ICISChemical

Business(2016):n.pag.Web.Apr.2016.

4. ComonomerProductionTechnology-1Butene.N.p.:ChicagoBridge&IronCompany,

2014.Print.

5. C4Crude-E;SDSNo.453[Online];DowChemical:UnitedKingdom,

May25,2005,

http://www.dow.com/webapps/msds/ShowPDF.aspx?id=090003e8805dfa35

6. Dang,Tracy."USChemicalProfile:Butadiene."ICISChemicalBusiness(2015):n.pag.

Web.Apr.2016.

7. Ellis,Vicky."EuropeChemicalProfile:MTBE."ICISChemicalBusiness(2016):n.pag.

Web.Apr.2016.

8. Gartside,RobertJ.,JamesM.HildrethandShaunMcGovern.:IntegratingCPTwith

existingOCTunits.DigitalRefining,2008.

9. John,ThomasP.andStephenP.Thomas:Texasplantfirsttoisomerizen-butylenesto

isobutylene.Oil&GasJournal;May24,1993.

10. Kelley,Lane."PEboom‘apythonswallowingapig’."ICISChemicalBusiness(2015):n.

pag.Web.Apr.2016.

11. Meyers,RobertA.:HandbookofPetrochemicalsProductionProcesses.BASFBUTADIENE

EXTRACTIONTECHNOLOGY,Chapter(McGraw-HillProfessional,2005),

AccessEngineering

12. Meyers,RobertA.:HandbookofPetrochemicalsProductionProcesses.UOPOLEFLEX™

PROCESS,Chapter(McGraw-HillProfessional,2005),AccessEngineering

13. Meyers,RobertA.:HandbookofPetroleumRefiningProcesses,ThirdEdition.Alkylation

andPolymerization,Chapter(McGraw-HillProfessional,200419971986),

AccessEngineering

Page 45: C4 Operations Optimization

39

14. Meyers,RobertA.:HandbookofPetroleumRefiningProcesses,ThirdEdition.

Hydrotreating,Chapter(McGraw-HillProfessional,200419971986),AccessEngineering

15. Meyers,RobertA.::HandbookofPetroleumRefiningProcesses,ThirdEdition.

OxygenatesProductionTechnologies,Chapter(McGraw-HillProfessional,20041997

1986),AccessEngineering

16. Naylor,Linda."EuropePE,PPsupplytoremaintight"ICISChemicalBusiness(2016):n.

pag.Web.Apr.2016.

17. RefiningProcessHandbook.N.p.:HydrocarbonProcessing,2008.Print.

18. Sawyer,Gary.Messagetotheauthors.N.d.Email

19. Seider,WarrenD.,J.D.Seader,DanielR.Lewin,andSoemantriWidagdo.:Productand

ProcessDesignPrinciples:Synthesis,AnalysisandEvaluation.

20. Weddle,Nel."ConfidenceforC2,C3."ICISChemicalBusiness(2016):n.pag.Web.Apr.

2016.

21. Yeo,Ross."LowCrudeThreatensMethanolMTO."ICISChemicalBusiness(2016):n.pag.

Web.Apr.2016.