Building Systems by Stora Ensoassets.storaenso.com/se/buildingandliving/ProductServicesDocuments… · 2 BUILDING SYSTEMS BY STORA ENSO ... • A clear framework for the development

Embed Size (px)

Citation preview

  • Building Systems by Stora Enso 38 Storey Modular Element Buildings

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S2

    Table of contents1 Introduction and disclaimer.......................................................................................................... 3

    1.1 Introduction ........................................................................................................................ 41.2 Thebenefitsofthesystem .................................................................................................. 51.3 Disclaimer ........................................................................................................................... 5

    2 AnatomyoftheStoraEnsomodularbuildingsystem .................................................................. 62.1 Anatomyofamodularbuilding ........................................................................................... 72.2 Anatomyofamodularelement ........................................................................................... 82.3 Elementsystemsinthefieldofconstructiontechnologies ................................................ 9

    3 Architecturaldesignguidelines .................................................................................................. 10

    4 BuildingSystembyStoraEnso ...................................................................................................174.1 Structuralcomponentsofthemodularsystem ................................................................ 184.2 Manufacturingprocessofthemodularelements ............................................................ 194.3 Principlesofbuildingacoustics ........................................................................................ 204.4 Principlesoffiredesign .................................................................................................... 214.5 Principlesofcontrollingdeformationsandcracking ........................................................ 234.6 PrinciplesofHVACdesign ................................................................................................ 254.7 Bracingsystemsofmodularbuildings ............................................................................. 264.8 Principlesofseismicsafety .............................................................................................. 274.9 Erection procedure sequence .......................................................................................... 28

    5 Structuraldesign ........................................................................................................................ 295.1. Structuraltypes ................................................................................................................ 305.2. Structural details............................................................................................................... 51

    6 Transportationandinstructionsforon-siteassembly ............................................................... 866.1 Transportationofmodularelements ................................................................................ 876.2 Principlesoferection ........................................................................................................ 87

    6.2.1 General .................................................................................................................. 876.2.2 Installationofmodularelements ........................................................................... 87

    6.3 Protectionon-site ............................................................................................................. 876.3.1 Moisture control ..................................................................................................... 876.3.2Personsinchargeofthemoisturecontrol ............................................................. 876.3.3Moisturecontrolplanandemployeeengagement ................................................ 876.3.4Assuranceofmoisturetechnicalqualityincaseofmoisturedamage .................. 88

    6.4 Protectionofstructuresandmaterialon-site ................................................................... 886.4.1 Protectionofwallsinmodularelements ................................................................ 886.4.2Protectionofroofsinmodularelements ............................................................... 88

    6.4.3Managementoftheindoorconditions................................................................... 896.4.4 Inspectionstobemadebeforeinstallationoffinishes .......................................... 89

    7 Sustainability .............................................................................................................................. 907.1 StoraEnsobuildingsolutionsforsustainablehomes ...................................................... 91

    7.1.1 Responsiblysourcedrenewablewoodforlowcarbonbuildingsolutions ............ 917.1.2 Energyefficientandlowcarbonhomes ................................................................ 92

    7.2 OccupanthealthandwellbeingIndoorclimateandthermalcomfort ........................... 927.3 ElementsoflifecycledesigninCLTandLVL9basedbuildings ........................................ 937.4 Certificationofsustainableandlowcarbonhomes ......................................................... 93

    8 Stora Enso .................................................................................................................................. 94

  • 3 B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S

    1 Introduction and disclaimer

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S4

    1.1 IntroductionThismanualdescribestheStoraEnsomodularelementsystemforwoodenmulti-storeyresidentialbuildings.Itisintendedfordesigners,contractors,buildingownersand developers.

    ThecoreofthesystemareStoraEnsosstructuralwallpanelsandfloorslabs,whichformthestrongandstableload-bearingstructureofeachmodularelement.Theelementsarebuiltincontrolledfactoryconditionsanddeliveredtothesitewithallfinishingmaterialsandcomponentsinstalled.Thetechnologyprovideshightechnicalperformanceandoutstandingquality.Theseelementsenableanindustrialmethodofconstructionthatreducesassemblytimeonsiteandminimizestheneedforfinishingworkonsite.

    Thebuildingsystemisflexibleandcanbeadjustedtovariousmarketandcustomerrequirementsdependingonlocalneeds.Adjustmentsmightinclude:

    Architectural considerations Typologyandscaleofthebuilding Unitandroomlayouts Customerdemandsorlocalmarketfactors

    Engineeringconsiderations Localperformancerequirements(acoustics,fireprotection,thermalinsulation,etc.) Localcoderequirements(definedbyrelevantbuildingauthorities) Levelofpre-fabrication(interiorsandfaades)

    ThismanualoffersagoodoverviewofcommonEuropeanstructuresandbuildingtypes,butitshouldalsoprovideinspirationfornewideasandexperiments.

    DetaileddesigninstructionsandstructuraldrawingscanbedownloadedfromthewebpagesofStoraEnsoBuildingSolutions.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S5

    1.2 ThebenefitsofthesystemThesystemoffersbenefitsforallpartiesinbuildingprocess.

    Forarchitects,itprovides Systemsandmaterialsthatenablehighindustrialqualityofexteriorand

    interior architecture Asystemofassemblythatallowsproducts,structuresandshapestobe easilycombined

    Safesolutionsandproventechnologiestofulfiltherequirementsof buildingauthorities

    Aclearframeworkforthedevelopmentofthebuildingdesign

    Forengineersitprovides Aneasy,safeanddependablesystemfordesign Proven structural details Clearlydefinedperformancevaluesforstructures Aclearsystemandguidelinesforbracingthebuilding Qualitysupportmaterialsanddesigntools Structuraldetailsavailablefordownload Amanualandsoftwareforstructuralcalculations

    Forcontractorsandindustryitprovides Safesolutions:testedandproveninstructionsforthewholebuildingprocess Fastassemblytimes Aprovenstructuralsystem Readysolutionseasycostanddesignmanagement Industrialcomponentswithfactoryprecisionlessfinishingworkonsite Nodryingorcuringtimes Lightweightstructuresthatreduceoreliminatetheneedforheavyliftingequipment

    Forownersandoccupantsitprovides Costefficiency Moderndesignwithvisiblewoodeninteriorsurfaces(inaccordancewith localfirerequirements)

    Healthylivingwithnaturalmaterials Energyefficiencylowheatingandcoolingcostsforthewholebuilding Ecologicalbenefits;lowenergyconsumptionandalowercarbonfootprint Technicallysafeanddurablesolutions

    For developers it provides Ashortconstructionphaselesstimetowaitoninvestmentreturns Anattractiveproductformodernandenvironmentallyconsciouscustomers Asystemthatcanbecustomizedforvaryingappearances,buildingtypesandsizes Industrialqualityallcriticalphaseshavebeenbuiltincontrolledcircumstances Anattractiveobjectofinvestmentforenvironmentallyconsciouspersons

    1.3 DisclaimerThemanualismeantforpreliminarydesignofbuildingsandstructures.

    Useofthestructuralsolutions[andreferencevalues]shownheredoesnotreplacetheneedforfinaldesignandcalculationsbyresponsibledesign-ers(includingbutnotlimitedtostructural,acoustic,fireorbuildingphysicsexperts).Allsolutionsanddetailsusedinconstructionmustbereviewed,verifiedandapprovedbytheresponsibledesignersoftheproject.Con-formancewithlocalbuildingregulationsmustbeconfirmedbytherespon-sibledesigners.Designdetailsaresubjecttochange.

    StoraEnsodoesnotgiveanywarrantiesorundertakingsabouttheaccu-racy,validity,timelinessorcompletenessofanyinformationordatainthismanualandexpresslydisclaimsanywarrantiesofmerchantabilityorfitnessforparticularpurpose.InnoeventwillStoraEnsobeliableforanydirect,special,indirect,consequentialincidentaldamagesordamagesofanykindcausedbytheuseofthismanual.

    ManualCopyrightStoraEnso.

  • 6 B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S

    2 Anatomy of the Stora Enso modular building system

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S7

    2.1 Anatomyofamodularbuilding Readymodulesandoptimizeddetailsfasterectiontime Stiffandrigidcentralcore Thesystemcanbelocalizedtomeetlocalbuildingtraditionandrequirements Firesafetywithmassivewoodandfireprotectivesurfacelayers Acousticperformancewithengineeredstructuraldetailsandacousticlayers

    Concretegroundfloor/Basement/Foundation

    commercial/multipurposespaces storages/technicalrooms constructed on site

    Room modules

    prefabricated

    Technical modules

    prefabricated

    Faade

    assembledinfactoryoronsite differentfaadematerialsarepossible

    Additionalelements(balconyzone)

    prefabricatedelements technicallypossibletousedifferentbalconytypes railings/glazing

    HVACinstallations/Verticalshafts

    assembled on site

    Surfacestructures

    finishedonsiteaftertechnicalinstallations

    Additional elements

    faadepanels

    Centralcorridor(assembledonsite)

    massivewoodslabs,beamsandstairways

    Roof

    prefabricatedelements/constructedonsite

    Elevatorshaft

    massivewood notelocalfireregulations

  • SE DESIGN MANUAL 18.1.2016ARCH DESIGN GUIDELINE / SKETCH

    MODULAR SYSTEMPOSSIBILITIES AND BENEFITS OF THE SYSTEMRELATED TO REPETITION AND VARIATION

    AMODULE VARIATION: A REPETITION: 1 x A...n X A

    MODULE VARIATION: A-B-C-D-E-F-G... REPETITION: -

    A + B A + B + C A + B + C + D + E + F + G ABCDEFGHIJKLMNOP...

    MAXIMAL REPETITIONMINIMAL VARIATION OF ELEMENTSSIMPLICITY

    TYPICAL EXAMPLES:-HOTELS-SMALL APARTMENT HOUSING-STUDENT HOUSING

    TYPICAL EXAMPLES:-EXCLUSIVE HOUSING-SPECIAL PROJECTS

    TYPICAL EXAMPLES:-NORMAL MULTI STOREY HOUSING

    UNLIMITED VARIATION OF ELEMENTSMINIMAL REPETITIONCOMPLEXITY

    OPTIMAL VARIATION OF ELEMENTS AND REPETITION OF MODULES DEFINED BY PROJECT DESIGN

    - BENEFITS IN BETTER PROJECT ECONOMICS- MORE QUALITY IN ARCHITECTURE / APARTMENT LAYOUT

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S8

    2.2 Anatomyofamodularelement Prefabricatedinfactoryconditions Readysurfaces,technicalinstallationsandfixedfurniture Basicmodules:

    roommodule(livingroom,bedroom,diningroom,workspace) technicalmodule(kitchen,bathroom,toilet)

    Firesafetywithmassivewoodandfireprotectivesurfacelayers Acousticperformancewithengineeredstructuraldetailsandacousticlayers

    Faade

    installedinfactory/onsite freechoiceofmaterials(notelocalbuildingregulations)

    Insulation

    Fixedfurniture

    Load-bearingwallpanels(CLT)

    highload-bearingcapacity

    Non-load-bearingpartitionwalls

    HVACinstallations,cover

    Surfacestructure(wall)

    notelocalbuildingregulations

    Moduleroofslab(CLT)

    Completedmodular element

    Doors,windows

    Surfacestructure(floor)

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S9

    2.3 Elementsystemsinthefieldofconstructiontechnologies

    Benefitsofmassivewoodstructure

    Goodload-bearingcapacity Even8to10storeys

    possible

    Stabile and clear structure Easyliftingtechnology Easyandsecure

    connections

    Tightandmassive Hightechnical performance

    Cross-layerstructure Easytomake openings

    Buildingcomponents Prefabrication Dimensions Complexity Construction

    BUILDING ON SITEBuildingproducts Lowgradeofprefabrication Nolimitationsinsize Demandingandunique

    shapesLongconstructionphase

    ELEMENT

    Factoryfinished2dsurfaces Highgradeofprefabrication Widerangeofpossible dimensions

    Repetitionofpanelsand slabs

    Shorter construction phase

    MODULAR ELEMENT

    Factoryfinished3delements Extremelyhighgradeof prefabrication

    Limited dimensions Repetitionofmodularunits Shortest construction phase

  • 10 B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S

    3 Architectural design guidelines

  • SE DESIGN MANUAL 18.1.2016ARCH DESIGN GUIDELINE / SKETCH

    MODULAR SYSTEMPOSSIBILITIES AND BENEFITS OF THE SYSTEMRELATED TO REPETITION AND VARIATION

    AMODULE VARIATION: A REPETITION: 1 x A...n X A

    MODULE VARIATION: A-B-C-D-E-F-G... REPETITION: -

    A + B A + B + C A + B + C + D + E + F + G ABCDEFGHIJKLMNOP...

    MAXIMAL REPETITIONMINIMAL VARIATION OF ELEMENTSSIMPLICITY

    TYPICAL EXAMPLES:-HOTELS-SMALL APARTMENT HOUSING-STUDENT HOUSING

    TYPICAL EXAMPLES:-EXCLUSIVE HOUSING-SPECIAL PROJECTS

    TYPICAL EXAMPLES:-NORMAL MULTI STOREY HOUSING

    UNLIMITED VARIATION OF ELEMENTSMINIMAL REPETITIONCOMPLEXITY

    OPTIMAL VARIATION OF ELEMENTS AND REPETITION OF MODULES DEFINED BY PROJECT DESIGN

    - BENEFITS IN BETTER PROJECT ECONOMICS- MORE QUALITY IN ARCHITECTURE / APARTMENT LAYOUT

    SE DESIGN MANUAL 18.1.2016ARCH DESIGN GUIDELINE / SKETCH

    MODULAR SYSTEMPOSSIBILITIES AND BENEFITS OF THE SYSTEMRELATED TO REPETITION AND VARIATION

    AMODULE VARIATION: A REPETITION: 1 x A...n X A

    MODULE VARIATION: A-B-C-D-E-F-G... REPETITION: -

    A + B A + B + C A + B + C + D + E + F + G ABCDEFGHIJKLMNOP...

    MAXIMAL REPETITIONMINIMAL VARIATION OF ELEMENTSSIMPLICITY

    TYPICAL EXAMPLES:-HOTELS-SMALL APARTMENT HOUSING-STUDENT HOUSING

    TYPICAL EXAMPLES:-EXCLUSIVE HOUSING-SPECIAL PROJECTS

    TYPICAL EXAMPLES:-NORMAL MULTI STOREY HOUSING

    UNLIMITED VARIATION OF ELEMENTSMINIMAL REPETITIONCOMPLEXITY

    OPTIMAL VARIATION OF ELEMENTS AND REPETITION OF MODULES DEFINED BY PROJECT DESIGN

    - BENEFITS IN BETTER PROJECT ECONOMICS- MORE QUALITY IN ARCHITECTURE / APARTMENT LAYOUT

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S11

    ModularsystemPossibilitiesandbenefitsofthesystemrelatedtorepetitionandvariation

    Maximalrepetitionwithminimalvariationofmodular elements

    Typicalexamples: hotels smallapartmenthousing studenthousing elderlyhomes

    Modulevariation:ARepetition:1AnA

    A A + B A+B+C A+B+C+D+E+F+G ABCDEFGHIJKLMNOP

    Optimal variation and repetitionofmodularelementsdefinedbyprojectdesign

    Benefitsinprojecteconomicsandarchitecturalquality

    Typicalexamples: normalmulti-storeyhousing

    Unlimitedvariationofmodularelementswithminimal repetition

    Typicalexamples: exclusivehousing specialprojects

    Modulevariation:ABCDEFGRepetition:

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S12

    ThefollowingguidelinesaremeanttohelparchitectsapplytheStoraEnsosystemtotheparticularneedsofvarioustypesofmulti-storeyhousing.Thesebasicprinciplesmaybeappliedinanyorderaccordingtotheparticularneedsoftheproject.However,distributionofmodularroomandtechnicalelementsshouldbeconsideredandappliedinearlystageofdesign.

    DefinetheurbanscaleMassingStrategyandBuildingVolume

    Inthepreliminarydesignphases,theurbanscaleandmassoftheprojectaredefined.Thesizeofthevolumesmayvaryfromlargeurbanblockstosmallerapartmenthouses.Dependingontheparticularsiteandsurroundings,thearchitectcanconsiderandproposevaryingtypologiesforthewholeprojectorforspecificbuildings.

    DefinethebuildingtypologyFootprint,UnitDistributionandVerticalCirculation

    Thefootprintofthebuildingaswellasthedistributionoflivingunits,shapeandpositionoftheverticalaccesscoreformthebasicparametersofthebuildingstructure.Asymmetricallayoutwithacentralcorewilloptimizetheload-bearingstructuresandshearwalls,improvingtheeconomicsoftheproject.

    Variationsinbuildingfootprintandlocationoftheverticalaccesscore

    Variationsinunittypesandmoduledistribution

    Casestudyexample:Centralcorridorblockwithsixunitsperfloor

    Casestudyexample:8-storeycentralcorridorblock

  • WET AREA ZONE / POSSIBILITIES

    VERTICAL SHAFTS / INSTALLATIONS

    BATHROOM / TOILET

    KITCHEN

    WET AREA ZONE / POSSIBILITIES

    VERTICAL SHAFTS / INSTALLATIONS

    BATHROOM / TOILET

    KITCHEN

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S13

    Fullyequippedfloorplan

    Verticalshafts/installationsTechnical module Bathroom/toiletKitchen

    Shearwalls Load-bearingwalls

    Room moduleTechnical module

    A A B B

    D D E E

    D D F F

    D D

    D D

    C C A A

    A A

    A A

    StoraEnsosstructuralwallpanelsandfloorslabsformtheload-bearingstructureofeachmodularelement.Theelementsarebuiltincontrolledfactoryconditionsanddeliveredtothesitewithallfinishingmaterialsandcomponentsinstalled.

    Non-load-bearingpartitionwallsinsidemodulesmaybepositionedfreelyaccordingtothearchitecturallayoutoftheunits.Otherelementssuchaswindows(framed,glazingsystems),door(hinged,sliding),balconies(recessed,cantilevered)andfixedfurnitureelementsareallpossibleaccordingtothearchitecturalneedsanddesign. Surfacesandfinishesforinteriorandexteriorstructuresofthemodulescanbedefinedindividuallyforeachprojectinaccordancewitharchitecturaldesign,technicalneedsandlocal requirements.

    Exactboundaryrulesformodularelementsarenotpossibleasrulesarebothfactoryandcountryspecific.Elementdimensionsarelimitedbythesizeoftheproductionlineandtransport,whereasweightislimitedbytheliftingcapacityinthefactoryandonthebuildingsite.

    Seechapter4and5forfurtherinformation.

    Thebuildingsystemconsistsoffactorymademodularelementsandadditionalelementsassembledonsite.Prefabricatedadditionalelementssuchascorridors(slabs,beams,columns,stairways),androofareinstalledsimultaneouslywithmoduleerectionphase.Forexample,awidevarietyofbalconiesispossibleaccordingtothearchitecturalneedsandstructuraldesign.

    Seechapter4and5forfurtherinformation.

    StructuralprinciplesandbearingelementsModularElements,ShearWallsandLoad-bearingWalls

    Modularelementsformthebaseofload-bearingandshearingstructuralsystem.Corewallsandwallsbetweenapartmentsareusuallythemostsuitableforuseasshearandload-bearingstructures.However,evenlongshearwallpanelsmaystillhaveopeningsordoorsdependingondetailedstructuralcalculations.

    Load-bearingouterwallsandslabsofthemodulesaredesignedtoachieveoptimalspansandusuallyeliminatetheneedforload-bearingelementsinsidethemodularunits.Thedirectionofthemodularelementsdefineswhichfaadeswillhaveincreasedflexibilityforlargerandmorefrequentopenings.

    Seechapter4forfurtherinformation.

    Modularelements(factorymade)

    Variableandadditionalelements(onsite)Corridorsandstairways,Elevatorshafts,RoofsandBalconies

    WetzonesandtechnicalshaftsBaths,Toilets,KitchensandTechnicalInstallations

    Inoptimallayouts,technicalinstallationshaftsarelocatedaroundtheverticalcoreforeasymaintenanceandmanagement.Wetzonesandtechnicalmodulesshouldalsobesituatednexttoinstallationshafts.Prefabricatedsanitaryortechnicalunitsinsidemodulesareallpossible.Specificlocationsforbaths,toiletsandkitchensmayvaryinsidethesetechnicalmodules.Longhorizontaldrainlinesandverticallinesorshaftsthroughelementsshouldbeavoided.

    Seechapter4forfurtherinformation.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S14

    ApartmentlayoutApartmentsconsistofoneormultiplemodules,dependingonhousing typology.Insingle-moduleapartmentssanitaryunitandtechnicalsystemsareallinone,socalledtechnicalorwetmodule.Indoubleormulti-module apartmentsdryroommodulesareaddedandconnectedtothetechnicalmoduletoachievelargerunits.

    Standard modules

    Room module

    Technical module

    Sanitaryunit

    Cantilevered/recessed modules

    Cantilevered balconies

    Balcony zone

    Flatroof Pitchedroof Shedroof Rooftop terrace

    Suspended balconies

    Recessed balconies

    Freestanding balconytowers

    Modular element variations

    Modularelementscanbevariedwithinabuilding Notethatcantileveredelementsmayrequirecolumns,dependingontheopeningsandthecantileverlength.

    Single-moduleapartment

    Double-moduleapartment

    Multi-moduleapartment

    Balconies

    Differentbalconytypesandotheradditionalelementsarepossibleaccordingtothearchitecturaldesign.

    Upperfloor/Roofstructures

    Upperfloorapartmentsandroofstructurecanbevariedaccordingtothearchitecturaldesign.

    Modularsystemvariations

  • Room moduleTechnical module

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S15

    Generalfloorplan(3.-8.)

    A

    A

    B

    B

    C C

    D D

    Casestudyexample:Centralstairwaywithsixunitsperfloor

  • Cross-sectiona-a

    Cross-sectionc-c Cross-sectiond-dCross-sectionb-b

    Rendered elevations

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S16

  • 17 B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S

    4 Building System by Stora Enso

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S18

    4.1 Structuralcomponentsofthemodularsystem

    ThecoreoftheStoraEnsomodularelementconsistsofmassivewoodpanels,whichoperatesimultaneouslyasthebearingstruc-tureandthesolidenvelopeoftheapartment.Inmostcasesitisalsopossiblethatsomeofthemassivewoodpanelsfunctionasvisibleinteriorsurfaces.

    Thereareseveralfactorsthatdeterminethemaximumsizeofthemodularelement.Thedimensionsofthemodularelementsarelimitedby: maximumproductionsizesofmassivewoodpanels eachcountryssizelimitsforroadtransportation spatiallimitationsofthemanufacturingenvironment maximumweightofthemodularelement.

    Themodularelementmustbelightenoughtobehandledandliftedbothinthefactoryandonthesite.Themaximumweightofthemodularelementdependsonthecapacityoftheavailableliftingequipment.Noticethatmodularelementswithsanitaryfacilitiesareheavier in relation to the volume.

    Theapartmentusuallyconsistsofoneortwomodularelements.Thetechnicalmodule(ontheleft)includesthesanitaryfacilitiesandmostofthebuildingservicesequipmentoftheapartment.Toformbiggerapartmentswithmorebedroomsandlivingspace,theapartmentcanbeenlargedwitharoommodule(ontheright).

    * Maximumdimensionsaccordingtotransportation,manufacturingandliftingrequirements. Also note the production dimensionsofmassivewoodpanels.

    Max.width*

    Massive wood slabs

    Massive wood walls

    Max.width*

    Massivewoodslabs or rib slabs

    Open modular element requires supportsduetoliftingandassembly

    Aprefabricatedsanitaryunitorin-situconstructedsanitaryfacilities

    60100 mm

    Max.width: note the productiondimensionsof panels

    Max.width: note the productiondimensionsofpanels

    Max.height:note the production dimensions ofpanels

    Max.width: note the productiondimensions ofpanels

    100180 mm

    10016

    0 mm

    Max.len

    gth*

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S19

    4.2 Manufacturingprocessofthemodularelements

    Massivewoodpanelsareorderedwithreadycut-outsandedgeformings.

    Thewallandslabelementsareconnectedtoformamodularelement.

    Thepanelsareequippedwithinsulation,sheetings,framestructuresetc.

    Buildingservicesequipment,interiorsurfacesandfixturesareinstalledintothemodule.

    Theslabandwallelementsarereadyto be connected to each other.

    Readymodularelementiswrappedand transported to the site.

    Wall elements

    Modular elements

    Slab elements

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S20

    4.3 PrinciplesofbuildingacousticsInordertocontrolunwantednoiseandvibrations,acousticdesigncoversawiderangeoffactorsfromthevibrationofthebuildingframetoconnectiondetailsthataffectflankingtrans-missionbetweenroomsandapartments.

    Theexamplebuildingisdesignedtoaddressfourmainacousticchallenges:airbornesound,impactsound,flankingtransmis-sionandplumbingnoise.Formoreinformationseeadditionalliteratureandcontactlocalauthoritiestodeterminespecificrequirementsforyourproject.Acousticvaluesgiveninthismanualarecalculatedonthebasisofstructuraltypesand typicalmaterialvalues.

    Impact noise insulation

    Airborne sound

    Flanking

    Plumbing noise

    Sound insulation in connections

    1),3)

    2)

    1)

    3)

    4)

    2)

    Direct sound path

    Direct sound pathTheenergyofairbornesoundwavesisreducedbythelayeredstructureoftheconstruction.

    Sound flanking pathWhen direct contact to the load-bearingframe

    Sound flanking pathWhen indirect contact to theload-bearingframe

    Acousticaldesignofstructuresaccordingtolocalrequirements

    Allconnectionsbetweenseparateapartments require vibration pads

    improves sound insulation and reducesflankingtransmission

    Vibrationpad

    improves sound insulation andreducesflanking

    Separatedlayerstructures

    floorstructuresseparatedfromtheload-bearingframe

    separatedwallstructuresfordifferentapartments

    reducesflankingtransmissionto other apartments

    Plumbingisisolatedfromtheframewithinsulatedhangers

    reduces sound transmission to the apartment

    Mainplumbinglinesatthecorridor

    reduces noise to the apartment

    CorridorApartment

    Floatingsurfacestructure

    reduces impact sound

    Insulation

    sound absorption

    Separatedload-bearingstructures

    reducesflanking

    4)

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S21

    4.4 PrinciplesoffiredesignRequirementsforfiresafetyvarydependingonlocation,buildingtypeanduse.Checkspecificrequirementsforyourprojecttoconfirm compliancewithlocalandnationalregulations.SomebasicprinciplesforfiresafetyrequirementsarecommonacrossEurope: Occupantsshallbeabletoleavethebuildingsorberescued Thesafetyofrescueteamsshallbetakenintoaccount Load-bearingstructuresshallresistfirefortherequiredminimumdurationoftime

    Thegenerationandspreadoffireandsmokeshallbelimited Thespreadoffireto neighbouringbuildingsshallbelimited

    Followingtheseprinciples,buildingcomponentsmustmeetthe followingrequirements: Reactiontofire

    Describesthecontributionofbuildingmaterialstofire VerificationwithclassificationaccordingtoEN13501-1

    Fire resistance Describestheresistanceofbuildingcomponentsincaseoffire VerificationwithclassificationaccordingtoEN13501-2 orcalculationaccordingtoEN1995-1-2

    Principlesconcerninghowtoprovidefireresistancewithlayups basedonmassivewood: Principle1:Exposedmassivewood

    noadditionalprotectionlayersonmassivewood;fullfire resistanceprovidedbymassivewood

    Principle2:Limitedencapsulationmassivewoodwithfire-protectivelayersonit;massivewood isallowedtochar

    Principle3:Completeencapsulationmassivewoodwithfire-protectivelayersonit;massivewood isnotallowedtochar

    Seeliteratureandlocalauthoritiesformoreinformation www.clt.info

    Solid wall

    Solid wall protected with surface layers

    Solid wall protected with surface layers

    Solid wall

    Surfacematerial

    D-s2

    Fire resistance REI60120

    Fireresistanceoftheresidualcross-section

    Surfacematerial

    A2-s1,d0Protection coverK230

    Fire resistance REI6090

    Protectivelayers Fireresistanceoftheresidualcross-section

    Sprinklerin

    intermediatefloor

    Smokedetectorin ceiling

    Smoke detectorSprinkler

    Extinguishingandrescue

    ExampleoffiresafetydetailingNote national rules

    Firesafetyoftheload- bearingstructures

    Fire resistance REI6090

    Fireresistanceof the residual cross-section

    Surfacematerial

    A2-s1,d0 ProtectioncoverK230 residualcross-section

    Floor structure

    Surfacematerial

    A2-s1,d0 ProtectioncoverK230

    Fire resistance REI60120

    Protectivelayers Fireresistanceoftheresidualcross-section

    Surfacematerial

    D-s2

    Fire resistance REI6090

    Fireresistanceoftheresidualcross-section

    3)

    4) 4)

    2) 3)

    2)

    1)

    1)

    5)1)

    2)

    6)

    4)

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S22

    Fire resistance of load-bearing walls

    Referencewallscalculatedinthismanual 4 or 7 timber stories above the concrete structures (loadfrom4or7storiesandroof)

    Spanoffloor4.4m

    Note:Thesearesamplecalculationsandmustbeconfirmedinacom-pletefiresafetydesign.

    1. Definethefiredesignloads(accordingEN1990,EN1991,EN1995).

    Examplesoffiresafetydetailing

    Checkcompliancewithnationalregulations

    Firesealing

    Alljointsneedtobesealed

    Eave(incaseofpitchedroof)

    Concrete

    Snowload

    Protectivelayer

    Charredlayer

    60/90minResidualcross-section

    Live load

    Dead load

    7 timber stories

    4 timber stories

    4400 mm 4400 mm

    5) A

    C

    B

    D

    6)

    Fire protection board

    Horizontalfirebarrierinventilatingslot

    Firebarrierpreventsfirefromverticalfirespreadinandonfaades

    Horizontalfirebarrierinventilatingslot

    Firebarrierpreventsfirefromverticalfirespreadinandonfaades

    4 stories 7 stories

    Wallmark A B C D

    Totalfiredesignload(kN/m) 46.7 43.7 78.5 73.2

    2. Definethefireresistanceofprotectivelayers.

    3.Definecharringdepth:Requireddurationoffireresistance -tch-tf(protectivelayers).

    4. Load-bearingcapacityoftheresidualcross-sectionwithloadsdefinedin(1)shallbecalculated.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S23

    1. Deformations

    Deformationsderivefromthematerialpropertiesoftimberandpropertiesofthestructuralsystem.Dimen-sionalchangesarecausedbymoisturedeformation,creepingandcompression.

    Swelling and shrinkage of wood

    CLT Inthepanellayer:0.02%changeinlengthforeach1%changeintimbermoisturecontent

    Perpendiculartothepanellayer: 0.24%changeinlengthforeach1%changeintimbermoisturecontent

    Moisture content ManufacturemoistureofCLTis1014% ManufacturemoistureofLVLis810% Airhumiditychangesbetween~RH2060% Timbermoisturecontentchangesbetween713%

    Modulus of elasticity

    CLT Paralleltothegrain12,500MPa Perpendicular to the grain370MPa

    4.5 Principlesofcontrollingdeformationsandcracking

    Servicelimitstateloadfromthetwoabovemodularelementsandtheroof

    Totalsettling4.8mmforonestorey

    F=30kN/m

    F=30kN/m

    12 mm

    2950 mm

    2950 mm

    F=30kN/m

    F=30kN/m

    50.02%

    50.024%

    1015%

    u = 1.6 mmElasticdeformationwithcreep

    E~0.510MPaModulusofelasticity

    E=12,500MPaModulusofelasticityparalleltothegrain

    Vibration pad

    CLT wall panel

    CLT ceiling panel(ifsituatedbetweenthewallpanels)

    5%changteinmoisture content

    u = 1.0 mm u = 0.2 mmElasticdeformationwithcreep

    E = 370 MPaModulusofelasticityperpendicular tothegrain

    5%changeinmoisture content

    u = 3.0 mm

    F=30kN/m

    u = 0.2 mmElasticdeformationwithcreep

    LVL Paralleltothegrain10,000-13,800MPa

    Perpendiculartothegrain130-2400MPa

    Creep and fatigue

    Creepoftimberandvibrationpad increasessettling.

    Structural system challenges

    Thevibrationpadlocatesbetweenthewallpanelsandasignificantpartof settlingoccursinthislayer.Ifthe ceilingpanelalsolocatesbetween thewallpanels,thedeformation isevenbigger.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S24

    Cracking

    Woodcrackswhenitexceedsthelimitofthetensionstressperpendiculartothegrain.Normalcracksareincludedindesignprinci-ples.

    Mainreasonsforpropagationofcracks exceedingtensionstressesduetouncontrolleddryingforexampleon-site

    moisturedeformationsofwoodforexamplefromsummertowinter

    2. Connections

    Deformationshavetobeconsideredwhendesigningtheconnections.Deformationscauseforexampleslottedholestosteelparts.Verticaldeformationisthelargestprob-lemforupliftconnections.Whensettlingoccurs,thetensionrodloosens.Ithastoberetightenedortherehastobeasystemwhichreducestheeffectsofthedeformations.

    RapiddryingmaycausevisualcracksonCLTsurfaces

    Tensionrodcanbetightenedwhensettlingoccurs

    Pipingconnectionwhichallowssettling

    Slotted holes in the steel part

    3. HVAC

    Settlinghastobeconsideredinverticalpiping.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S25

    4.6 PrinciplesofHVACdesignThegoaloftheHVACdesignistoprovidethermalcomfortandoptimalindoorairquality.Thissectiondescribesthemainplumbingroutesforacentralizedventilationsystem.

    Themainroutesofventilationductsgothroughsuspendedceil-ingsinthehorizontaldirectionandthroughplumbingcavitiesinthevertical direction. These cavities are located in the corridors in or-dertoreduceplumbingnoise.Thegoalistoachievesimple,shortrouteswithoutneedfordifficultholesthroughbuildingstructures.

    Centralizedventilation

    Fresh airExhaustairSewage

    A

    A A

    A

    Options for pipe locations:

    A) Pipesinsuspendedceiling,firecompartmentborderinceiling

    B) Pipesbetweenmodularelements, firecompartmentborderinceiling

    Note:penetrationthroughbeamsrequirescarefuldesign

    C)Pipesbetweenmodularelements, firecompartmentborderinfloor

    Fireproofsealing Fireproofsealing

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S26

    4.7 Bracingsystemsofmodular buildings

    Based on modular elements Localloadings,conditionsandregulationsmustbeconsidered

    Guidelinesformultistorybuildings

    Consultlocalloadingconditionsandbuildingregulations Considerthelayoutanddesignofshearwalls:

    Symmetricalfloorlayoutsreducetorsionalvibrations SufficientnumbersofwallsinsuresoverallstiffnessOpeningsinshearwallsmustbecarefullyplanned(size,location,number)

    Calculationsmustconsider

    Designloads accordingtoactualEN-standard particularlyaccidents(fireandprogressivecollapse)and

    seismic Ultimate limit state

    particularlylossofequilibrium fractureconsiderations

    Service limits particularlydeformationsandvibrationsofthewhole

    structure Structural members and connections

    load-bearingcapacityandstiffness

    Shearwall

    Wind load and load duetogeometricimperfections

    Wind load and load duetogeometricimperfections

    Horizontalconnection,sheartransfer

    Horizontalconnection,tension and compression

    Slipcastingoranchored concrete elements

    Moduleceilingsfastenedtoeachother and anchored to the core

    Sheartransfer

    A A

    A A

    Pinallowssettlement

    Wind loadSheardiaphragm

    Shear connection to concrete

    Upliftconnection

    Upliftconnectiontoconcrete

    Verticalconnectionsheartransfer

    Shearwall

    Bracing with concrete core

    Bracing with shear walls

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S27

    4.8 PrinciplesofseismicsafetyConditionsvary,butallbuildingsinseismicareamustbedesignedtoresistseismicforcesasrequiredfortheirlocationandnationalregulations.TheexamplebuildingherecanbebuilttoresistseismicforcesinaccordancewithEurocode 8.

    Inearthquakeproneareaswoodhasseveraladvantages: Low-density(reduceddeadloadsforstructures) Highstrengthtoweightratio Dampingisbetterthaninconcretebuildingsduetothematerialpropertiesandjointsusedinwoodconstruction.

    Moderndesigncodes(suchasEurocode8)offercleardesignprinciples.

    What should be considered in timber houseseismicdesign?

    Seismic Design

    Conceptualdesign Seismic action Details

    StoraEnsoCLTmodularsystemcanbedesignedtobeusedinseismicareas.Thissystemincludessolutionsforallthreestepsinseismicdesign.

    SeismicactionanddesignSeismic actions depend on Constructionsite->seismichazardmaps,NationalAnnexEC8 Soilquality Buildingtypeandclass(residential,classII)* Structuralsystem**

    * TheductilityclassforamultistoreytimberbuildingwouldbeDCMandDCH.(CheckEN1998-1Table8.1) Intheseclassesbehaviourfactorqwouldbeabout23.

    **NotethatStoraEnsoCLTmodularsystemhasalightdeadloadand connectionssubjecttoplasticdeformations.

    Notes for detailsa) Connectionsmustbedesignedforseismicforcesb)Nobrittlejoints(connectorsshouldhaveenoughslenderness)

    Principlesofseismicbehaviorofmodularelements Modulesremainasmodulesnobrittlefractureininternal

    connections Sufficientyieldingcapacityinconnectionsbetweenmodules Forcesaredirectedtostiffeningstructureswithenoughcapacitytoresistseismicforces

    Forcesaredirectedtofoundationssufficientanchorage

    Plasticdeformation

    Horizontalconnection,sheartransfer

    Horizontalconnection,tension and compression

    Plasticdeformation

    Sheardiaphragm

    Verticalconnection,sheartransfer

    Shearwall

    Shear connection to concrete

    Upliftconnection

    Upliftconnectionto concrete

    Plasticdeformation

    Highstiffness(notbrittle)

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S28

    4.9 Erection procedure sequenceTheerectionproceduresequencehasmanyeffectsonstructural,architectural,HVACandelectricalwiringdesign.Ithastobeconsideredinthefloorplanlayout,pipeandcableroutingsaswellasinthedetails.

    Thelayoutbelowillustratestheerectionproceduresequenceofthecasestudyhouse.Theerectionadvancesoneapart-mentatatime,startingfromthetechnicalmodule.Thetechnicalmodulesaresituatednexttothecorridortoenableeasyconnectionsthroughthecorridorshafts.Whenmostofthebuildingservicesequipmentareincludedinthetechni-calmodules,thesystemscaneasilybeconnectedwithshortpipe and cable lines. When the technical installations are centralizedinthecorridorarea,theirmaintenanceisalsoeasierandcomplicatedverticalshaftsandconnectionscanbe avoided inside the apartments.

    The erection procedure sequence has to be considered especiallywhendesigningconnections.Connectionhard-wareinthegapbetweentwoneighbouringmodularunitscanbefastenedonlytotheunitwhichisinstalledfirst,becausetheinstallationoftheneighbouringmodularunitblockstheaccesstothegap.Hencetheerectionproceduresequenceaffectswheretheconnectionhardwarecanbeplacedandwhichwallscanfunctionasshearwalls.

    Italsohastobeensuredthatoverhangingcomponentsarenotinthewaywhenpositioningthemodularunits.Ithastobeconsidered,whichcomponentsareplacedontopofandinthemiddleoftheothers.Forexampleinthiscasethetechni-calmodulemustbeinstalledfirst,becausethefloorslaboftheroommoduleislaiduponthesupportonthesideofthetechnical module.

    The staircase floorslabisplacedbetweenthe modules (seeVD09)

    The technical module is placed ontopofthemodular element ofpreviousstorey

    The element is fastenedwithvertical connection plates(seeVD05)

    Theroommoduleisplacednextto the technical module.

    Thesystemsareconnected inside the apartment

    Thedrains,pipesandcablesareconnectedthroughthestaircaseshaftandtheshaftisclosedwithlightweightwalls(seeVD08)

    Theseamisfinishedafterfasteningthemodularelementwithvertical connection plates(seeVD01)

    Thejointsaresealed(seeVD15)

    The modular elements are connected withhorizontalplatesbetweentheceilingpanels(seeVD07)

    Erection procedure sequenceofmodularelements(113).

    1

    9

    4

    11

    6

    13

    3

    2

    8

    5

    10

    7

    12

  • 29 B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S

    5 Structural design

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S30

    OrientationChart

    5.1. Structuraltypes

    YP1

    US1

    YP2

    VP5

    VSK4

    VSK5

    VP11E-VP12

    VP2 VP3

    VSK3

    VP41E-VP42

    VSK1VSK2

    VS1VS2

    E-VSK12

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S31

    ListofDrawings

    Structural type

    No. Description

    US 1 LOAD-BEARINGEXTERNALWALL

    A Woodcladding,insulation,gypsumboard

    B Tilecladding,insulation,gypsumboard

    C Render,glasswool,visualCLT

    D Render,woodfibre,visualCLT

    E Woodcladding,insulation,visibleCLT

    VSK 11 LOAD-BEARINGPARTITIONWALL

    A Doublegypsumboards

    B VisibleCLT

    VSK 2 LOAD-BEARINGPARTITIONWALL,BATHROOM

    A Gypsumboards,waterproofing

    B Sanitaryboxelements

    VSK 3 LOAD-BEARINGPARTITIONWALL,ELEVATORSHAFT

    A CLT,gypsumboards

    B CLT

    C Concrete

    VSK 4 LOAD-BEARINGPARTITIONWALL,CORRIDOR

    A Lightweightinnerpartitiononeside,doublegypsumboards

    B Lightweightinnerpartitiononeside,gypsumboards

    C Lightweightinnerpartitiononeside,gypsumboards

    D Lightweightinnerpartitiononeside,serviceshaft

    VSK 5 LOAD-BEARINGPARTITIONWALL,INSIDEAPARTMENT

    A DoubleCLT,gypsumboards

    B CLT,gypsumboards

    C Doublecolumn,gypsumboards

    D Column,gypsumboards

    VP 11 CLTSLABINTERMEDIATEFLOOR,APARTMENT

    A Floatingfloorslab,gypsumboards

    B Floatingfloorslab,visibleCLT

    VP 2 CLTSLABINTERMEDIATEFLOOR,BATHROOM

    A Concreteslab,CLT,suspendedceiling

    B Sanitaryboxelement,CLT,sanitaryboxelement

    C Sanitaryboxelement,CLT

    VP 3 CLTSLABINTERMEDIATEFLOOR,CORRIDOR

    A Chipboard,CLT,suspendedceiling

    B CLT,suspendedceiling

    C CLT

    D Floatingfloorslab,CLT,suspendedceiling

    VP 41 CLTSLABINTERMEDIATEFLOOR,BALCONY

    A Openboarding,visibleCLT

    B Openboarding,suspendedceiling

    VP 5 STAIRS

    A CLTstairs,load-bearingCLT/gluelam

    B CLTstairs,CLTslab

    C CLTsteps,gluelambeams,insulation

    D Plywoodsteps,nailplateconnectedbeams,insulation

    E Concretestairs

    YP 1 ROOFSTRUCTURE

    A Timbertrussroof

    B Flatroof

    YP 2 PITCHEDROOF;TIMBERTRUSS,CORRIDOR

    A Timbertrussroof,LVLbottomchord

    AP 1 BASEFLOOR,CANTILEVERAPARTMENT

    A Floatingfloorslab,CLT

    VS 1 NON-LOAD-BEARINGPARTITIONWALL,INSIDEAPARTMENT

    A Timberorsteelframe

    B CLT

    VS 2 NON-LOAD-BEARINGPARTITIONWALL,INSIDEAPARTMENT,BATHROOM

    A Timberorsteelframe,bathroom

    B CLT,bathroom

    E-VP 12 INTERMEDIATEFLOOR,APARTMENT

    A Floatingfloorslab,ribslab,CLT

    B Floatingfloorslab,timberjoists,CLT,suspendedceiling

    E-VP 42 CLTSLABINTERMEDIATEFLOOR,RECESSEDBALCONY, APARTMENT

    A Floatingfloorslab,visualCLT

    E-VSK 12 LOAD-BEARINGPARTITIONWALL,RECESSEDBALCONY, APARTMENT

    A Woodcladding,doubleCLT,gypsumboards

  • Type Insulation Surfacematerial Thickness

    (CLT120)

    MinimumCLTcross-section U

    [W/m2K]

    Surfacereactiontofire Rw(C;Ctr)

    [dB]R60 R90

    4floors 7floors 4floors 7floors Inner Outer

    A.0 180 mm Gypsumboard18mm 373 mm 120C3s 120C3s 140C5s 140C5s 0,153 A2-s1,d0 D-s2,d0 44(0;2)

    A.1 120 mm Gypsumboard18mm 313 mm 120C3s 120C3s 140C5s 140C5s 0,211 A2-s1,d0 D-s2,d0 44(0;2)

    A.2 180 mm Wood based panel 369 mm 0,152 D-s2,d0 44(0;3)

    B.0 180 mm Gypsumboard18mm 453 mm 120C3s 120C3s 140C5s 140C5s 0,153 A2-s1,d0 54(1;3)

    B.1 120 mm Gypsumboard18mm 393 mm 120C3s 120C3s 140C5s 140C5s 0,211 A2-s1,d0 54(1;3)

    B.2 180 mm Wood based panel 449 mm 0,152 54(1;3)

    B.3 180 mm VisibleCLT 393 mm 140C5s 140C5s 140C5s 140C5s 0,154 D-s2,d0 54(2;4)

    C.0 150 mm VisibleCLT 298 mm 140C5s 140C5s 140C5s 140C5s 0,196 D-s2,d0 44(0;3)

    C.1 180 mm VisibleCLT 328 mm 140C5s 140C5s 140C5s 140C5s 0,169 D-s2,d0 44(0;3)

    D.0 150 mm VisibleCLT 300 mm 140C5s 140C5s 140C5s 140C5s 0,232 D-s2,d0 39(0;3)

    E.0 180 mm VisibleCLT 355 mm 140C5s 140C5s 140C5s 140C5s 0,154 D-s2,d0 D-s2,d0 42(0;3)

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S32

    Load-bearingexternalwall

    US 1

    Surfacelayerrequirements

    Acoustics Fire

    Insulationrequirement

    U value

    Faaderequirements

    Visual Weather Fire

    Structure Faadematerial Ventilation32mm Insulation* CLT(120mm)** Gypsumboard*18mm

    Structure Faadematerial Ventilation50mm Insulation* CLT(120mm)** Gypsumboard*18mm

    Structure Render 1030 mmMineralwoolinsulation* CLT(120mm)**

    Structure Render 1030 mm Timberframe+woodfibre

    insulation 150 mm CLT(120mm)**

    Structure Faadematerial* Ventilation32mm Insulation 180 mm CLT(120mm)**

    A. Wood cladding, insulation, gypsum board B. Tile cladding, insulation, gypsum board

    C. Render glass, wool, visible CLT D. Render, wood fibre, visible CLT

    E. Wood cladding, insulation, visible CLT

    Variables

    CharringvaluesusedforCLTcross-sectioncalculationarecalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Solidwoodrequirements

    Load-bearing Fire resistance

    * variable** accordingtostructuralcalculations

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S33

    Load-bearingpartitionwall

    VSK 1

    Surfacelayerrequirements

    Acoustics Fire

    Insulationrequirement

    Acoustics

    Solidwoodrequirements

    Load-bearing Fire resistance

    Structure 2gypsumboards13mm CLT(120mm)** Airgap50mm+insulation30mm CLT(120mm)** 2gypsumboard13mm

    Structure CLT(120mm)** Airgap50mm+insulation30mm CLT(120mm)**

    A. Double gypsum boards B. Visible CLT

    Variables

    * variable** accordingtostructuralcalculations

    CharringvaluesusedforCLTcross-sectioncalculationarecalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Type Insulation Materials Thickness

    (CLT120)

    MinimumCLTcross-section Surfacereactiontofire Rw(C;Ctr)

    [dB]R60 R90

    4floors 7floors 4floors 7floors

    A.0 30 mm Gypsumboards213mm 342 mm 140C5s 140C5s 140C5s 140C5s A2-s1,d0 56(1;5)

    A.1 30 mm Wood based panel 344 mm D-s2,d0

    B.0 30 mm CLT 290 mm 140C5s 140C5s 140C5s 140C5s D-s2,d0

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S34

    Load-bearingpartitionwall,bathroom

    VSK 2

    Solidwoodrequirements

    Load-bearing Fire resistance

    Surfacelayerrequirements

    Acoustics Fire

    Insulationrequirements

    Acoustics

    Structure Tiles Tile adhesive Certifiedwaterproofingsystem Wet area board 13 mm Battens32mm+airgap Gypsumboard15mm CLT(120mm)** Airgap50mm+insulation30mm CLT(120mm)** Gypsumboard15mm Battens32mm+airgap Wet area board 13 mm Certifiedwaterproofingsystem Tile adhesive Tiles

    Structure Sanitaryboxelement Airgap Gypsumboard15mm CLT(100mm)** Airgap50mm+insulation30mm CLT(100mm)** Gypsumboard15mm Airgap Sanitaryboxelement

    B. Sanitary box elementsA. Gypsum boards, waterproofing

    CharringvaluesusedforCLTcross-sectioncalculationarecalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    * variable** accordingtostructuralcalculations

    VariablesVariables

    Type Insulation Materials Thickness

    (CLT120)

    MinimumCLTcross-section Surfacereactiontofire Rw(C;Ctr)

    [dB]R60 R90

    4floors 7floors 4floors 7floors

    A.0 30 mm Tiles 434 120C3s 120C3s 140C5s 140C5s 60(3;9)

    B.0 30 mm Sanitaryboxelement 444 120C3s 120C3s 140C5s 140C5s 54(2;5)

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S35

    Load-bearingpartitionwall,elevatorshaft

    VSK 3

    Solidwoodrequirements

    Load-bearing Fire

    Surfacelayerrequirements

    Fire

    Structure Gypsumboard*15mm CLT(120mm)** Gypsumboard*15mm

    Structure Reinforcedconcrete**200mm

    Structure CLT**140mm

    Variables

    B. CLTA. CLT, gypsum boards

    C. Concrete

    CharringvaluesusedforCLTcross-sectioncalculationarecalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    * variable** accordingtostructuralcalculations

    Variables

    Type Insulation Surfacematerial Thickness

    (CLT120/140)

    Fire resistance Surfacereactiontofire Charring Rw(C;Ctr)

    [dB]R60 R90

    A.0 Gypsumboard15mm 150 mm R30 A2-s1,d0 37(1;4)

    A.1 Wood based panel 148 mm 36(0;3)

    B.0 CLT 140 mm D-s2,d0 36(1;4)

    C.0 Concrete 200 mm 59(2;5)

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S36

    Load-bearingpartitionwall,corridor

    VSK 4A.CLT

    Solidwood requirements

    Load-bearing Fire resistance

    Surfacelayer requirements

    Fire Acoustics

    D.CLT, SERVICEVOID

    CharringvaluesusedforCLTcross-sectioncalculationarecalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    * variable** accordingtostructuralcalculations

    Structure Gypsumboard*15mm CLT(120mm)** Airgap20mm+punctualfastening Timberframewall98mm+insulation100mm 2gypsumboard13mm

    Structure Plasterboard 13 mm CLT(120mm)** Battens 48 mm + insulation 50 mm Plasterboard 13 mm

    Structure Gypsumboard*18mm CLT(120mm)** Gypsumboard18mm Airgap Steelframe+insulation50mm 2gypsumboard15mm

    Structure Gypsumboard*18mm CLT(120mm)** Battens 48 mm + insulation 50 mm Gypsumboard18mm

    A. Lightweight inner partition one side, double gypsum boards

    C. Lightweight inner partition one side, plasterboards

    D. Lightweight inner partition one side, service saft

    B. Lightweight inner partition one side, gypsum boards

    Variables

    Type Insulation Materials Thickness

    (CLT120)

    MinimumCLTcross-section Surfacereactiontofire Rw(C;Ctr)

    [dB]R60 R90

    4floors 7floors 4floors 7floors

    A.0 100 mm Gypsumboard15mm/13mm 279 mm 140C5s 140C5s 140C5s 140C5s A2-s1,d0 61(1;5)

    A.1 100 mm Woodbasedpanel/gypsumboard13mm 278 mm D-s2,d0/A2-s1,d0

    A.2 100 mm VisibleCLT/gypsumboard13mm 264 mm 140C5s 140C5s 140C5s 140C5s D-s2,d0/A2-s1,d0

    B.0 50 mm Gypsumboard18mm 204 mm 120C3s 120C3s 140C5s 140C5s A2-s1,d0

    B.1 50 mm Woodbasedpanel/gypsumboard18mm 200 mm D-s2,d0/A2-s1,d0

    B.2 50mm VisibleCLT/gypsumboard18mm 186 mm 140C5s 140C5s 140C5s 140C5s D-s2,d0/A2-s1,d0

    C.0 50 mm Plasterboards 13 mm 194 mm 140C5s 140C5s 140C5s 140C5s A2-s1,d0

    D.0 50 mm Gypsumboard18mm/215mm 385 mm 120C3s 120C3s 140C5s 140C5s A2-s1,d0

    D.1 50 mm Woodbasedpanel/gypsumboards215mm 381 mm D-s2,d0/A2-s1,d0

    D.2 50 mm VisibleCLT/gypsumboards215mm 377 mm 140C5s 140C5s 140C5s 140C5s D-s2,d0/A2-s1,d0

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • Type Insulation Materials Thickness MinimumCLTcross-section Surfacereactiontofire Rw(C;Ctr)

    [dB]R60 R90

    4floors 7floors 4floors 7floors

    A.0 20 mm Gypsumboard15mm 305 mm 120C3s 120C3s 140C5s 140C5s A2-s1,d0 54(2;6)

    20 mm Wood based panel 303 mm D-s2,d0 53(1;5)

    20 mm VisibleCLT 275 mm 140C5s 140C5s 140C5s 140C5s D-s2,d0 52(1;6)

    B.0 Gypsumboard15mm 170 mm 160C5s 160C5s A2-s1,d0 38(1;4)

    Wood based panel 168 mm D-s2,d0 38(1;5)

    VisibleCLT 140 mm D-s2,d0 36(1;4)

    C.0 20 mm Gypsumboard15mm 295 mm A2-s1,d0 51(2;7)

    D.0 Gypsumboard15mm 220 mm A2-s1,d0 40(3;10)

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S37

    Load-bearingpartitionwall, inside apartment

    VSK5

    Solidwoodrequirements

    Load-bearing Fire resistance

    Surfacelayerrequirements

    Fire

    Structure Gypsumboard*15mm CLT(120mm)** Airgap35mm+insulation CLT(120mm)** Gypsumboard*15mm

    Structure Gypsumboard15mm Gluelamcolumn(115mm)** Airgap35mm+insulation Gluelamcolumn(115mm)** Gypsumboard15mm

    Structure Gypsumboard15mm Gluelamcolumn(190mm)** Gypsumboard15mm

    Structure Gypsumboard*15mm CLT(140mm)** Gypsumboard*15mm

    A. Double CLT, gypsum boards

    C. Double column, gypsum boards D. Column, gypsum boards

    B. CLT, gypsum boards

    Variables

    A.CLTC.BEAMAND POST

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    * variable** accordingtostructuralcalculations

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • Type Insulation Surfacematerial Thickness Fire resistance Surfacereactiontofire Charring Rw(C;Ctr)

    [dB]

    Ln,w(Ci)

    [dB]Floor Ceiling R60 R90

    A.0 50 mm Floorslab40mm/gypsumboard18mm 458 mm REI60 A2-s1,d0 16 mm 36 mm 62(-1;-5) 74(-10)

    B.0 50 mm Floorslab40mm/CLT 440 mm D-s2,d0 25 mm 45 mm 61(-1;-5) 75(-10)

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S38

    CLTslabintermediatefloor,apartment

    VP 11

    * variable** accordingtostructuralcalculations

    Solidwoodrequirements

    Load-bearing Fire

    Surfacelayerrequirements

    Acoustics

    Surfacelayerrequirements

    Acoustics Fire Visual

    Variables

    Structure Surfacelayer Floatingfloorslab40mm Impact sound isolation 30 mm CLT(140mm)** Airgap135mm+insulation50mm CLT(80mm)** Gypsumboard18mm

    Variables

    A. Floating floor slab, gypsum board

    Structure Surfacelayer Floatingfloorslab40mm Impact sound isolation 30 mm CLT(140mm)** Airgap135mm+insulation50mm CLT(80mm)**

    B. Floating floor slab, visible CLT

    CharringvaluesusedforCLTcross-sectioncalculationarecalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • Type Insulation Surfacematerial Thickness Fire resistance Surfacereactiontofire Charring Rw(C;Ctr)

    [dB]

    Ln,w(Ci)

    [dB]Floor Ceiling R60 R90

    A.0 100 mm Tiles/CLT 637 mm REI60 D-s2,d0 25 mm 45 mm 66(2;6) 71(10)

    B.0 30 mm Tiles/CLT 637 mm REI60 D-s2,d0 71(2;6) 67(10)

    C.0 30 mm Tiles/CLT 437 mm REI60 D-s2,d0 53(2;7) 75(9)

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S39

    CLTslabintermediatefloor,bathroom

    VP 2

    * variable** accordingtostructuralcalculations

    Solidwoodrequirements

    Load-bearing Fire

    Suspendedceilingrequirements

    Visual

    Surfacelayerrequirements

    Acoustics

    Surfacelayerrequirements

    Acoustics Fire

    Variables

    Structure Tiles Tile adhesive Certifiedwaterproofingsystem Concreteslab70mm CLT(140mm)** Airgap135mm CLT(80mm)** Dropceilingandpanelling

    Structure Tiles Tile adhesive Certifiedwaterproofingsystem Concreteslab100mm Airgap245mm CLT(80mm)**

    Structure Tiles Tile adhesive Certifiedwaterproofingsystem Concreteslab100mm Airgap245mm CLT(80mm)** Dropceilingandpanelling

    A. Concrete slab, CLT, suspended ceiling

    C. Sanitary box element, CLT

    B. Sanitary box element, CLT, sanitary box element

    CharringvaluesusedforCLTcross-sectioncalculationarecalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • Type Insulation Surfacematerial Thickness Fire resistance Surfacereactiontofire Charring Rw(C;Ctr)

    [dB]

    Ln,w(Ci)

    [dB]Floor Ceiling R60 R90

    A.0 Chipboard/gypsumboard13mm 544 mm REI60 A2-s1,d0 0 mm 30 mm 59(2;8) 55(1)

    B.0 CLT/gypsumboard18mm 403 mm A2-s1,d0 8 mm 39 mm 43(0;3) 72(8)

    C.0 CLT 215 mm D-s2,d0 46 mm 65 mm 41(2;6) 84(8)

    D.0 30 mm Floorslab40mm/gypsumboard15mm 485 mm REI60 A2-s1,d0 0 mm 24 mm 61(2;8) 70(6)

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S40

    CLTslabintermediatefloor,corridor

    VP 3

    Solidwoodrequirements

    Load-bearing Fire

    Surfacelayerrequirements

    Acoustics

    Suspendedceilingrequirements

    Visual

    Surfacelayerrequirements

    Acoustics Fire

    Variables

    Structure Surfacelayer Chipboard25mm CLT(120mm)** Gypsumboard18mm Supportinggluelambeams Gypsumboard18mm Suspendedceilingand gypsumboard13mm

    Structure Surfacelayer CLT(120mm)** Gypsumboard15mm Suspendedceilingand gypsumboard18mm

    Structure Surfacelayer Floatingfloorslab40mm Impact sound isolation 30 mm CLT(120mm)** Gypsumboard15mm Suspendedceiling Resilient channel 25 mm Gypsumboard215mm

    A. Chipboard, CLT, suspended ceiling B. CLT, suspended ceiling

    Structure Surfacelayer CLT(200mm)**

    C. CLT D. Floating floor slab, CLT, suspended ceiling

    * variable** accordingtostructuralcalculations

    CharringvaluesusedforCLTcross-sectioncalculationarecalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S41

    CLTslabintermediatefloor,balcony

    VP 41

    Solidwoodrequirements

    Load-bearing Fire

    Surfacelayerrequirements

    Visual

    Surfacelayerrequirements

    Fire Visual

    Variables

    Structure Openboarding28mm Firringpiece Waterproofing CLT(100mm)** Fire retardant treatment

    A. Open boarding, visible CLT

    * variable** accordingtostructuralcalculations

    Structure Openboarding28mm Firringpiece Waterproofing CLT(100mm)** Fire retardant treatment Suspendedceiling Boarding28mm

    B. Open boarding, suspended ceiling

    CharringvaluesusedforCLTcross-sectioncalculationarecalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Type Insulation Surfacematerial Thickness Fire resistance Surfacereactiontofire Charring Rw(C;Ctr)

    [dB]

    Ln,w(Ci)

    [dB]Floor Ceiling R60 R90

    A.0 Boarding/fireretardandtreatment 170 mm REI30 B-s2.d0 30 mm 45 mm

    B.0 Boarding/fireretardandtreatment 317 mm REI30 B-s2.d0 30 mm 45 mm

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • Type Insulation Surfacematerial Thickness Fire resistance Surfacereactiontofire Rw(C;Ctr)

    [dB]

    Ln,w(Ci)

    [dB]Floor Ceiling

    A.0 0 mm CLT D-s2,d0

    B.0 0 mm CLT 160 mm D-s2,d0 44(1;5) 82(7)

    C.0 100 mm CLT/gypsumboard213mm 226 mm REI30 DFL-s1 A2-s1,d0 41(1;4) 73(8)

    D.0 100 mm Plywood/gypsumboard213mm 198 mm REI30 DFL-s1 A2-s1,d0 44(4;12) 75(4)

    E.0 0 mm Concrete 110 mm 50(1;3) 50(1;3)

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S42

    Stairs

    VP 5

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Beamsrequirements

    Load-bearing

    Surfacelayerrequirements

    Visual Fire

    Surfacelayerrequirements

    Visual

    B.NAILPLATESTRUCTUREDSTAIRS

    CLT(handrail)

    A.CLTSTAIRS

    Structure CLTsteps Load-bearingCLThandrailsor gluelambeams

    Structure CLTsteps CLTslab**

    Structure Concretesteps Concretebeams**

    Structure CLTsteps SupportingbeamsforCLTsteps andload-bearingCLThandrails**

    Insulation 100 mm 2gypsumboard13mm

    Structure Plywood21mm Nail plate

    connected beams** Insulation 100 mm 2gypsumboard13mm

    Variables

    A. CLT stairs, load-bearing CLT / gluelamB. CLT stairs, CLT slab

    E. Concrete stairs

    C. CLT steps, gluelam beams, insulation D. Plywood steps, nail plate connected beams, insulation

    * variable** accordingtostructuralcalculations*** airgapduetoacoustics

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • Type Insulation Surfacematerial Thickness Fire resistance U

    [W/m2K]

    Surfacereactiontofire Rw(C;Ctr)

    [dB]Roof Ceiling

    A.0 450 mm Gypsumboard18mm REI60 0.076 BROOF A2-s1,d0 42(0;2)

    B.0 270 mm Gypsumboard13mm A2-s1,d0 60(1;5)

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S43

    Roofstructure

    YP 1

    * variable** accordingtostructuralcalculations

    A. TIMBER TRUSS ROOF

    Rooftrussrequirements

    Load-bearing Fire resistance

    Surfacelayerrequirements

    Fire Visual Acoustics

    Solidwood requirements

    Load-bearing Fire resistance

    Insulationrequirements

    U value

    Structure Roofmaterial Roofbatten+ventilationbatten Roofunderlayment Rooftruss+ventilation Insulation 450 mm CLT80mm Gypsumboard18mm

    Structure Bitumen sheet Plywoodboard Rockwoolwithventilationchannel Polyurethaneinsulationboard Moisture barrier CLT(180mm)** Battens Gypsumboard13mm

    Variables

    A. Timber truss roof B. Flat roof

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • Type Insulation Surfacematerial Thickness Fire resistance Surfacereactiontofire Rw(C;Ctr)

    [dB]

    A.0 50 mm Gypsumboard13mm/tiles 104 mm EI30 A2-s1,d0/ 46(1;5)

    A.1 50 mm Woodbasedpanel/tiles 106 mm D-s2,d2/ 46(1;5)

    B.0 VisibleCLT/tiles 105 mm EI 60 D-s2,d0/ 37(1;3)

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S44

    Non-load-bearingpartitionwall, inside apartment

    VS 1

    Surfacelayerrequirements

    Fire

    * variable** accordingtostructuralcalculations

    Structure Gypsumboard*13mm Timber(orsteel)framewall

    66 mm + insulation 50 mm Gypsumboard*13mm

    Structure CLT80mm

    Variables

    B. CLTA. Timber or steel frame

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S45

    Non-load-bearingpartitionwall, insideapartment,bathroom

    VS 2

    * variable** accordingtostructuralcalculations

    Structure Gypsumboard*13mm Timber(orsteel)framewall66mm

    + insulation 50 mm Wet area board 13 mm Certifiedwaterproofingsystem Plaster Tiles

    Structure CLT80mm Moisture resistant board 13 mm Certifiedwaterproofingsystem Tile adhesive Tiles

    Variables

    B. CLT, bathroomA. Timber or steel frame, bathroom

    Surfacelayerrequirements

    Fire

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Type Insulation Surfacematerial Thickness Fire resistance Surfacereactiontofire Rw(C;Ctr)[dB]

    A.0 50 mm Gypsumboard13mm 92 mm EI 30 A2-s1,d0 40(2;8)

    A.1 50 mm Wooden panel 96 mm D-s2,d0 40(2;8)

    B.0 VisibleCLT 80 mm EI 60 D-s2,d0 32(1;3)

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • Type Insulation Surfacematerial Thickness Fire resistance U

    [W/m2K]

    Surfacereactiontofire Rw(C;Ctr)

    [dB]Roof Ceiling

    A.0 450 mm Gypsumboards215mm REI60 0.076 A2-s1,d0 58(1;5)

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S46

    Pitchedroof,timbertruss, corridor

    YP 2

    Structure Roofmaterial Roofbatten+ventilationbatten Roofunderlayment Rooftruss**+ventilation~100mm Sheathingboard9mm Insulation450mm(rockwool) Vapourbarrier Battens 32 mm 2gypsumboard15mm

    Variables

    A. Timber truss roof, LVL bottom chord

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • Type Insulation Surfacematerial Thickness Fire resistance Surfacereactiontofire Rw(C;Ctr)

    [dB]

    Ln,w(Ci)

    [dB]Floor Ceiling

    A.0 50 mm Floorslab40mm/gypsumboard18mm 456 mm REI60 A2-s1,d0 58(1;4) 78(11)

    B.0 50 mm Floorslab40mm/gypsumboard15mm 457 mm A2-s1,d0 62(1;4) 78(9)

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S47

    Intermediatefloor,apartment

    E-VP 12

    Structure Floatingfloorslab40mm Impact sound isolation 30 mm LVLribslab+insulation50mm Plankorboard Airgap CLT(80mm)** Gypsumboard18mm

    Structure Floor slab Chipboard Timberjoists+insulation100mm Airgap CLT(80mm)** Gypsumboard15mm

    Variables

    B. Floor slab, timber joists, CLT, suspended ceilingA. Floating floor slab, rib slab, CLT

    Surfacelayerrequirements

    Acoustics

    Rib slabrequirements

    Load-bearing Fire

    Surfacelayerrequirements

    Acoustics Fire Visual

    Solidwoodrequirements

    Load-bearing Fire

    CharringcalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    * variable** accordingtostructuralcalculations

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • Type Insulation Surfacematerial Thickness Fire resistance U

    [W/m2K]

    Surfacereactiontofire Charring Rw(C;Ctr)

    [dB]Inner Outer R60 R90

    A.0 180 mm Gypsumboards215mm 463 mm REI60 0.13 16 mm 36 mm

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S48

    Basefloor,cantileverapartment

    AP 1

    CharringcalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Structure Floatingfloorslab40mm Impact sound isolation 30 mm CLT(140mm)** Insulation180mm(rockwool) Battens+airgap50mm Fiber cement board 8 mm

    Variables

    A. Floating floor slab, CLT

    Surfacelayerrequirements

    Acoustics

    Surfacelayerrequirements

    Acoustics Fire Visual

    Solidwoodrequirements

    Load-bearing Fire

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S49

    CLTslabintermediatefloor, recessedbalcony,apartment

    E-VP 42

    CharringcalculatedaccordingtozerostrengthlayertheorypresentedinEN1995-1-2.

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Surfacelayerrequirements

    Acoustics

    Surfacelayerrequirements

    Acoustics Fire Visual

    Solidwoodrequirements

    Load-bearing Fire

    Structure Floatingfloorslab40mm Impact sound isolation 30 mm CLT(140mm)** Insulation 100 mm Airgap CLT(80mm)**

    Variables

    A. Floating floor slab, visual CLT

    Type Insulation Surfacematerial Thickness Fire resistance U

    [W/m2K]

    Surfacereactiontofire Charring Rw(C;Ctr)

    [dB]

    Ln,w(Ci)

    [dB]Floor Ceiling R60 R90

    A.0 100 mm Floorslab40mm/CLT 432 mm REI60 0.17 A2-s1,d0 25 mm 45 mm 61(1:5) 75(10)

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S50

    Load-bearingpartitionwall, recessedbalcony,apartment

    E-VSK 12

    Faaderequirements

    Visual Weather Fire

    Insulation requirements

    Acoustics U value

    Surfacelayerrequirements

    Acoustics Fire

    Solidwoodrequirements

    Load-bearing Fire resistance

    Variablesoftheconstructionmaterials,listedfromtheoutsidetotheinside.Yellowcolorindicateschangedvariable.

    Structure Cladding Airgap32mm Gypsumboard15mm CLT(120mm)** Airgap50mm+insulation30mm CLT(120mm)** Gypsumboard15mm

    Variables

    A. Wood cladding, double CLT, gypsum boards

    Type Insulation Surfacematerial Thickness

    (CLT120mm)

    MinimumCLTcross-section U

    [W/m2K]

    Surfacereactiontofire Rw(C;Ctr)

    [dB]R60 R90

    4floors 7floors 4floors 7floors Inner Outer

    A.0 30 mm Gypsumboard15mm 375 mm 120C3s 120C3s 140C5s 140C5s 0,29 A2-s1,d0 D-s2,d0 52(4;9)

    Notethatallfinalsolutionsneedtobereviewedandapprovedbyresponsibledesigner.See1.3Disclaimer(page5).

  • 48m

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S51

    OrientationChart

    5.2. Structural details

    VD08

    VD15A/B

    FD06FD06

    VD02BVD02CVD02D

    VD03BVD09A/B

    VD10

    VD01

    FD01FD03

    VD13

    FD04FD05

    VD02VD07

    VD14

    HD02

    HD01

    VD11

    VD12

  • Detail name No. Description Note

    VD 1 Intermediatefloortoload-bearingexternalwall,apartment

    VD 2 A Intermediatefloortopartitionwall,apartment

    B Intermediatefloortopartitionwall,apartment,beamandpost Extension

    C Intermediatefloortopartitionwall,apartment,beamfloor Extension

    D Intermediatefloortopartitionwall,apartment,ribslabfloor Extension

    VD 3 A Intermediatefloortoload-bearingpartitionwall,bathroom

    B Intermediatefloortoload-bearingpartitionwall,sanitaryboxelement Extension

    VD 4 A Connectionforuplift,continuoustensionbar,doubleshearwalls

    B Connectionforuplift,continuoustensionbar,oneshearwall

    VD 5 A Connectionforshear,wood/woodconnection

    B Connectionforshear,steelconnection

    VD 6 Connectionbetweenintermediatefloors

    VD 7 Connectionfortensionandcompressionbetweenintermediatefloors

    VD 8 Intermediatefloortopartitionwall,corridor,serviceshaft

    VD 9 A Intermediatefloortopartitionwall,corridor

    B Intermediatefloortopartitionwall,corridor

    VD 10 Balconyfloortoload-bearingexternalwall

    VD 11 Stairstointermediatefloor,corridor

    VD 12 Rooftoexternalwall

    VD 13 Rooftoload-bearingpartitionwall

    VD 14 Intermediatefloortonon-load-bearingpartitionwall,apartment

    VD 15 A Twomodulesformingoneroom Extension

    B Twomodulesformingoneroom Extension

    VD 16 A Intermediatefloortoconcretewall,apartment Extension

    B Intermediatefloortoconcretewall,apartment Extension

    VD 17 Intermediatefloortoexternalwall,cantileverapartment Extension

    FD 1 Externalwalltofoundations,apartment

    FD 2 Externalwalltofoundations,uplifttie

    FD 3 Externalwalltofoundations,sheartransfer

    FD 4 Partitionwalltofoundations,upliftconnection

    FD 5 Partitionwalltofoundations,shearconnection

    FD 6 Partitionwalltofoundations,insideapartment Extension

    HD 1 Salient corner

    HD 2 T-connection

    HD 3 Re-entrantcorner

    B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S52

    ListofDrawings

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S53

    Intermediatefloortoexternalwall,apartment

    VD 1

    Airtighttape

    Separationstripformoisture

    and sound isolation

    Screwsinelement

    Mineralwool

    EPDMrubbersealant(soft)

    Vibrationisolationpad12mm

    Fire barrier

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    1)

    2)

    3)

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S54

    Intermediatefloortopartitionwall,apartment

    VD 2 A

    1)2)

    3)4)

    Mineralwool30mm,

    onlyatmoduleedges,

    attached to module

    Mineralwool30mm,

    attached to module

    Separationstripformoisture

    and sound isolation

    Screwsinelements

    Screwsinelements

    Vibrationisolationpad12mm

    Mineralwool30mm

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S55

    Intermediatefloortopartitionwall,apartment,beam and post

    VD 2 B

    Gluelam beam Glu

    elam

    col

    umn

    Glu

    elam

    col

    umn

    Glu

    elam

    col

    umn

    Glu

    elam

    col

    umn

    Gluelam beam

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S56

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Intermediatefloortopartitionwall,apartment,beamfloor

    VD 2 C

    Screwsinelements

    Vibrationisolationpad12mm

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S57

    Intermediatefloortopartitionwall,apartment,ribslabfloor

    VD 2 D

    Screwsinelements

    Nails in elements

    Vibrationisolationpad12mm

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S58

    Intermediatefloortoload-bearingpartitionwall,bathroom

    VD 3 A

    Note!Compensationairandairflowinhorizontaldirectionneedtobearranged.

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Mineralwool,30mm

    onlyatmoduleedges,

    attached to module

    Mineralwool,30mm,

    attached to module

    CLTload-bearingpartitionwall

    Separationstripformoisture

    and sound isolation

    Forimprovedimpactnoiseisolation,

    impactnoiseisolationlayerunderthe

    tiles can be used

    CLTintermediatefloor,

    apartment

    Vibrationisolationpad12mm

    1)2)

    3)4)

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S59

    1)2)

    3)4)

    EPDM rubber sealant

    Screwsinelement

    Screwsinelement

    Vibrationisolationpad12mm

    Intermediatefloortoload-bearingpartitionwall,bathroom,sanitaryboxelement

    VD 3 B

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S60

    Connectionforuplift,continuoustensionbar, doubleshearwalls

    VD 4 A

    1)2)

    3)4)

    Tension rod

    Scarfingoftensionrod

    Steelplate+elastometer(only

    forstabilityduringassembly)

    NotchinCLTforscarfing

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S61

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Connectionforuplift,continuoustensionbar, oneshearwall

    VD 4 B

    Mineralwool,30mm

    attached to module

    Tensionrodwithsoft

    plastic cover around

    Scarfingoftensionrod

    Steel plate + elastometer

    (onlyforstabilityduring

    assembly)

    CLTnotched

    Mineralwool,30mm

    onlyatmoduleedges,

    attached to module

    1)2)

    3)4)

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S62

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Connectionforshear,wood/woodconnection

    VD 5 A

    Mineralwool30mm,attachedtomodule

    Separationstripformoisture

    and sound isolation

    NotchedCLTwood/

    woodconnection

    Sound insulation

    elastomer 12 mm

    Sound insulation

    elastomer 12 mmLowermodularunit

    Shearconnectionofoverlappingmodules,numberandsizeofconnectionsaccordingtostructuralengineer

    Upper modular unit

    Mineralwool,30mm

    onlyatmoduleedges,

    attached to module

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S63

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Connectionforshear,steelconnection

    VD 5 B

    1)

    2)

    3)

    3)4)

    Mineralwool30mm,attachedtomodule

    Separationstripformoisture

    and sound isolationSound insulation elastomer

    belowandonthesteelplate

    Screws

    Sound insulation

    elastomer 12 mm

    Steelplateforshear

    Screws

    Mineralwool30mm,

    onlyatmoduleedges,

    attached to module

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S64

    Connectionforshearbetweenintermediatefloors

    VD 6

    Mineralwool30mm,

    attached to module

    Separationstripformoisture

    and sound isolation

    Gapbetweentimber

    and steel part

    Steelplateandself-tapping

    screws(long-termdurability

    needstobeconsidered)

    Notchforsteelpart

    CLTceiling

    CLTceiling

    Sound insulation elastomer

    belowandonthesteelplate

    Mineralwool30mm,

    onlyatmoduleedges,

    attached to module

    Forimprovedsoundisolation,avoidplacingsteelconnectionsinlivingroomsorbedrooms.

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S65

    CLTceiling CLTceiling

    Connectionfortensionandcompressionbetweenintermediatefloors

    VD 7

    Mineralwool30mm,

    attached to module

    Separationstripformoisture

    and sound isolation

    Steelplateandself-tapping

    screws(long-termdurability

    needstobeconsidered)

    Notchforsteelpart

    Sound insulation elastomer

    belowandonthesteelplate

    Mineralwool30mm,

    onlyatmoduleedges,

    attached to module

    Forimprovedsoundisolation,compression/tensionforcesandshearforcesaremanagedwithdifferentsteelconnections.Itisnotrecommendedtoinstallmultiplesteelpartstosamelocationfordecreasedsoundisolation.

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S66

    Intermediatefloortopartitionwall,corridor

    VD 8

    1) 2)

    4)3)

    Fire sealant

    Apartment Corridor

    Ducts

    Screwsinelement

    Screwsinelement

    Screwsinelement

    Vibrationisolationpad12mm

    Serviceshaftandcorridorstructuresarebuiltonsite.

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S67

    Intermediatefloortopartitionwall,corridor

    VD 9 A

    1)

    2)

    4)

    4)

    3)

    Corridorstructuresarebuiltonsite.

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Screwsandrubberwasher

    Vibrationisolationpad6mm

    ApartmentCorridor

    Vibrationisolationpad12mm

    Screwsinelement

    Screwsinelement

    Screwsinelement

    Screws

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S68

    Intermediatefloortopartitionwall,corridor

    VD 9 B

    1)

    3)4)

    4)

    2)

    Screwsinelement

    Screwsinelement

    Screwsinelement

    Vibrationisolationpad12mm

    Elastic sealant

    Vibrationisolationpad6mm

    ApartmentCorridor

    Screwsandrubberwasher

    Option B.

    Improvedacousticperformance

    Screws

    Corridorstructuresarebuiltonsite.

    Itisrecommendedtouseimpactsoundisolationlayerincorridoriftheroomunderislivingroomorbedroom.

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S69

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Balconyfloortoload-bearingexternalwall

    VD 10

    Mineralwool

    Fire barrier

    Balconyrailandglass

    Waterproofing

    Steelangle

    Screws

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S70

    Stairstointermediatefloor,corridor

    VD 11

    Screws

    Screws

    CLTstairs

    Anglebracket

    Gluelam beam

    AA

    A A

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S71

    Rooftoexternalwall

    VD 12

    2)

    1)

    Roofstructurebuiltonsite

    CLTneedstobeedgegluedor

    moisture barrier needs to be used

    Screwsinelement

    Sealedjoint

    Fire barrier

    Ventilatedtoopenair

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S72

    Rooftoload-bearingpartitionwall

    VD 13

    Ifrooftrussconnectsmodulesthatarepartofdifferentflats,vibrationisolationpadshouldbeusedunderthetruss.

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Sealedjoint

    Roofstructurebuiltonsite

    Plank

    Airtighttape

    CLTneedstobeedgegluedor

    moisture barrier needs to be user

    Screwsinelements

    EPDMrubbersealantandmineralwool

    Ventilatedtoopenair

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S73

    Intermediatefloortonon-load-bearingpartitionwall,apartment

    VD 14

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Support plate

    Separationstripformoisture

    and sound isolation

    Elastic sealantScrews

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S74

    Twomodulesformingoneroom

    VD 15 A

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Elastic sealant

    Screwsinelement

    Screwsinelement

    Screwsinelement

    Wall

    Vibrationisolationpad12mm

    Installationgap

    Screwsfromwalltofloor

    EPDM rubber sealant

    EPDM rubber sealant

    Gluelambeamnote:beams

    lengthissameasmodules

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S75

    Twomodulesformingoneroom

    VD 15 B

    Elastic sealant

    Screwsinelement

    Screwsinelement

    Screwsinelement

    Vibrationisolationpad12mm

    Wall

    Installationgap

    Screwsfromwalltofloor

    EPDM rubber sealant

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S76

    Intermediatefloortoconcretewall,apartment

    VD 16 A

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Cast-inchannel

    e.g.HALFENHTA-CE

    Steel plate and

    self-tappingscrews

    1 1

    1 1

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S77

    Intermediatefloortoconcretewall,apartment

    VD 16 A

    Steelplateandself-tappingscrews

    Connectionhardwareforconcrete

    1 1

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    1 1

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S78

    Intermediatefloortoexternalwall, cantilever apartment

    VD 17

    Screwsinelement

    Airtighttape

    Vibrationisolationpad12mm

    Screwsinelement

    EDPMrubbersealant(soft)Load-bearing

    cantileverwall

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

  • B U I L D I N G SYST EM S BY STO R A EN S O | 3 8 STO R E Y M O D U L A R EL EM EN T B U I L D I N G S79

    Exactamount,sizeandspacingoffastenersaccordingtostructuralengineer.

    Externalwalltogroundfloor,apartment

    FD 1

    Epoxycoveringrecommended

    Bitumenfeltbetween

    woodandconcrete

    Moistureunderthemodulefromsite

    operations need to be ventilated

    Infillcasting050mm

    Screwsinelement

    Screwsinelement

  • B U I