60
物理研究所 Brane 宇宙學在 Bianchi I, Bianchi III 以及 Kantowski-Sachs 模型下的時空研究 Brane Cosmology on Bianchi I, Bianchi III and Kantowski-Sachs Spaces 研 究 生:鍾旻峰 (Ming-Fun Chun) 指導教授:高文芳 教授 (Prof. Win-Fun Kao) 中 華 民 國 九 十 三 年 七 月

Brane 宇宙學在Bianchi I, Bianchi III以及 Kantowski … 宇宙學在Bianchi I, Bianchi III以及Kantowski-Sachs 模 型下的時空研究 Brane Cosmology on Bianchi I, Bianchi

  • Upload
    hadan

  • View
    232

  • Download
    8

Embed Size (px)

Citation preview

  • Brane Bianchi I, Bianchi III

    Kantowski-Sachs

    Brane Cosmology on Bianchi I, Bianchi III

    and Kantowski-Sachs Spaces

    (Ming-Fun Chun)

    (Prof. Win-Fun Kao)

  • Brane Bianchi I, Bianchi III Kantowski-Sachs

    Brane Cosmology on Bianchi I, Bianchi III and Kantowski-Sachs

    Spaces

    StudentMing-Fun Chun

    AdvisorWin-Fun Kao

    A Thesis

    Submitted to Institute of Physics

    College of Science

    National Chiao Tung University

    in partial Fulfillment of the Requirements

    For the Degree of

    Master

    in

    Physics

    July 2004

    Hsinchu, Taiwan, Republic of China

  • () 92

    2

    Brane Bianchi I, Bianchi III Kantowski-Sachs

    ()

    ()

    ()

    ()

    :______________

    ()

    94 7 20

    94 7 20

    9127508

    ________________

    93 7 20

  • () 92

    Brane Bianchi I, Bianchi III Kantowski-Sachs

    ()

    9127508

    ________________

    93 7 20

  • _

    l>B, B, `>B; yV>B;e, B}V1,

    J?D]-AdZ2-7A; .vH,

    Bh Osamu Seto .w`BDBSdj; A

    db2, nDu67B', F

    B;d6.}0A7, ?DvDAn

    u, >g',.c7nDjj, 6

    7tMb4, u'N% ; rzT5I7rv

    DBbnDN, '>; dY4uO j5\Bbv

    vJN; 4.,, B_Av46?4

    nD}-2 s-V, g)| u>7.=

    : DEw.c,, 25,, -n, u.)

    n; pD+n7., B7jy:7,

    Fb yuBbT7v.), J_hGVz, Fb

    u`7Bbr; DdQ7rA%}, BR

    _Vz, BR k7r; Dkn{2B7d

    b:b4 '', 'A, .>

    8YH, ;BbHWu}IA[ 0vm

    b>U-H7F4, , !_, db, *2 ;HN

    7C

  • b

    d2, Bb* Bianchi I,Bianchi III Kantowski-Sachs _|

    ; _G (Homogeneity) /4 (anisotropy) _; 7)

    =gjj, (n =gjjFf#Bbk

    m7 5, Bbd2d7sb cq: uBbec

    _?D}0_; (perfect fluid) _, _ucqB

    bF0u_JFw&vy|_&&v, 7

    &v (brane spaces) 4u|2\nO

    }&__=g jj(, BbJ__}w

    AG (Homogeneity) /4 (Isotropy) 4, 7/w

    2, b (cosmology constant) A3Obb; o

    2, uBbF5?&v2&b (brane constant) A3O

    bb; , Bb6)Bb5?b6}A3O

    bbv`, 6u ov, Iwk&b3v5(

    2

  • Contents

    1 4

    1.1 FRW_ . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2 &v 10

    2.1 _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    2.2 Brane Bianchi type I,Bianchi type III D Kantowski-

    Sachs vS . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3 }&Dn 19

    3.1 . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.1.1 Nj5) . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.1.2 NjDbMj5 . . . . . . . . . . . . . . . . . . . 24

    3.2 4b . . . . . . . . . . . . . . . . . . . . . . . 31

    4 ! 34

    5 36

    5.1 Vacuum Einstein equation . . . . . . . . . . . . . . . . . . . . 36

    5.2 Einstein equation with energy momentum tensor . . . . . . . . 47

    3

  • Chapter 1

    (Cosmology) w'o%7, r4}

    A jD, ukh,., 6rk, /D

    7|s_0J V, kDhxX, U

    kA_, bW, 7/r 6\

    1920, =gT|72, 7! 1929

    , +N rm$Ph, 72wFrTkn

    7G, 7 3z GGyA

    bJ, rAIp7 nD, Bb6uw

    1965,PenaiasDWilson7*5 (Cosmology Microwave

    Background), 5A2.7 K, /G}0k5

    7, y7Bb8, b

    eV CMB hBbD? }0uG/

    4 s_!4, UBb Friedmann-Roberson-Worker

    _ _u5?ABuG/4G, OOh

    , Bb CMB } 0wx

  • 8%H, Dwv| jb ,ks=

    n~j Bb&v3-brane , u&v\9A_&

    _q, 7&&v (Bb bulk) q 7, 7.

    !, &@v b ( Planck scale ) h.

    7(V, :t Klein uz h9k Kaluza

    &2, Fh7j, J_bHV_, *7 p

    vjjJ\-yD~6-5H

    .j(V. u\wW.

    Ou1980H, k$ Kaluza-Klein hh\T|V,

  • 1.1 FRW_

    =g&2T|, zp7vDu.}/,

    H7*HvH! vDwy1920, =gT|7.&2

    (T|72, un _hj, 7/6ABb

    'x Bb=gj (Einstein Equation) *T

    (Action Principle) ), 77T2$J[:

    S =

    d4x

    g(R

    16G+ Lmatter) (1.1)

    R F[u-0" (Riemann curvature tensor),G u

    b (Gravitational constant), 7Lmatteru Lagrangian. Bbgd

    }(, Bb)=gj:

    R 12gR = 8GT (1.2)

    Tu?" (Energy Momentum Tensor),gu Metric Ten-

    sor, Metric Tensor dzVz, O, 7

    Ricci scalar(R) Ricci " RsBb FJ=gj

    UiuD?, 7D ?SBbU

    i[|V

    ;WBb- ( 100Mpc) h*5 (Cosmic MicrowaveBackground (CMB)) !, BbBbuG (Homogeneity) /

    4 (Isotropy) , G4sBb, BbFh 4DwF

    P0; 74sBb, Fhj,w4Q B

    b s_!4 *=g22, p7

    x| 4, 7b,, x|4&

    0kb&7 &7JT& 7T

    Friedmann-Roberson-Worker(F-R-W) _uJ,HF|,

    6

  • 7 _Bb)_H F-R-W _(j:

    ds2 = dt2 + R2(t)( dr2

    1 kr2 + r2d2 + r2sin2()d2) (1.3)

    ,2R(t) (Scale Factor), uOv,

    6zp7 k 0b, k = 1, 0,1,k = 0v, Bbu_; k = 1v, zBbFdu

    _7[; k = 1v, zBbFdu_ r, , 7,t v , (jds22!4, 2 (Lorentz

    Transformation) wM\M. sBb, BbdChv, BbJ

    _|_ Vdn, 7!u. y6 Metric Tensor g(j

    2- trace ,M:

    g = gii = (1, R2(t)

    1 kr2 , R2(t)r2, R2(t)r2sin2) (1.4)

    k F-R-W _4BbJ) Christofol symbol(ijk)

    }:

    ijk =1

    2gil(

    gljxk

    +glkxj

    gjkxl

    ) (1.5)

    0ij =R

    Rgij

    i0j =R

    Rij

    1.4 Christofol symbol 2 Christofol symbol xM

    |, sBbu4 Ricci tensor 2R = gR ,

    7R uF-0, -02OBb (Bb

    )0" Ricci Tensor }:

    R00 = 3RR

    7

  • Rij = (RR

    + 2(R

    R)2 +

    2k

    R2)

    (1.6)

    J" Ricci Scalar:

    R = 6(RR

    +R2

    R2+

    k

    R2) (1.7)

    7H R(t) jJ*j=gj):

    R 12gR = 8GT (1.8)

    TBbu;$, w} T00 = , T 11 = T 22 = T 33 = p.

    ?,p 9 jjvF)00}j, OVzB

    bd Fridmann Equation:

    R2

    R2+

    k

    R2=

    8G

    3 (1.9)

    (, BbJ Fridmann Equation Z:

    k

    H2R2=

    3H2

    8G

    1 1 (1.10)

    u? critical density cM

    c

    , c 3H2

    8G

    ,2,H RRuF+b (Hubble constant). ;Wh *

    5e2Bb 1, 6

  • , h2Bb, =gj.hz=g7

    Uj K7pb (O(VwuG7

  • Chapter 2

    &v

    Bb&v;o1919AT|,Oo1.e,1980

    Hw, k$ Kaluza-Klein hh\T|V,

  • Su?"T.,E bulk ,^@,

    E = Ciajbnanb (2.3)

    Ciajbnanb bulk 2&Weyl tensor , Eq2.12?

    "S(1&2?") JT[:

    S =1

    12TT 1

    4T T +

    1

    24g(3T

    T T 2) (2.4)

    ,TBbFu_x4/.$, FJu;

    $, ;?"}:

    T 00 = T 11 = T 22 = T 33 = p (2.5)

    ?";$sBb, Bbe5

    >T (f... ) ,T = T u?" trace T =

    T = T00 + T

    11 + T

    22 + T

    33 ?9 p ,

    [:

    p = ( 1) (2.6)

    _b/w 1 2 .

    ;Wj Eq2.1, BbJ, E = 0/k5 0v, BbO brane 2=gj, c5?&v_&v

    _y2 Bb d2, .5?E bulk ,^@,

    IE = 0VdBbn&v_!c q

    , Bb67j brane ,6?0, 722?

    [:

    T = 0 (2.7)

    11

  • u} (Covariant Differentiation), Fu&v2}, T"? "5$:

    T T ; = T , + T + T (2.8)

    5(Bb},j7=gjD?0jjdj(,B

    b)BbF; , j

    12

  • 2.1 _

    ,, Oh, Bb CMB }0wx

  • Eq2.10, Bb5(3b}un

    Eq2.13 4b, BbJ*4bv

    Vn__$

    14

  • 2.2 Brane Bianchi type I,Bianchi type

    III D Kantowski-Sachs vS

    Bbbn_G/4_ Bianchi type I,Bianchi

    type III D Kantowski-Sachs(5(Bb BI,BII,KS) &-v!Z

    Bbl*2JBbF_(jds2$,7(j(B

    7_d"

    g = (1, a1(t)2, a2(t)2, a2(t)2f()2) (2.14)

    z (Metric Tensor) |, Bb-b) Christofol

    symbol(ijk) sBbu", (y)[-

    0R , y-0) Ricci"RD Ricci 0bR(, Bb|(y

    z

  • ,2k = 0, 1,1v}H[O BI,KS D BIII _,v?, 7 1 2b Bb*_j2BbF)uD?[ Ou?OvZU)Bb

    U7j, FJBbb5?2? 0:

    T = 0 (2.19)

    ;Wu}T?",%Jl(BbJ)Ov?D O[:

    + (a1a1

    + 2a2a2

    ) = 0 (2.20)

    FJBb?Ov(V = a1a22):

    = 0V , 0 = constant > 0 (2.21)

    ?), BbJ7jBbF)=jj

    -uOvZ, FJBbZJn7 B

    b7;)j, Bbj 2.16,2.17,2.18ZA:

    d

    dt(V H1) = V +

    1

    2k240V

    1(2 ) + 112

    k4520V

    (1 2)(1 ) (2.22)d

    dt(V H2) = V +

    1

    2k240V

    1(2 ) + 112

    k4520V

    (1 2)(1 ) ka1(2.23)

    3H + H21 + 2H22 = V +

    1

    2k240V

    (2 3) + 112

    k4520V

    ( 2)(1 3)(2.24)

    J,j2, hb2:

    H1 =a1a1

    , H2 =a2a2

    , V =1

    3(H1 + 2H2) =

    V

    3V

    16

  • -V, Bby,? Eq2.21, %JHb

    (BbJ) }j:

    V = 3V +3

    2k240V

    1(2 ) + 14k45

    20V

    12(1 ) + 2ka1(2.25)

    Bb, k=0,k=-1,k=1Bb}J) Bianchi type I, a Bianchi type

    III,and a Kantowski-Sachs j (;W}}l(, BbJ)

    }j:

    V 2 = 3V 2 + 3k240V2 +

    1

    4k45

    20V

    22 + 4k

    a1dV + c

    (2.26)

    ,2,c }b }jBb5(n3bj, Bb

    Jp)|V_j u(4, 7/%rtl-, Bb

    u)wj&j, , 5(}&Dn 2BbtwNj ,

    BbJ_2j:

    t t0 =

    L(V )12 dV (2.27)

    t v,t0v,V 7b L(V) 2:

    L(V ) = 3V 2 + 3k240V2 +

    1

    4k45

    20V

    22 + 4k

    a1dV + c (2.28)

    2$, BbJQ)4b A Dai2j:

    A = 3K2L(V )1 (2.29)

    ai = a0V13 e

    Ki

    dv

    vL(V )12 (2.30)

    17

  • ,2, bK2, KiBbJ;Wj Eq2.22,Eq2.23):

    Hi = H +KiV

    (2.31)

    K1 =2

    kaidt

    3K2 =

    1 kaidt3

    (2.32)

    K2 = 3i=1K2i (2.33)

    j Eq2.21,Eq2.28,Eq2.32p Eq2.22,Eq2.23BbJ) K D}

    b c 5O[:

    K2 =2c

    3(2.34)

    18

  • Chapter 3

    }&Dn

    A,__R(, Bbub, FJBb

    n Ov-, }AS$? Dw2

    S[? OBbQ) jQj, ]Bb

    nSvq, J)Nj 7_Nj

    $ u, BbUKU7, Mathematica D Matlab

    V)wbMj, (yDBbNjT_ BbNjJ

    Wv Bbbj:

    V 2 = 3V 2 + 3k240V2 +

    1

    4k45

    20V

    22 4k

    a1dV (3.1)

    BbJJ,j2, K-)NjV , (

    BbZbzjp-j 2K-)a1

    d

    dt(V H1) = V +

    1

    2k240V

    1(2 ) + 112

    k4520V

    12(1 )(3.2)

    Bbu)a1, (BbJ4k

    a1dV

    , %4k

    a1dVbMj(BbZJ__54 ,

    19

  • a2l27):

    b(t) =

    v(t)a(t)

    (3.3)

    BbTbM}&vFUKlN|, Bbcqa(t0) = a0 ,

    b(t0) = b0 , b(t0) = b0 , v(t0) = v0 t0 v, 7b)_,

    v Bbb#8cqM: = 32,3 = p = 1 , 3k240 = m = 1 ,

    14k45

    20 = n = 1kKBb#:t0 = 0, a0 = 0.1, b0 = 0.1, b0 = 1. B

    bhVz, Bb.UBbUKS, ]

    u_b,cq 7Bb*cq|n 2, Bb

    4b (b) Vn___44

    74b:

    A 3

    i=1

    (Hi H)23H2

    (3.4)

    n4b6uU7_jV48$

    , Bb = 1, = 32, = 2, VT__}&

    20

  • 3.1

    BbI = 32, /UM0.001VTbM}&M, 7w

    FbqlF2,BbndNjbkwF10,100,1000

    B10000IVdBbK, Bb63k240d

  • (, BbJwNS _-Bb

    Nj8u/v(v

    2. 14k45

    20V

    223,

  • 3. 3k240V23, Njj:

    V 2 ' 3k240V 2 = mV 2 (3.13)

    Bb)Nj$:

    v(t) = (

    m

    2(t t)) 2

    6)a1(t),a2(t):

    b(t) = c3(t t)23 , a(t) =

    1

    c23(

    m

    2)

    2 (t t) 23 (3.14)

    b:t = t0 2mv20 , c3 = b0(

    2

    mv

    20 )

    23 = 3

    2v, Bb

    )

    v(t) =3

    43 (m)

    23 (t t) 432

    83

    b(t) = c4(t t) 49 , a(t) = 3103 (m)

    23 (t t) 49

    283 c23

    Bbn

    f(t) | 3V2 + 1

    4k45

    20V

    22 + 4k

    a1dV

    3k240V2 | 1 (3.15)

    (BbwvS Bb_-, Bb

    Njvu v'oq, /ks_Nj

    v5

    23

  • 3.1.2 NjDbMj5

    Bbn__, b}u Kantowski-Sachs moddle,Bianchi Type

    I D Bianchi Type III _. QOBbnFb3V 2,14k45

    20V

    22J

    k240V2'bv, bF) Nj, 1DbM}

    &Fd|VjWn, ;W k}530QVdBb}&

    nYW. QOBbZ J.3vVWn.

    BbI = 3/2, /UM0.001VTbM}& M, 7B

    bbq = 1/3, k240 = 1000/3 J112

    k4520 = 1/3. Bb

    nbk240Vv Bbk240 > 1000/3v8,

    7Bbk240 = 1000/3Vd yzpBbFn

    [:

    V (t)2 = 3V 2 + 3k240V (t)2 +

    1

    4k45

    20V (t)

    22 + 4k

    a1dV (3.16)

    QOBbbM}&)(DNjd, ;WBb

    }j23vn, Bb|10%JqA3D

    bMj$,Bb Error2 Error = (NumericalaproximationNumerical

    )100%, J-Bb}._VT}&:

    (1)KS: 3.1 KS _bMj(BbJcA

    }Avq 7j; 3.2b

    3bMjD_j, BbJ vdDbM

    _(N; 3.3 brane 3vN$, Bb*$2

    J)|VvVQvbM_DBbNjV

    , Jc)v Qv brane Tub; J3.4

    b3v`NjDbMj$

    24

  • 0 1 2 3 4 5 6 7 8 9 100

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10x 10

    5

    Time

    Vol

    ume

    Sca

    le F

    acto

    r (V

    )

    Numerical Plotting

    Numerical

    Figure 3.1: KSv(: = 1/3, k240 = 1000/3 J 1

    12k45

    20 = 1/3, = 3/2

    5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 100

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10x 10

    5

    Vo

    lum

    e S

    cale

    Fac

    tor

    (V)

    Dominance of Cosmological Constant

    5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 100

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    Time

    Err

    or

    (V)

    data1

    NumericanceApproxivation

    Figure 3.2: KS_3V 23vNjD(: = 1/3,k240 = 1000/3 J

    112

    k4520 = 1/3, = 3/2

    25

  • 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    x 105

    1

    1.05

    1.1

    1.15

    1.2

    1.25

    1.3

    1.35

    1.4x 10

    3

    Vo

    lum

    e S

    cale

    Fac

    tor

    (V)

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    x 105

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    Time

    Err

    or

    (%)

    Dominance of 5D Gravitational Constant

    Error

    NumericanceApproxivation

    Figure 3.3: 14k45

    20V

    223vNjvqD KS (: = 1/3, k240 = 1000/3 J

    112

    k4520 = 1/3, = 3/2

    0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.060.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4Dominance of 4D Gravitational Constant

    Vo

    lum

    e S

    cale

    Fac

    tor

    (V)

    0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.060

    2

    4

    6

    8

    10

    12

    14

    16

    Time

    Err

    or

    (%)

    Error

    NumericanceApproxivation

    Figure 3.4: 3k240V23vNjvqD KS

    (: = 1/3, k240 = 1000/3 J112

    k4520 = 1/3, = 3/2

    26

  • (2)BI: 3.5 BI _bMj(; 3.6b

    3bMjDNj, *_BbJ3vvu

    v((Vv3Nj}}_(; 3.7

    brane 3v$, BbJc brane vQv

    ; 3.8b3v`NjDbMj$, Bb

    bbvBb J)yN8Jy

    0 1 2 3 4 5 6 7 8 9 10

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10x 10

    5 Numercal Plotting of Bianchi Type I

    Time

    Vo

    lum

    e S

    cale

    Fac

    tor

    Numericance

    Figure 3.5: BIv(: = 1/3, k240 = 1000/3 J 1

    12k45

    20 = 1/3, = 3/2

    3 4 5 6 7 8 9 100

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10x 10

    5 Dominance of Cosmological Constant

    time

    Vo

    lum

    e S

    cale

    Fac

    tor

    (V)

    3 4 5 6 7 8 9 100

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Err

    or

    (%)

    NumericanceApproxivation

    Error

    Figure 3.6: 3V 23vNjvqD BI (: = 1/3, k240 = 1000/3 J

    112

    k4520 = 1/3, = 3/2

    27

  • 0 0.2 0.4 0.6 0.8 1 1.2

    x 105

    1

    1.05

    1.1

    1.15

    1.2

    1.25

    1.3

    1.35

    1.4x 10

    3

    Vo

    lum

    e S

    cale

    Fac

    tor

    (V)

    0 0.2 0.4 0.6 0.8 1 1.2

    x 105

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5Dominance of 5D Gravitaional Constant

    Time

    Err

    or

    (%)

    Error

    NumericanceApproxivation

    Figure 3.7: 14k45

    20V

    223vNjvqD BI (: = 1/3, k240 = 1000/3 J

    112

    k4520 = 1/3, = 3/2

    0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.060.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    Time

    Vo

    lum

    e S

    cale

    Fac

    tor

    (V)

    0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.060

    2

    4

    6

    8

    10

    12

    14

    16Dominance of 4D Gravitational Constant

    Err

    or

    (%)

    Error

    NumericanceApproxivation

    Figure 3.8: 3k240V23vNjvqD BI

    (: = 1/3, k240 = 1000/3 J112

    k4520 = 1/3, = 3/2

    28

  • (3)BIII: 3.9_bMj(; 3.10b3bMjD_

    j; 3.11 brane 3v$J3.12b3

    v`NjDbMj$

    0 1 2 3 4 5 6 7 8 9 100

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10x 10

    5

    Time

    Vol

    ume

    Sca

    le F

    acto

    r (V

    )

    Numerical Plotting

    Numerical

    Figure 3.9: BIIIv(: = 1/3, k240 = 1000/3 J 1

    12k45

    20 = 1/3, = 3/2

    5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 100

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10x 10

    5

    Vo

    lum

    e S

    cale

    Fac

    tor

    (V)

    5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 100

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    0.045Dominance of Cosmological Constant

    Time

    Err

    or

    (%)

    NumericanceApproxivation

    Error

    Figure 3.10: 3V 23vNjvqD BIII (: = 1/3, k240 = 1000/3 J

    112

    k4520 = 1/3, = 3/2

    29

  • 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    x 105

    1

    1.5

    2

    2.5x 10

    3

    Vo

    lum

    e S

    cale

    Fac

    tor

    (V)

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    x 105

    0

    2

    4

    6

    8

    10

    12

    Time

    Err

    or

    (%)

    Dominance of 5D Gravitational Constant

    Error

    NumericanceApproxivation

    Figure 3.11: 14k45

    20V

    223vNjvqD BIII (: = 1/3, k240 = 1000/3 J

    112

    k4520 = 1/3, = 3/2

    0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.0650.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    Vo

    lum

    e S

    cale

    Fac

    tor

    (V)

    0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.0650

    2

    4

    6

    8

    10

    12

    14

    16

    Time

    Err

    or

    (%)

    Dominance of 4D Gravitational Constant

    Error

    NumericanceApproxivation

    Figure 3.12: 3k240V23vNjvqD BIII

    (: = 1/3, k240 = 1000/3 J112

    k4520 = 1/3, = 3/2

    Bb, DMv BbNjJbMj'

    N, uIAE, [Bb uW ,VzBbJ

    __ KS,BI,BIII 3k240d_|c(, xA.v

    Nj, 7__3b.

    4k

    a1dV TuU__wNjv KS wk BI

    wk BIII 7o BIII ok BI ok KS *

    }j26J|4k

    a1dVT.}T, .}3v`

    30

  • 3.2 4b

    42:

    A 3

    i=1

    (Hi H)23H2

    *l2BbJ4bBbF_-2$:

    A = 3K2L(V )1

    7w2K2DL(V )

    L(V ) = 3V 2 + 3k240V2 +

    1

    4k45

    20V

    22 + 4k

    a1dV + c

    K2 =2c

    3

    n4b6uU Mathematica 2bM7_j

    V48$ , Bb = 1, = 32, = 2, VT__

    }& Bbb u: = 1/3, k240 = 1/3,112

    k4520 = 1/3, = 3/2

    c = 1 %7QbM}&(, BbJ)__4b

    (, 3.13 KS (; 3.14 BI (; 3.15 BIII

    (F

    31

  • 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Time

    Ani

    sotr

    opic

    Par

    amet

    er

    KantowskiSachs

    gamma=1gamma=2gamma=3/2

    Figure 3.13: Kantowski-Sachs__4: = 1/3, k240 =1/3, 1

    12k45

    20 = 1/3, = 3/2, c = 1

    0 0.5 1 1.5 2 2.5 3 3.50

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Time

    Ani

    sotr

    opy

    Anisotropy of Bianchi Type I on Brane Cosmology

    23/21

    Figure 3.14: Bianchi type I __4: = 1/3, k240 = 1/3,112

    k4520 = 1/3, = 3/2, c = 1

    32

  • 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Time

    Ani

    sotr

    opic

    Par

    amet

    er

    Bianchi Type III

    gamma=1gamma=2gamma=3/2

    Figure 3.15: Bianchi type III __4: = 1/3, k240 =1/3, 1

    12k45

    20 = 1/3, = 3/2, c = 1

    ;WJ,

  • Chapter 4

    !

    Bbd7rn, ]iII7, czpZ

    1. Bb__ KS,BI,BIII 3k240d_|c(, xA.

    v Nj wv, Bb)

    ju

    V = V0e

    3t

    *j2Jc)bw27b o,

    Bb)j:

    v(t) = (

    n(t t)) 1

    ,2n = 14k45

    20_v, u brane ,bO3b

    7s_v5, BbJv3k240d_|c(,

    j:

    v(t) = (

    m

    2(t t)) 2

    ,2m = 3k240, vubrObiH

    34

  • 2. 7__3b.4k

    a1dVTuU__w N

    jv KS wk BI wk BIII 7o BIII ok BI

    ok KS *BbbM_ 26J|4k

    a1dVT.}

    T, .}3v`OFz, }v A

  • Chapter 5

    5.1 Vacuum Einstein equation

    _2#(j:

    ds2 = gdxdx (5.1)

    = d(t)2dt2 + a(t)2dr2 + b(t)2(d2 + f()2d2)

    d":

    g =

    d(t)2 0 0 00 a(t)2 0 00 0 b(t)2 00 0 0 b(t)2f()2

    d"5}:g11 = d(t)2, g22 = a(t)2, g33 = b(t)2, g44 = b(t)2f()2

    :

    g =

    1d(t)2 0 0 0

    0 1a(t)2

    0 0

    0 0 1b(t)2

    0

    0 0 0 1b(t)2f()2

    36

  • d"5}:

    g11 = 1d(t)2 , g22 = 1

    a(t)2, g33 = 1

    b(t)2, g44 = 1

    b(t)2f()2

    _2:

    f() =

    , Bianchi type Isin , Kantowski-Sachssinh , Bianchi type III

    l:

    1. ) Christofol symble j:

    2. ) Ricci tensor R

    Curvature tensor 2: R = mm ( )R R

    3. 7) Ricci scalar :

    R gR

    4. |(J) Einstein equation :

    R 12gR = kT g

  • 1. I

    Christofol symbol 2:

    =1

    2g(g + g g)

    =1

    2g(g, + g, g,)

    Bbt) Christofol symbol } :

    (a)

    000 =1

    2g0(g0,0 + g0,0 g00,) = 1

    2g0(g0,0)

    =1

    2g0g00,0 =

    1

    2

    1

    d2(t)d(d2(t))

    dt

    =d(t)

    d(t)

    (b)

    00i =1

    2g0(g0,i + gi,0 g0i,) = 1

    2g0(g0,i + gi,0)

    =1

    2g00g00,i +

    1

    2g0kgki,0

    = 0

    (c)

    i00 =1

    2gi(g0,0 + g0,0 g00,) = 1

    2gi(2g0,0 g00,)

    = gi0g00,0 12gi0g00,0

    = 0

    38

  • (d)

    0ij =1

    2g0(gi,j + gj,i gij,)

    =1

    2g00(g0i,j + g0j,i) 1

    2g00gij,0

    = 12g00gij,0

    0rr =aa

    d2

    0 =bb

    d2

    0 =bbf 2()

    d2

    (e)

    i0j =1

    2gi(g0,j + gj,0 g0j,) = 1

    2gi(g0,j + gj,0)

    =1

    2gi0g00,j +

    1

    2gigj,0

    =1

    2gikgkj,0

    r0r =1

    2grrgrr,0 =

    1

    2a2 2aa = a

    a

    0 =1

    2gg,0 =

    b

    b

    0 =1

    2gg,0 =

    1

    2

    1

    b2f 2() 2bbf 2() = b

    b

    (f)

    ijk =1

    2gi(gj,k + gk,j gjk,) = 1

    2gil(glj,k + glk,j gjk,l)

    rrr =1

    2grr(grr,r + grr,r grr,r) = 1

    2grrgrr,r = 0

    39

  • rr =1

    2grr(grr, + gr,r gr,r) = 0

    rr = 0 r =

    1

    2grr(gr, + gr, g,r) = 0

    r = 0 r =

    1

    2grr(gr, + gr, g,r) = 0

    = 0 r = 0 =

    1

    2gl(gl, + gl, g,l) = 0

    rr = 0 r = 0 =

    1

    2gl(gl, + gl, g,l) = 1

    2gg, = ff,

    = 0 r = 0 =

    1

    2gl(gl, + gl, g,l) = 1

    2gg, =

    f,f

    rr = 0 r = 0 = 0

    FJBb) }:

    000 =dd

    0rr =aad2

    0 =bbd2

    0 =bbf2

    d2r0r =

    aa

    0 =bb

    0 =bb

    =f,f

    = ff,

    40

  • 2. II

    Curvature tensor 2:

    R = , , + mm mm

    Bbl Ricci tensor }:

    R R

    (a)

    R00 = R00

    = R0000 + Ri0i0

    = {000,0 000,0 + m0000m m0000m}+{i00,i i0i,0 + m00iim m0ii0m}

    = i00,i i0i,0 + m00iim m0ii0m= i00,i i0i,0 + 000ii0 + j00iij 00ii00 j0ii0j= i0i,0 + 000ii0 j0ii0j= [r0r,0 + 0,0 + 0,0] + 000[rr0 + 0 + 0]

    [(r0r)2 + (0)2 + (0)2]

    = [( aa)0 + 2(

    b

    b)0] +

    d

    d[a

    a+ 2

    b

    b] [( a

    a)2 + 2(

    b

    b)2]

    Ha aa

    ,Hb bb

    R00 = [ ddHa 2 d

    dHb + Ha + H

    2a + 2Hb + 2H

    2b ]

    41

  • (b)

    Rij = Rij

    = R0i0j + Rkikj

    = {0ji,0 00i,j + mij 00m mi00jm}+{kji,k kki,j + mij kkm mikkjm}

    = [0ji,0 00i,j + 0ij000 + lij00l 0i00j0 li00jl]= +[kji,k kki,j + 0ijkk0 + lijkkl 0ikkj0 likkjl]= [0ji,0 +

    0ij

    000 li00jl]

    = +[kji,k kki,j + 0ijkk0 + lijkkl 0ikkj0 likkjl] R0i0j = 0ji,0 + 0ij000 li00jl Rkikj = kji,k kki,j + 0ijkk0 + lijkkl 0ikkj0 likkjl

    i.

    R0i0j = 0ji,0 +

    0ij

    000 li00jl

    R0r0r = 0rr,0 + 0rr000 rr00rr= (

    aa

    d2),0 + (

    aa

    d2)(

    d

    d) ( a

    a)(

    aa

    d2)

    = (aa

    d2),0 + (

    aad

    d3) ( a

    2

    d2)

    R00 = 0,0 + 0000 00= (

    bb

    d2),0 + (

    bb

    d2)(

    d

    d) ( b

    b)(

    bb

    d2)

    = (bb

    d2),0 + (

    bbd

    d3) ( b

    2

    d2)

    R00 = 0,0 + 0000 00= (

    bbf 2

    d2),0 + (

    bbf 2

    d2)(

    d

    d) ( b

    b)(

    bbf 2

    d2)

    = f 2[R00]

    42

  • ii.

    Rkikj = kij,k kki,j + 0ijkk0 + lijkkl 0ikkj0 likkjl

    Rkrkr = Rrrrr + Rrr + Rrr= rrr,r rrr,r + 0rrrr0 + lrrrrl 0rrrr0 lrrrrl

    +rr, r,r + 0rr0 + lrrl 0rr0 lrrl+rr, r,r + 0rr0 + lrrl 0rr0 lrrl

    = 0rr0 +

    0rr

    0

    = (aa

    d2)(

    b

    b+

    b

    b)

    = (2aab

    d2b)

    Rkk = Rrr + R + R= Rrr + R

    = r,r rr, + 0rr0 + lrrl 0rr0 lrrl+, , + 00 + ll 00 ll

    = 0rr0 , + 00 ll

    = (bb

    d2)(

    a

    a) (f,

    f), + (

    bb

    d2)(

    b

    b) (f,

    f)2

    = (bb

    d2)(

    a

    a) + (

    b

    d)2 f,,

    f

    Rkk = Rrr + R + R= Rrr + R

    = r,r rr, + 0rr0 + lrrl 0rr0 lrrl+, , + 00 + ll 00 ll

    = 0rr0 +

    , +

    0

    0 ll

    = (f 2bb

    d2)(

    a

    a) (ff,), + (f 2 bb

    d2)(

    b

    b) (f,

    f)(ff,)

    = f 2[(bb

    d2)(

    a

    a+

    b

    b) f,,

    f]

    43

  • )Rij }: :

    Rrr = R0r0r + R

    krkr

    = (a

    d)2[ d

    dHa + Ha + 2HaHb + H

    2a ]

    R = R00 + R

    krr

    = (b

    d)2[ d

    dHb + Hb + HaHb + 2H

    2b ]

    f,,f

    R = R00 + R

    krr

    = (bf

    d)2[ d

    dHb + Hb + HaHb + 2H

    2b ] ff,,

    44

  • 3. III )0b:

    R = gR

    = g00R00 + grrRrr + g

    R + gR

    = 2 1d2{ dd(Ha + 2Hb) Ha 2Hb 2HaHb H2a 3H2b }+

    2k

    b2

    hence k = f,, f

    4. IV , The vacuum Einstein equation :

    R 12gR = g

    =gj} (component):

    (a) 00 component

    R00 12g00R = g00

    = 1d2

    [H2b + 2HaHb] +k

    d2b2(5.2)

    (b) rr component

    Rrr 12grrR = grr

    = 1d2

    [ dd(2Hb) + 2Hb + 3H

    2b ] +

    k

    b2

    (5.3)

    (c) component

    R 12gR = g

    45

  • = 1d2

    [ dd(Ha + Hb) + Ha + Hb + HaHb + H

    2a + H

    2b ]

    (5.4)

    (d) component

    R 12gR = g

    = 1d2

    [ dd(Ha + Hb) + Ha + Hb + HaHb + H

    2a + H

    2b ]

    (5.5)

    d = 1, BbJ):

    =

    H2b + 2HaHb +kb2

    , 00 component

    2Hb + 3H2b +

    kb2

    , rr component

    Ha + Hb + HaHb + H2a + H

    2b , or component

    (5.6)

    00 component uF Friedmann equation .

    46

  • 5.2 Einstein equation with energy momen-

    tum tensor

    Energy momentum tensor }:

    T 00 = , T 11 = T 22 = T 33 = p p ( 1)

    T 2:

    T = T = p3

    Bb,?"(=gjA::

    R 12gR = g + k24T (5.7)

    k24 = 8G u 4&b.

    47

  • 1. The solution of Einstein equation : T = T g , FJ:

    (a)

    T00 = T00 g00 = ()(d2)

    ;W A.2 00 }Jh Einstein equation B.1 BbJ):

    1

    d2[H2b + 2HaHb] +

    k

    d2b2= + k24

    as d = 1 H2b + 2HaHb +k

    b2= + k24 (5.8)

    (b)

    Trr = Trr grr = pa

    2 = ( 1)a2

    ;W A.3 rr }Jh Einstein equation B.1 BbJ):

    2Hb + 3H2b +

    k

    b2= + k24(1 )

    (5.9)

    (c)

    T = T g = pb

    2 = ( 1)b2

    ;W A.2 }Jh Einstein equation B.1 BbJ):

    Ha + Hb + HaHb + H2a + H

    2b = + k

    24(1 )

    (5.10)

    48

  • (d)

    T = T g = pb

    2f 2 = ( 1)b2f 2

    ;W,}Jh Einstein equation BbJ):

    Ha + Hb + HaHb + H2a + H

    2b = + k

    24(1 )

    (5.11)

    c(Bb)_j:

    H2b + 2HaHb +kb2

    = + k24

    2Hb + 3H2b +

    kb2

    = + k24(1 )Ha + Hb + HaHb + H

    2a + H

    2b = + k

    24(1 )

    49

  • (Zj:

    (a2a2

    )2 + 2(a1a1

    )(a2a2

    ) +k

    a22= + k24 (5.12)

    2a2a2

    + (a2a2

    )2 +k

    a22= + k24(1 )

    (5.13)a1a1

    +a2a2

    + (a1a1

    )(a2a2

    ) = + k24(1 )(5.14)

    b2:

    Ha =a1a1

    , Hb =a2a2

    50

  • 2. Energy conservation Low

    T = 0

    Bb:

    T T ; = T , + T + T

    :

    T = T g T 00 = , T rr = p

    a21, T =

    p

    a22, T =

    p

    a22f2

    FJ:

    T = 0T 0 +rT r +T T = (a) + (b) + (c) + (d)

    (a)

    0T 0 = T 00,0 + T00 + T 00= + (T i0i0 + T

    0000) + (T0000 + T

    0ii0)

    =

    (b)

    rT r = T rr,r + T rr + T rr= 0 + (T 00r0r + T

    0irir) + (Tr00r + T

    riir)

    = T 00r0r + Triir

    51

  • = T 00r0r + Trr0rr

    = a1a1

    +p

    a21a1a1

    = a1a1

    (c)

    T = T , + T + T = 0 + T 000 + T

    0

    = a2a2

    +p

    a22a2a2

    = a2a2

    (d)

    T = T , + T + T = 0 + T 000 + T

    + T + T

    0

    = a2a2

    +p

    a22

    f,f

    +p

    a22

    ff,f 2

    +p

    a22

    f 2a2a2f

    = a2a2

    + pa2a2

    = a2a2

    T = 0T 0 +rT r +T T

    = (a) + (b) + (c) + (d)

    = + a1a1

    + a2a2

    + a2a2

    = 0

    52

  • + (a1a1

    + 2a2a2

    ) = 0 (5.15)

    ;?Ovt: (V = a1a22)

    = 0V , 0 = constant > 0

    53

  • 3. BbJZ Eq5.12 , Eq5.13 , Eq5.14 , :

    d

    dt(V Ha) = V +

    1

    2k240V

    1(2 ) (5.16)d

    dt(V Hb) = V +

    1

    2k240V

    1(2 ) ka1(5.17)

    3H + H2a + 2H2b = V +

    1

    2k240V

    (2 3) (5.18)

    b2:

    Ha =a1a1

    , Hb =a2a2

    , V =1

    3(Ha + 2Hb) =

    V

    3V

    ;Ws_j Eq5.16 , Eq5.17 , V jJA:

    V = 3V +3

    2k240V

    1(2 ) 2ka1 (5.19)

    and

    Ha = H +2

    3VK

    Hb = H 13V

    K

    K =

    ka1dt

    j%}}(:

    V 2 = 3V 2 + 3k240V2 4k

    a1dV (5.20)

    54

  • Bibliography

    [1] L. Randall and R. Sundrum Phys. Rev. Lett. 83 (1999) 3370

    [2] L. Randall and R. Sundrum Phys. Rev. Lett. 83 (1999) 4690

    [3] C.-M Chen, W.F.Kao hep-th/0201188

    [4] A.N. Makaranko, V.V.Obukhov, K.E. Osetrin gr-qc/0301124

    [5] T. Shiromizu, K. Macda and M. Sasaki Phys. Rev. D. 62 024012

    [6] G.F.R Elliis and M.A.H. MacCallum Commun.math.Phys. 12,108 (1969)

    [7] . Grn J. Math. Phys.27(5),May 1986

    [8] Edmond Weber J. Math. Phys.25(11),November 1984

    [9] Gianluca Calcagni hep-ph/0310304 v2 19Nov2003

    [10] Dieter Lorenz H. Phys. A:Math.Gen.15(1982)2997-2999. Printed in

    Great Britain.

    [11] S. Byland and D Scialom Phys. Reveew D 57,10(1998)

    [12] Charles W. Misner,Kip S. Torne And John Archibald

    Wheeler,Gravitation, W.H Freeman and Company Publishers.

    [13] Edward W. Kolb And Michael S. Turner, The Early Universe,Addision-

    Wesley.(1990)

    [14] L. D. Landau And E. M. Lifshitz ,The Classecal Theory Of Fields ,

    Pergamon Press Ltd.

    55

  • [15] Ryan and Shepley ,Homogeneous Relativistic Cosmologies ,Princeton

    University Press Published.(1975)

    [16] Bernard F. Schutz ,A first course in general relativity , Cambridge Uni-

    versity Press Published.(1985)

    [17] Peter Coles And Francesco Lucchin ,COSMOLOGY The Origin and

    Ebolution of Cosmic Structure ,Hohn Wiley and Sons LTD.

    [18] rz,k Bianchi type I , Bianchi type III Kantowski-Sachs

    5, >Fd.

    [19] ?1,S, ~ 20042~,37

    56