14
Optimization of Electron Beam Lithography for the Fabrication of Nanostructured Optical Devices Brian Saulnier 1 , James Dilts 2 , Jacob Fleming 3 , Carol Baumbauer 2 , Tristan Gray 2 , Kemal Turksonmez 4 , Jed Pai 2 , Andrew Hohne 2 , Wataru Nakagawa 2 1 Department of Chemistry DePauw University, 313 S Locust St, Greencastle, IN 46135 2 Electrical and Computer Engineering, 3 Mechanical and Industrial Engineering Montana State University, P.O. Box 173780, Bozeman, MT 59717- 3780, USA 4 Department of Physics Hobart College, 300 Pulteney St, Geneva, NY 14456

C-02-Saulnier · 2020. 1. 23. · Title: C-02-Saulnier Created Date: 10/19/2017 3:50:21 PM

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Optimization  of  Electron  Beam  Lithography  for  the  Fabrication  of Nanostructured Optical  

    DevicesBrian  Saulnier1, James  Dilts2,  Jacob  Fleming3,  Carol  Baumbauer2,  Tristan  Gray2,  Kemal Turksonmez4,  

    Jed  Pai2,  Andrew  Hohne2,  Wataru Nakagawa2

    1Department of ChemistryDePauw University, 313 S Locust St,

    Greencastle, IN 46135

    2Electrical and Computer Engineering,3Mechanical and Industrial Engineering

    Montana State University, P.O. Box 173780, Bozeman, MT 59717-3780, USA

    4Department of PhysicsHobart College, 300 Pulteney St, Geneva,

    NY 14456

  • Project  Goal• Optimize  the  nano-‐fabrication  process  in  order  to  reproducibly  create  functional  polarizing  devices  which  select  a  specific  polarization  state  and  wavelength  in  the  IR  Range

    Wataru Nakagawa

    •Expected  Periods:  1µm,  800nm,  600nm,  400nm,  300nm,  200nm

    •Ideal  Fill  Factor:  50%

  • Fabrication  Process

    • PMMA  Development  Time • Primary  E-‐Beam  Dosage

    Optimization

    Wataru Nakagawa

    1 23 4

    5

    6 78 9 10

  • Initial  Dosing  Trial1  µm

    800  nm

    600  nm

    400  nm

    300  nm

    200  nm

    295  µC/cm2

    305  µC/cm2

    315  µC/cm2

    330  µC/cm2

    335  µC/cm2

    300  µC/cm2

    Original  Dosing

    +5  µC/cm2

    +10  µC/cm2

    +15  µC/cm2

    +20  µC/cm2

    -‐5  µC/cm2

    -‐10  µC/cm2

    -‐15  µC/cm2

    •Test  trial  conducted  to  find  experimental  dosing  range  central  values•8  test  gratings  with  dosing  steps  of  5  µC/cm2,  centered  on  original  dosing  values• Original  development  times  of  40  second  PMMA  and  100  second  PMGI  used

  • Optimization• New  central  dosing  values  

    chosen  from  test  trial• Gratings  made  with  smaller  

    dosing  steps  of  3  µC/cm2• PMMA  development  time  varied  

    from  20  to  100  seconds  to  find  optimal  dose  and  development  time  combination

    Expected  Period  Size

    New  Central  Dosing  Values  From  Test Trial

    1µm 300  µC/cm2

    800  nm 320  µC/cm2

    600  nm 320 µC/cm2

    400  nm 335 µC/cm2

    300  nm 340 µC/cm2

    200  nm 300 µC/cm2

    New  Central  Dosing  Values

    +3  µC/cm2

    +6  µC/cm2

    +9  µC/cm2

    +12  µC/cm2

    -‐3  µC/cm2

    -‐6  µC/cm2

    -‐9  µC/cm2

  • 100  second  development 70  second  development

    65  second  development55  second  development

    • All  pictures  300  nm  period,  dose  331  µC/cm2

    • 70  and  65  second  pictures  have  minimal  edge  roughness

    • 55  second  picture  shows  rough  waving  grating  edges

    • 100  second  picture  shows  pitting  and  edge  roughness  from  over  development

    Qualitative  Analysis

  • 38

    43

    48

    53

    58

    20 30 40 50 60 70 80

    Fill  Factor  Percentage  [%

    ]

    PMMA  Development  Time  [s]

    Average  Fill  Factors  over  Development  Times  of  20  to  80  Seconds

    1um

    800nm

    600nm

    400nm

    300nm

    200nm

    • Lowest  fill  factor  variation  between  all  periods  at  50%  fill  occurs  at  70  second  PMMA  development  time

  • Dose  341  µC/cm2

    • All  pictures  300  nm  period,  70  second  development  time

    • 349  µC/cm2  and  346  µC/cm2  pictures  show  gratings  with  straight  edges  and  limited  roughness

    • 352  µC/cm2  picture  shows  wavy  grating  edges

    • 334  µC/cm2  picture  shows  rough  grating  edges

    Dose  346  µC/cm2Dose  334  µC/cm2

    Dose  352  µC/cm2 Dose  349  µC/cm2Qualitative  Analysis  cont.

  • Quantitative  AnalysisExpected  Period

    E-‐Beam  Dosing PMMADevelopment  Time

    Measured  Period

    Measured  FillFactor

    300 nm 346  µC/cm2 70  sec 298.79 50.02%

    300nm 343 µC/cm2 70  sec 297.22  nm 45.88%

    300nm 349  µC/cm2 70 sec 298.48  nm 51.47%

    300nm 346  µC/cm2 65  sec 298.48 nm 44.38%

    300nm 346  µC/cm2 75  sec 297.61 nm 48.59%

  • Quantitative  Analysis  Cont.Expected  Period

    E-‐Beam  Dosing PMMADevelopment  Time

    Measured  Period

    Measured  FillFactor

    800nm 323  µC/cm2 70  sec 760.77  nm 50.03%

    800nm 320  µC/cm2 70  sec 763.02  nm 49.93%

    800nm 326  µC/cm2 70 sec 766.72  nm 50.63%

    800nm 323  µC/cm2 65  sec 758.60  nm 48.25%

    800nm 323  µC/cm2 75  sec 762.20  nm 48.05%

  • Results  

    Expected  Period  Size

    Optimal  Dosing  Value

    Measured  Period

    Measured  fill  factor

    1µm 306  µC/cm2 992.7  nm 51.82%800  nm 323  µC/cm2 760.77  nm 50.03%600  nm 323 µC/cm2 574.48  nm 48.15%400  nm 341  µC/cm2 395.2  nm 48.58%300  nm 346  µC/cm2 298.79  nm 50.02%200  nm 309  µC/cm2 201.62  nm 51.89%

  • Conclusions

    • Found  optimal  PMMA  development  time  at  21° C  

    • Found  optimal  dosing  values  for  grating  periods  ranging  from  1  µm  to  200  nm  at  a  70  second  PMMA  development  time

    • Vary  PMGI  Development  time

    • Modu Lab  Deposition  Optimization

    Next  Steps

  • Polarizer  Array

    1  pixel

    wmocloudatlas.org

    Ultimate  Application

  • Acknowledgements

    • National  Science  Foundation  (NSF)  Research  Experience  for  Undergraduates  (REU)  Program,  grant  #:  1559632

    • National  Nanotechnology  Coordinated  Infrastructure  (NNCI)

    • NASA  EPSCoR• Montana  Space  Grant  Consortium  (MSGC)• Imaging  and  Chemical  Analysis  Laboratory  (ICAL)• Montana  Microfabrication facility  (MMF).