156
Electrical Impedance Tomography David Isaacson Jonathan Newell Gary Saulnier RPI

David Isaacson Jonathan Newell Gary Saulnier RPI

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: David Isaacson Jonathan Newell Gary Saulnier RPI

Electrical Impedance Tomography

David Isaacson

Jonathan Newell

Gary Saulnier

RPI

Page 2: David Isaacson Jonathan Newell Gary Saulnier RPI

Part 1.

Adaptive Current Tomography

and Eigenvalues

Page 3: David Isaacson Jonathan Newell Gary Saulnier RPI

With help from

D.G.Gisser, M.Cheney, E. Somersalo,

J.Mueller, S.Siltanen

and

Page 4: David Isaacson Jonathan Newell Gary Saulnier RPI

Denise Angwin, B.S. Greg Metzger, B.S . Hiro Sekiya, B.S. Steve

Simske, M.S. Kuo-Sheng Cheng, M.S. Luiz Felipe Fuks, Ph.D. Adam Stewart Andrew Ng, B.S. Frederick Wicklin, M.S. Scott Beaupre, B.S. Andrew Kalukin, B.S. Tony Chan, B.S. Matt Uyttendaele, M.S. Steve Renner, M.S. Laurie Christian, B.S. Van Frangopoulos, M.S. Tim Gallagher, B.S. Lewis Leung, B.S. Jeff Amundson, B.S. Kathleen Daube, B.S. Candace Meindl Matt Fisher Audrey Dima, M.Eng. Skip Lentz Nelson Sanchez, M.S. Clark Hochgraf John Manchester Erkki Somersalo, Ph.D. Hung Chung Molly Hislop Steve Vaughan Joyce Aycock Laurie Carlyle, M.S. Paul Anderson, M.S. John Goble, Ph.D. Dan Kacher Chris Newton, M.S. Brian Gery Qi Li Ray Cook, Ph.D. Paul Casalmir Dan Zeitz, B.S. Kris Kusche, M.S. Carlos Soledade, B.S. Daneen Frazier Leah Platenik Xiaodan Ren, M.S. David Ng, Ph. D. Brendan Doerstling, Ph.D. Mike Danyleiko, B.S. Cathy Caldwell, Ph.D. Nasriah Zakaria Peter M. Edic, Ph. D. Bhuvanesh Abrol Julie Andreasson, B.S. Jim Kennedy, B.S. Trisha Hayes, B.S. Seema Katakkar Yi Peng Elias Jonsson, Ph. D. Pat Tirino M.S. Hemant Jain, Ph. D. Rusty Blue, Ph. D. Julie Larson-Wiseman, Ph. D.

Page 5: David Isaacson Jonathan Newell Gary Saulnier RPI

Main Problem!

Can we improve the Diagnosis

and Treatment of Disease,

especially Heart Disease and

Breast Cancer with

Electromagnetic Fields?

Page 6: David Isaacson Jonathan Newell Gary Saulnier RPI

Example of E&M for Diagnosis

EKG

V

_

+

Page 7: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 8: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 9: David Isaacson Jonathan Newell Gary Saulnier RPI

Example of E&M for Treatment- Defibrillation!

V

3000 V –DC, 20A for 5ms

Page 10: David Isaacson Jonathan Newell Gary Saulnier RPI

Impedance Imaging Problem;

How can one make clinically

useful images of the electrical

conductivity and permittivity

inside a body from

measurements on a body’s

surface?

Page 11: David Isaacson Jonathan Newell Gary Saulnier RPI

Potential Applications I. Continuous Real Time Monitoring of Function of:

1. Heart 2. Lung 3. Brain

4. Stomach 5. Temperature

II. Screening: 1. Breast Cancer 2. Prostate Cancer

III. Electrophysiological Data for Inverse problems in:

1. EKG

2. EEG

3. EMG

Page 12: David Isaacson Jonathan Newell Gary Saulnier RPI

Reasons

TISSUE Conductivity

S/M

Resistivity

Ohm-Cm

Blood .67 150

Cardiac Muscle .2 500

Lung .05 2000

Normal Breast .03 3000

Breast

Carcinoma

.2 500

Page 13: David Isaacson Jonathan Newell Gary Saulnier RPI

Procedure

For Imaging Heart and Lung

Function in 3D

Electrical Impedance

Tomography

Page 14: David Isaacson Jonathan Newell Gary Saulnier RPI

Apply I’s –

Measure V’s

Reconstruct

s+iwe

Page 15: David Isaacson Jonathan Newell Gary Saulnier RPI

Procedure used by T-Scan for

Electrical Impedance

Mammography

Page 16: David Isaacson Jonathan Newell Gary Saulnier RPI

Apply V

Meas. I’s

2 V

0 V

Display I’s

V=0 volts

V=2 volts

Current I’s in ma.

T-Scan = Only Commercial System

Tumor

Page 17: David Isaacson Jonathan Newell Gary Saulnier RPI

Is it useful?

Test by blinded Trials!

Page 18: David Isaacson Jonathan Newell Gary Saulnier RPI

Sensitivity =

# predicted to have cancer

Total # that have cancer

Specificity =

# predicted NOT to have cancer

Total # that do NOT have cancer

X 100

Page 19: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 20: David Isaacson Jonathan Newell Gary Saulnier RPI

How can one increase the

sensitivity and specificity?

Page 21: David Isaacson Jonathan Newell Gary Saulnier RPI

Increase Resolution?

Page 22: David Isaacson Jonathan Newell Gary Saulnier RPI

What determines “resolution”?

FIRST LIMIT IS THE NUMBER OF

ELECTRODES

because

# Degrees of freedom (voxels)

reconstructed < L(L-1)/2

Where L=# of Electrodes

Page 23: David Isaacson Jonathan Newell Gary Saulnier RPI

How to get Higher Resolution?

Let L ∞

Page 24: David Isaacson Jonathan Newell Gary Saulnier RPI

Problem

Theorem

The ability to “distinguish”

different conductivity distributions

0 as L∞ for fixed # of I gen’s.

Page 25: David Isaacson Jonathan Newell Gary Saulnier RPI

Solve the Problems:

1. Should we apply currents or voltages?

2. Can we distinguish σ from ?

3. Which patterns of currents or voltages should we

apply?

4. How many electrodes?

5. What size electrodes?

6. How can we reconstruct useful images?

Page 26: David Isaacson Jonathan Newell Gary Saulnier RPI

How do we solve these

problems?

Page 27: David Isaacson Jonathan Newell Gary Saulnier RPI

Use Mathematics

and

Electromagnetic theory

to design system to reconstruct

and display conductivity inside

the body in 3D

Page 28: David Isaacson Jonathan Newell Gary Saulnier RPI

What are the Equations?

Page 29: David Isaacson Jonathan Newell Gary Saulnier RPI

Maxwell’s

0

/

/

+

B

D

tBE

tDJH

Page 30: David Isaacson Jonathan Newell Gary Saulnier RPI

Assume

ti

titi

titi

exJtxJ

exBtxBexDtxD

exHtxHexEtxE

w

ww

ww

)(),(

)(),(,)(),(

)(),(,)(),(

Page 31: David Isaacson Jonathan Newell Gary Saulnier RPI

Constitutive Relations

EJ

HB

ED

s

e

Page 32: David Isaacson Jonathan Newell Gary Saulnier RPI

Thus

HiE

EiH

w

ews

+ )(

Page 33: David Isaacson Jonathan Newell Gary Saulnier RPI

HiE

EiH

w

ews

+ 0)(

Page 34: David Isaacson Jonathan Newell Gary Saulnier RPI

0

0

0 Assume

E

Es

w

Page 35: David Isaacson Jonathan Newell Gary Saulnier RPI

0

0

U

Thus

UEE

s

Page 36: David Isaacson Jonathan Newell Gary Saulnier RPI

Main Equation

0 Us

Page 37: David Isaacson Jonathan Newell Gary Saulnier RPI

Son / jU s

Bin 0 Us

S

B

Page 38: David Isaacson Jonathan Newell Gary Saulnier RPI

Forward Problem:

Given conductivity s and current

density j find v = U on S.

(S)1/2H(S)1/2-H:)R(

Where

.

:mapDirichlet to Neuman the Find i.e.

v)jR(

+

σ

s

Page 39: David Isaacson Jonathan Newell Gary Saulnier RPI

Inverse Problem:

Given

R(σ)

Find

σ

Page 40: David Isaacson Jonathan Newell Gary Saulnier RPI

Apply Currents or Voltages?

Page 41: David Isaacson Jonathan Newell Gary Saulnier RPI

1. Apply currents

measure voltages

since

R(s) is smoothing

but

L(s) R(s) 1

Is desmoothing!

)}()(H:)({ 2/11/2 SHS + L s

Page 42: David Isaacson Jonathan Newell Gary Saulnier RPI

Properties of R

R has a complete orthonormal set of eigenfunctions in and its eigenvalues

are decreasing to 0.

See Board.

)(2 SL

Page 43: David Isaacson Jonathan Newell Gary Saulnier RPI

Can we distinguish different

conductivities?

Page 44: David Isaacson Jonathan Newell Gary Saulnier RPI

2.We can distinguish different

conductivities when using

infinite precision!

Calderon

Kohn and Vogelius

Sylvester and Uhlmann

Nachman

Page 45: David Isaacson Jonathan Newell Gary Saulnier RPI

How to distinguish different

conductivities when precision is

finite?

Page 46: David Isaacson Jonathan Newell Gary Saulnier RPI

3. Apply “the best” current

patterns to distinguish

conductivities;

These are eigenfunctions of N-D

map.

Page 47: David Isaacson Jonathan Newell Gary Saulnier RPI

fff

dSxgxfgfS

x

,

)()(,

Let

2

Page 48: David Isaacson Jonathan Newell Gary Saulnier RPI

The “distinguishability” of s from

by current density j is denoted by

d(s,;j)

Given by

jjRRj /))()(();,( ssd

Page 49: David Isaacson Jonathan Newell Gary Saulnier RPI

We find the “best” Current

density by finding the max over j

of

<(R(s)R())j, (R(s)R())j>

<j,j>

Page 50: David Isaacson Jonathan Newell Gary Saulnier RPI

From Rayleigh the max

distinguishability is

d(s,;j)

where

(R(s)R()) j=j

is the largest eigenvalue of the

absolute value of

R(s)R()

Page 51: David Isaacson Jonathan Newell Gary Saulnier RPI

Thus s is distinguishable from

by measurements of precision e

iff

max d(s,;j)=d(s,;j)= > e

Page 52: David Isaacson Jonathan Newell Gary Saulnier RPI

What is the size of the smallest

inhomogeniety?

Page 53: David Isaacson Jonathan Newell Gary Saulnier RPI

r1 r0

0s

0s

1s

s )cos(Best j

).(.);,(

iff hableDistinguis

)./()(;0/1

).1/(2)/0();,(

2

0101

22

0

eesd

ssss

ssd

Oj

rr

rj

+

Example

Page 54: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 55: David Isaacson Jonathan Newell Gary Saulnier RPI

How do we find “best”current

patterns when we don’t know

what is inside?

Secret Adaptive Process!

Page 56: David Isaacson Jonathan Newell Gary Saulnier RPI

again! try and jjLet jj If

||)jR(j)R( ||/))jR(j)R( (j

-Let

)jR(,j)R( - compute)(or Measure

j - Guess

current;best find tomethod Adaptive

1001

00001

00

0

ss

s

Page 57: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 58: David Isaacson Jonathan Newell Gary Saulnier RPI

How do we find ALL the Current

patterns that are useful?

Page 59: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 60: David Isaacson Jonathan Newell Gary Saulnier RPI

Does it Work?

Page 61: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 62: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 63: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 64: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 65: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 66: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 67: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 68: David Isaacson Jonathan Newell Gary Saulnier RPI

Can optimal currents improve

sensitivity and specificity in

screening for breast cancer

?

Page 69: David Isaacson Jonathan Newell Gary Saulnier RPI

5x5 Electrode Array Tank

Page 70: David Isaacson Jonathan Newell Gary Saulnier RPI

Distinguishability Study Results Power Distinguishability for Big Conductive Target Using 5x5 Array

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Distance from Main Electrode Array Face to Target ( cm )

Ab

so

lute

Va

lue

of

Po

we

r C

ha

ng

e

Iopt_d

V_con

I_apt

Iopt_s

Figure 3. Optimal Current Pattern Iopt_d has better power distinguishability at all distances.

For this experiment, the experimental noise level of the magnitude of the power change is

0.02%, above which targets may be distinguishable.

Page 71: David Isaacson Jonathan Newell Gary Saulnier RPI

The depth below mammography electrodes at which an

inhomogeneity can be detected by .4% accuracy

Maximum Detected Distance

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Israel Group

(T-SCAN)

Russian

Group (BCDD)

R.P.I. Group

(ACT 3)

Dis

tan

ce

fro

m E

lec

tro

de

s t

o

Ta

rge

t (c

m)

Electrode Array 5x5, Array Size: 8cm Square, Electrode Size: 14.8mm Square

Target Size: 24 mm Cube From Poster by Tzu-Jen Kao

Constant

Voltage

Single

Current Source

Optimal

Current Patterns

Page 72: David Isaacson Jonathan Newell Gary Saulnier RPI

How many electrodes to use?

Page 73: David Isaacson Jonathan Newell Gary Saulnier RPI

3D.in )O( , 2Din ) ( O L

Then

precisiont Measuremen

electrodes ofNumber L

1/3- 1/2- ee

e

Page 74: David Isaacson Jonathan Newell Gary Saulnier RPI

How many current sources to

use?

As many as we have electrodes.

See Proof that as L →∞ distinguishability

→0 for a fixed number of current sources.

Page 75: David Isaacson Jonathan Newell Gary Saulnier RPI

What size should we make the

electrodes?

Space filling!

Page 76: David Isaacson Jonathan Newell Gary Saulnier RPI

4. How can we reconstruct useful

images?

1. Linearization (Noser 2-D ,Toddler 3-D);

Fast, useful, not accurate for large contrast

conductivities.

2. Optimization (Regularized Gauss-Newton);

Slow, more accurate , iterative methods

3. Direct methods (Layer stripping, D-Bar);

Solve full non-linear problem, no iteration!

Page 77: David Isaacson Jonathan Newell Gary Saulnier RPI

End Part II

How do we make images?

Page 78: David Isaacson Jonathan Newell Gary Saulnier RPI

Electrical Impedance Tomography

David Isaacson

Jonathan Newell

Gary Saulnier

RPI

Page 79: David Isaacson Jonathan Newell Gary Saulnier RPI

Part 2.

Electrical Impedance Imaging

Algorithms.

Page 80: David Isaacson Jonathan Newell Gary Saulnier RPI

Solve the Problems:

1. Should we apply currents or voltages?

2. Can we distinguish σ from ?

3. Which patterns of currents or voltages should we

apply?

4. How many electrodes?

5. What size electrodes?

6. How can we reconstruct useful images?

Page 81: David Isaacson Jonathan Newell Gary Saulnier RPI

4. How can we reconstruct useful

images?

1. Linearization (Noser 2-D ,Toddler 3-D);

Fast, useful, not accurate for large contrast

conductivities.

2. Optimization (Gauss Newton, Adaptive

Kacmarcz);

Slow, more accurate , iterative methods.

3. Direct methods (Layer stripping, CGO,

dbar);

Solve full non-linear problem, no iteration!

Page 82: David Isaacson Jonathan Newell Gary Saulnier RPI

What can a linearization do?

Noser – a 2-D reconstruction

Toddler – a 3-D reconstruction

(both assume conductivity differs

only a little from a constant.)

FNoser - Fast ,20 frames/sec

Real time imaging of Cardiac and

Lung function shown in the following

examples.

Page 83: David Isaacson Jonathan Newell Gary Saulnier RPI

Linearizations

NOSER (S.Simske,…)

FNOSER(P.Edic,…)

TODDLER(R.Blue,…)

Page 84: David Isaacson Jonathan Newell Gary Saulnier RPI

Main Equation

0 Us

Page 85: David Isaacson Jonathan Newell Gary Saulnier RPI

Son / jU s

Bin 0 Us

S

B

Page 86: David Isaacson Jonathan Newell Gary Saulnier RPI

Forward Problem:

Given conductivity s and current

density j find v = U on S.

(S)1/2H(S)1/2-H:)R(

Where

.

:mapDirichlet to Neuman the Find i.e.

v)jR(

+

σ

s

Page 87: David Isaacson Jonathan Newell Gary Saulnier RPI

Inverse Problem:

Given

R(σ)

Find

σ

Page 88: David Isaacson Jonathan Newell Gary Saulnier RPI

nnmm

nm

juju

uu

000

00

//

00

ss

ss

dxuudSuuuu

dxuuuu

uuuu

nm

BS

nmmn

nmmn

nmmn

00000

000

000

)(

0

00

ssss

ss

ss

Page 89: David Isaacson Jonathan Newell Gary Saulnier RPI

)(

)(),(

)( then If

)(

m)Data(n,

))()((,

2

00

00

000

00

0

0000

dsds

ss

sdsssds

ss

ss

ss

Odxuu

dxuumnData

Ouu

dxuu

jRRj

dSjujudSuuuu

nm

B

nm

B

mm

nm

B

nm

S

nmmn

S

nmmn

+

+

>

Page 90: David Isaacson Jonathan Newell Gary Saulnier RPI

k,),(

00

k

k

00

)(),(

solve; toneedonly Thus

)()(

)},({, BASIS Choose

),(

kCk

nmMnmData

dxuuxCnmData

xCx

x

dxuumnData

nm

B

kk

kk

k

nm

B

ds

ds

Page 91: David Isaacson Jonathan Newell Gary Saulnier RPI

What is the Basis?

SEE TRANSPARENCIES

Page 92: David Isaacson Jonathan Newell Gary Saulnier RPI

Does it work?

Test by experiment

Page 93: David Isaacson Jonathan Newell Gary Saulnier RPI

ACT 3

• 32 Current sources

• 32 Voltmeters

• 32 Electrodes

• 30 KHZ

• 20 Frames / Sec

• Accuracy > .01%

Page 94: David Isaacson Jonathan Newell Gary Saulnier RPI

Phantom

Page 95: David Isaacson Jonathan Newell Gary Saulnier RPI

Reconstructions

Page 96: David Isaacson Jonathan Newell Gary Saulnier RPI

Real-time acquisition and display

Page 97: David Isaacson Jonathan Newell Gary Saulnier RPI

Can it image heart and lung

function?

Page 98: David Isaacson Jonathan Newell Gary Saulnier RPI

2 – D

Page 99: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 100: David Isaacson Jonathan Newell Gary Saulnier RPI

ACT 3 imaging blood as it leaves the heart ( blue) and

fills the lungs (red) during systole.

Page 101: David Isaacson Jonathan Newell Gary Saulnier RPI

Show 2D Ventilation and

Perfusion Movie

Page 102: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 103: David Isaacson Jonathan Newell Gary Saulnier RPI

3D Electrode Placement

Page 104: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 105: David Isaacson Jonathan Newell Gary Saulnier RPI

3-D Chest Images

Page 106: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 107: David Isaacson Jonathan Newell Gary Saulnier RPI

Heart Lung Static Image

Page 108: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 109: David Isaacson Jonathan Newell Gary Saulnier RPI

Show Heart Lung View from

other source

Page 110: David Isaacson Jonathan Newell Gary Saulnier RPI

Ventilation in 3D

Page 111: David Isaacson Jonathan Newell Gary Saulnier RPI

3D Human Results

• Images showing conductivity changes with respiration

Page 112: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 113: David Isaacson Jonathan Newell Gary Saulnier RPI

Cardiac in 3D

Page 114: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 115: David Isaacson Jonathan Newell Gary Saulnier RPI

How can one get more accurate

values of the conductivity, less

artifact,and still be fast?

Page 116: David Isaacson Jonathan Newell Gary Saulnier RPI

D-Bar method for EIT

J. Mueller , S.Siltanen, D.I.

Special thanks to A.Nachman

Page 117: David Isaacson Jonathan Newell Gary Saulnier RPI

D-Bar Reconstruction method • Convert inverse conductivity problem to an

Unphysical Inverse Scattering Problem for the Schrodinger Equation.

• Use the measured D-N map to solve a boundary integral equation for the boundary values of the exponentially growing Faddeev solutions .

• Compute the unphysical Scattering transform in the complex k-plane from these boundary values.

• Solve the D-Bar integral equation in the whole complex k-plane for the Faddeev solutions in the region of interest.

• Take the limit as k goes to 0 of these solutions to recover and display the conductivity in the region of interest.

Page 118: David Isaacson Jonathan Newell Gary Saulnier RPI

Problem: Find the Conductivity σ

from the measured Dirichlet to

Neumann map sL

B. of odneighborho ain 1

B.on u/ V

B.on Vu

B. inside 0

:Assume

L

s

s

s

s

u

Page 119: David Isaacson Jonathan Newell Gary Saulnier RPI

B. of odneighborho ain 0q and

Bon /

Bin 0 q -

Then

q(p) q

u, ) (p,

;Let

1/21/2-

1/2

L

+

ss

s

s

Page 120: David Isaacson Jonathan Newell Gary Saulnier RPI

. |p| as 1 where

) (p, p) exp(i)(p,

Let

ikkk wherei)k(1, takeRIn

0. where, |p| as p) exp(i

satisfy that B outside 0q

with ) 2 (n R of allon Solutionsfor Look

21

2

n

+

Page 121: David Isaacson Jonathan Newell Gary Saulnier RPI

identical. are they at 1 and both Since

0 q -

0(p,0) q (p,0)-

:Reason

).,(0

lim)0,()(1/2

hat;property t by the from recover may We

. |p| as 1 and

0)2(-

thatObserve

1/2

1/21/2

+

+

+

s

ss

s

s

ppp

qi

Page 122: David Isaacson Jonathan Newell Gary Saulnier RPI

( )

.|p| as p)exp(iG , G-

function Greens Faddeev theis G(p) where

tt)w(t)ds-G(p(Sw)(p)

operator thedenotes S Here

B.on )exp()] - S([I

solvingby Bon hence and findFirst 1.

? find Given :ProblemMain

B

1

LL+

L

d

s

s

pi

Page 123: David Isaacson Jonathan Newell Gary Saulnier RPI

. Display .5

)()(p, lim Take .4

),())(exp()(4

1/

);(p,for equation theSolve .3

)()()( p)exp(ik) t(

transformscattering "unphysical" theCompute 2.

1/2

0k

1

s

s

s

p

kppiktk

k

pdspB

+

LL

Page 124: David Isaacson Jonathan Newell Gary Saulnier RPI

Does it Work?

Page 125: David Isaacson Jonathan Newell Gary Saulnier RPI

Numerical Simulation

Page 126: David Isaacson Jonathan Newell Gary Saulnier RPI

Phantom tank with saline and agar

First D-Bar Reconstruction Results

from Experimental Data

Page 127: David Isaacson Jonathan Newell Gary Saulnier RPI

First D-Bar Cardiac Images

Page 128: David Isaacson Jonathan Newell Gary Saulnier RPI

Changes in conductivity as heart expands (diastole) and contracts (systole)

from one fixed moment in cardiac cycle.

First blood fills enlarging heart (red) while leaving lungs (blue) . Then blood

leaves contracting heart (blue) to fill lungs (red).

Reconstruction by D-bar. Data by ACT3.

Page 129: David Isaacson Jonathan Newell Gary Saulnier RPI

Click on the image at right to see a movie of changes in the conductivity

inside a chest during the cardiac cycle. Difference’s shown in the movie

are all from one moment in the cycle. The movie starts with the heart

filling and the lungs emptying.

Reconstruction by D-Bar. Data from ACT3.

Page 130: David Isaacson Jonathan Newell Gary Saulnier RPI

Problems:

• How to make D-bar method work better

with experimental data?

• How to make it work in 3-D?

• How to make D-bar work with

Optical,Acoustic, and Microwave Data?

Page 131: David Isaacson Jonathan Newell Gary Saulnier RPI

Can EIT Improve Sensitivity and

Specificity in screening for

Breast Cancer

?

Page 132: David Isaacson Jonathan Newell Gary Saulnier RPI

Breast Cancer Problem

Page 133: David Isaacson Jonathan Newell Gary Saulnier RPI

HS14R HS10L HS21R HS25L

Which ones have cancer ?

Page 134: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007 13

4

Electrical Impedance Tomography

with Tomosynthesis for Breast

Cancer Detection Jonathan Newell

Rensselaer Polytechnic Institute

With:

David Isaacson Gary J. Saulnier

Tzu-Jen Kao Greg Boverman

Richard Moore* Daniel Kopans*

And: Rujuta Kulkarni Chandana Tamma

Dave Ardrey Neha Pol

*Massachusetts General Hospital

Page 135: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

EIT electrodes added to mammography machine.

1 : 2 : 4 : 2 : 1 is the ratio of the mesh thicknesses.

Only the center layer, III, is displayed in the results.

Page 136: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

EIT Instrumentation

ACT 4 with Tomosynthesis unit Radiolucent electrode array

Page 137: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

Co-registration of EIT and Tomo Images

To find the electrode position, display the slice containing the electrodes. Superimpose the mesh grid with correct scale. Slice 15 of 91

Then select the desired tomosynthesis layer. Slice 50 of 91

HS_14R Normal

Page 138: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

Admittance Loci: format for summaries of

EIS data

Results of in-vitro studies of excised breast tissue. Jossinet & Schmitt 1999

Page 139: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

120 EIS plots for a normal breast (HS14_Right)

Page 140: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

HS25_L: Invasive Ductal Carcinoma ROI 1

ROI 2

Page 141: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

Linear Correlation Measure –LCM

m

m

YY

YYLCM

,1

1

0

1

2

3

4

5

0 1 2 3 4 5 6

Y

Ym

compute for

each voxel

LCM Image 700

0

Page 142: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

LCM Image of invasive ductal CA (HS25_L)

Gray scale image of LCM

700

0

Page 143: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

HS21_R: Fibroadenoma in the upper box ROI 1

ROI 2

Page 144: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

LCM Image of fibroadenoma (HS21_R)

Gray scale image of LCM

350

0

Page 145: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

HS10_L: Invasive Ductal CA “Proliferation is worrisome”

ROI 1

ROI 2

Page 146: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

LCM Image of invasive ductal CA (HS10_L)

Gray scale image of LCM

1300

0

Page 147: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

LCM for 11 normal breasts

There are 120 EIS plots for layer 3 in each patient. The

distribution of the LCM parameter in these plots is shown.

300

0

Page 148: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

LCM for the regions of interest in 4 patients

The distributions of the LCM for the regions of interest identified. Note the LCM

values are much larger for voxels associated with the malignant lesions.

Hyalinized

Fibroadenoma

Invasive ductal

carcinoma

Normal Normal

Page 149: David Isaacson Jonathan Newell Gary Saulnier RPI

Rensselaer Polytechnic Institute April 2007

LCM on the same scale

Normal Breast

Fibroadenoma

Invasive Ductal

Carcinoma

Invasive Ductal

Carcinoma

Page 150: David Isaacson Jonathan Newell Gary Saulnier RPI

HS14R HS10L HS21R HS25L

Which ones have cancer ?

Page 151: David Isaacson Jonathan Newell Gary Saulnier RPI

Which ones have cancer ?

HS14L

LCM=137

HS21L

LCM=328

HS25R

LCM=709

HS10R

LCM=1230

Page 152: David Isaacson Jonathan Newell Gary Saulnier RPI
Page 153: David Isaacson Jonathan Newell Gary Saulnier RPI

HS14R HS10L HS21R HS25L

Which ones have cancer?

Page 154: David Isaacson Jonathan Newell Gary Saulnier RPI

Can EIT Improve Sensitivity and

Specificity in screening for

Breast Cancer

?

Page 155: David Isaacson Jonathan Newell Gary Saulnier RPI

Questions and Suggestions

Happily Received by

[email protected]

Page 156: David Isaacson Jonathan Newell Gary Saulnier RPI

Thank you,

especially

J.M., M.C., P.M.