16
COMPUTATION MODEL FOR VISUAL CATEGORIZATION Bhuwan Dhingra

C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

Embed Size (px)

Citation preview

Page 1: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

COMPUTATION MODEL FOR VISUAL CATEGORIZATIONBhuwan Dhingra

Page 2: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

OVERVIEW

Objective: To study the hierarchy of object categorization using a computational model for vision.

Three levels of categorization – super-ordinate, basic and subordinate.

Basic level categories – maximize cue validities, and dominate any taxonomy.

Categorization implemented in unsupervised manner in the current model.

Page 3: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

HYPOTHESES

Rosch et al, [1], claim that basic level categories accessed first.

Marc and Joubert, [2], claim that in a purely visual task super-ordinate categories accessed first.

Role of expertise emphasized several times in the literature, [3].

Page 4: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

THE MODEL

Bag-of-Features:

Page 5: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

THE MODEL

Extracted histograms clustered in an unsupervised manner using k-means algorithm.

Distance metric used – (1-correlation(h1,h2)), where h1 and h2 are two histograms.

Page 6: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

DATASET

30 images for each subordinate category using Google image search of the keywords.

Page 7: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

DATASET

FurnitureAnimal

TableChairBirdDog

Coffee Table

Picnic Table

Rocking Chair

Bar-stool

Crow

Pigeon

Foxhound

Dalmation

Super-ordinate classes

Basic classes

Sub-ordinate classes

Page 8: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

TESTS

Test 1: Study which type of categorization dominates as the number of detected key-points is varied.

Test 2: Study how the performance of the categorization changes with the number of images.

Test 3: Study the effect of increasing the number of images of one basic category compared to others

Different categorizations were implemented by setting k = 2,4,8.

Page 9: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

PERFORMANCE INDICES

Rand Index:

TP, TN, FP, FN are true positive and negatives, and false positives and negatives.

Purity: Percentage of correctly assigned points, assuming majority class for each cluster.

Normalized Mutual Information: Information theoretic mutual information between clusters and classes (normalized to 1).

Silhouette Index: Based on the ratio of the within class scatter to between class scatter.

Page 10: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

RESULTS Variation of the performance metrics with

Peak Threshold or the number of key-points detected.

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Peak Threshold

Pur

ity

Purity vs Peak Threshold

Super-ordinateBasicSub-ordinate

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070.02

0.04

0.06

0.08

0.1

0.12

0.14

Peak Threshold

Silh

oue

tte

In

dex

Silhouette Index vs Peak Threshold

Super-ordinateBasicSub-ordinate

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Peak Threshold

Ran

d I

nd

ex

Rand Index vs Peak Threshold

Super-ordinateBasicSub-ordinate

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Peak Threshold

Nor

mal

ize

d M

utu

al I

nfo

rmat

ion

NMI vs Peak Threshold

Super-ordinateBasicSub-ordinate

Page 11: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

RESULTS Variation of the performance metrics with

Peak Threshold or the number of key-points detected.

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Peak Threshold

Pur

ity

Purity vs Peak Threshold

Super-ordinateBasicSub-ordinate

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070.02

0.04

0.06

0.08

0.1

0.12

0.14

Peak Threshold

Silh

oue

tte

In

dex

Silhouette Index vs Peak Threshold

Super-ordinateBasicSub-ordinate

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Peak Threshold

Ran

d I

nd

ex

Rand Index vs Peak Threshold

Super-ordinateBasicSub-ordinate

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Peak Threshold

Nor

mal

ize

d M

utu

al I

nfo

rmat

ion

NMI vs Peak Threshold

Super-ordinateBasicSub-ordinate

Page 12: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

RESULTS Variation of the performance metrics with

Peak Threshold or the number of key-points detected.

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Peak Threshold

Pur

ity

Purity vs Peak Threshold

Super-ordinateBasicSub-ordinate

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070.02

0.04

0.06

0.08

0.1

0.12

0.14

Peak Threshold

Silh

oue

tte

In

dex

Silhouette Index vs Peak Threshold

Super-ordinateBasicSub-ordinate

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Peak Threshold

Ran

d I

nd

ex

Rand Index vs Peak Threshold

Super-ordinateBasicSub-ordinate

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.070

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Peak Threshold

Nor

mal

ize

d M

utu

al I

nfo

rmat

ion

NMI vs Peak Threshold

Super-ordinateBasicSub-ordinate

Page 13: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

RESULTS Variation of performance metrics with

number of images:

10 15 20 25 30

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

Images per sub-ordinate category

Nor

mal

ize

d M

utu

al I

nfo

rmat

ion

NMI vs Number of Images

Super-ordinateBasicSub-ordinate

10 15 20 25 300.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Images per sub-ordinate category

Pur

ity

Purity vs Number of Images

Super-ordinateBasicSub-ordinate

10 15 20 25 30

0.2

0.25

0.3

0.35

0.4

Images per sub-ordinate category

Ran

d I

nd

ex

Rand Index vs Number of Images

Super-ordinateBasicSub-ordinate

10 15 20 25 300.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

Images per sub-ordinate category

Silh

oue

tte

In

dex

Silhoutte Index vs Number of Images

Super-ordinateBasicSub-ordinate

Page 14: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

RESULTS Effect of expertise Two subordinate and one basic level categories

taken together, ex: {{dalmation, foxhound}, bird} Trial 1: Training samples of subordinate categories

half of basic categoryTrial 2: Training samples of subordinate category equal to basic category

30 600

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of images in Basic Category

Ran

d I

nd

ex

Effect of Expertise

dogbirdchairtable

Page 15: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

SOME PROBLEMS

White background images sometimes classified separate from cluttered background. Solution: Foreground extraction

High variability in Normalized Mutual Information (NMI)

Effect of expertise not clear Solution: Test for exponential increase in

images

Page 16: C OMPUTATION M ODEL FOR V ISUAL C ATEGORIZATION Bhuwan Dhingra

REFERENCES

[1] Rosch, E., Mervis, C., Gray, W., Johnson, D., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology.

[2] Marc, J.M.M., Joubert, O.R., Nespoulous, J.L. & Fabre-Thorpe, M (2009). The time-course of visual categorizations: you spot the animal faster than the bird. PLoS one.

[3] Johnson, K.E., Mervis, C.B. (1997). Effects of varying levels of expertise on the basic level of categorization. Journal of Expert Psychology.