Block Diagrams & Signal Flow Graph

Embed Size (px)

DESCRIPTION

................

Citation preview

  • Chapter 3Chapter3

    BlockDiagramsandSignalFlowGraphs

    AutomaticControlSystems,9thEdition

    Farid Golnaraghi Simon Fraser UniversityFaridGolnaraghi,SimonFraserUniversityBenjaminC.Kuo,UniversityofIllinois

    1

  • IntroductionIntroduction

    Inthischapter,wediscussgraphicaltechniquesformodelingcontrolsystemsandtheirunderlyingmathematics.

    WealsoutilizetheblockdiagramreductiontechniquesandtheMasonsgainformulatofindthetransferfunctionoftheoverallcontrolsystem.

    LateroninChapters4and5,weusethematerialpresentedinthischapterandChapter2tofullyp p p ymodelandstudytheperformanceofvariouscontrolsystems.y

    2

  • Objectives of this ChapterObjectivesofthisChapter1. Tostudyblockdiagrams,theircomponents,andtheir

    d l hunderlyingmathematics.

    2. Toobtaintransferfunctionofsystemsthroughblockdiagrami l ti d d timanipulationandreduction.

    3. Tointroducethesignalflowgraphs.

    4 T t bli h ll l b t bl k di d i l4. Toestablishaparallelbetweenblockdiagramsandsignalflowgraphs.

    5 To use Masons gain formula for finding transfer function of5. TouseMason sgainformulaforfindingtransferfunctionofsystems.

    6 To introduce state diagrams6. Tointroducestatediagrams.

    7. TodemonstratetheMATLABtoolsusingcasestudies.

    3

  • 31BLOCKDIAGRAMS

    Block diagrams provide a better understanding of the composition and interconnection of the components of a system. It can be used, together with transfer functions, to describe the cause-and-effect relationships throughout the system.

    Figure31Asimplifiedblockdiagramrepresentationofaheatingsystem.

    4

  • 311TypicalElementsofBlockDiagramsinControlSystems

    The common elements in block diagrams of most control systems include:The common elements in block diagrams of most control systems include:

    Comparators Blocks representing individual component transfer functions, including:oc s ep ese g d v du co po e s e u c o s, c ud g:

    Reference sensor (or input sensor) Output sensor

    Actuator Controller Plant (the component whose variables are to be controlled) Input or reference signals Output signals Disturbance signal Feedback loops

    Figure33Blockdiagramrepresentationofageneralcontrolsystem.

    5

  • Figure34Blockdiagramelementsoftypicalsensingdevicesofcontrolsystems.(a)Subtraction.(b)Addition.(c)Additionandsubtraction.

    6

  • Figure35TimeandLaplacedomainblockdiagrams.

    7

  • EXAMPLE311

    Figure36BlockdiagramsG1(s)andG2(s)connectedinseries.

    8

  • EXAMPLE312

    Figure37BlockdiagramsG1(s)andG2(s)connectedinparallel.

    9

  • Basicblockdiagramofafeedbackcontrolsystem

    Figure 38 Basic block diagram of a feedback control systemFigure38Basicblockdiagramofafeedbackcontrolsystem.

    10

  • Feedback Control System

    R(s) : (reference input), (input), command( ) ( p ),( p ), Y(s) : (output, controlled variable), (response)B(s) : (feedback signal)E(s) :(error signal) actuating signalE(s) : (error signal) actuating signalG(s) : (forward-path transfer function)H(s) : (feedback transfer function, feedback gain)G(s)H(s) : (loop transfer function), (open-loop transfer function)M(s) = Y(s)/R(s) : (closed-loop transfer function, system transfer function)B( ) H( )Y( )B(s)=H(s)Y(s)

    E(s)=R(s) B(s)

    Y(s)=G(s)E(s)=G(s)R(s) G(s)B(s)

    11

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    M(s) = Y(s) / R(s) = G(s) / (1 + G(s)H(s))

  • 312RelationbetweenMathematicalEquationsandBlockDiagrams

    Figure39GraphicalrepresentationofEq.(316)usingacomparator.

    12

  • 13

    Figure312(a)Factorizationof1/stermintheinternalfeedbackloopofFig.311.(b)FinalblockdiagramrepresentationofEq.(317)inLaplacedomain.

  • 14Figure313BlockdiagramofEq.(317)inLaplacedomainwithV(s)representedas

    theoutput.

  • 15

    Figure314(a)Factorizationof.(b)AlternativediagramrepresentationofEq.(317)inLaplacedomain.

    2n

  • 16

    Figure315AblockdiagramrepresentationofEq.(319)inLaplacedomain.

  • 313BlockDiagramReduction:Branchpointrelocation

    17

    Figure316(a)BranchpointrelocationfrompointP to(b)pointQ.

  • 313BlockDiagramReduction:Comparatorrelocation

    18Figure317(a)ComparatorrelocationfromtherighthandsideofblockG2(s)to

    (b)thelefthandsideofblockG2(s).

  • EXAMPLE315Findtheinputoutputtransferfunctionofthesystem

    Figure318(a)Originalblockdiagram.(b)MovingthebranchpointatY1 totheleftofblockG2.(c)CombiningtheblocksG1,G2,andG3.(d)Eliminatingtheinnerfeedbackloop.

    19

  • 20 Figure318(Continued)

  • 314BlockDiagramofMultiInputSystemsSpecialCase:SystemswithaDisturbance

    Figure 319 Block diagram of a system undergoing disturbance.

    21

    Figure3 19Blockdiagramofasystemundergoingdisturbance.

  • Figure320BlockdiagramofthesysteminFig.319whenD(s)=0.

    Figure321BlockdiagramofthesysteminFig.319whenR(s)=0.

    22

  • Figure322Blockdiagramrepresentations ofamultivariablesystem. Figure322Blockdiagramrepresentations ofamultivariablefeedbackcontrolsystem.

    23

  • 24

  • 32SIGNALFLOWGRAPHS(SFGs)

    25

  • SignalFlowGraphs(SFG,) causeandeffect(node)(branch), node(variable) branch(gain).

    [xj=aijxi node branch]

    output= gainxinput ,jthoutput= (gainfrom k toj)x(kthcause)Yj(s)= Gkj(s)Yk(s)

    SFG Terms(Inputnode,Source)

    branch node] x

    SFGTerms

    ] x1(Outputnode,Sink)

    branch node] x26

    ] x4

  • (Gain)branch) x1 x2 branch a21,

    x2 =a21x1+().( :x2/x1 =a21)

    (Path) branch,

    .,,.,, node.) x1 x3 path.

    (Forwardpath) node node path

    ) x1 x4 forwardpath 2.) 1 4 p

    27

  • (Feedbackpath) d h node path.

    Loop,Selfloop(loop),

    node ( branch loop)selfloop.)

    Nontouchingloops

    (Pathgain) h b h i

    g pLoop node loop

    path branchgain.) path: pathgain a21a42

    ( : pathgain a21a42 x4/x1=a21a42) Loopgain

    loop branchgain (loop pathgain)

    28

    )loop: loopgain a23a32

  • 324SFGAlgebra

    Figure329~31Signalflowgraph.

    29

  • 327GainFormulaforSFG

    30

  • M:Thegainbetweeninputnodeyin andoutputnodeyout

    GainFormulaforSFG(Mason'sgainrule)

    g p yin p yout

    M=yout/yin =Mkk / ,k=1, ,N

    ,N:TotalnumberofforwardpathMk :k forwardpath gain : signal flow graph determinant characteristic function :signalflowgraphdeterminant characteristicfunction =1 Li1+Lj2 Lk3+..L = r nontouching loops mth possible combination gain product ( 1 r L )Lmr=rnontouchingloops m possiblecombination gainproduct(1 r L) =1 ( loop)

    +(2 loop)(3 loop) (3 loop)

    +..L=loopsk:kth forwardpath nontouching partk=k graph k b h

    31

    k branch

  • Figure332SignalflowgraphofthefeedbackcontrolsystemshowninFig.38.

    32

  • Figure 333 Signalflow graph for Example 323.

    33

    Figure3 33Signal flowgraphforExample3 2 3.

  • Figure333SignalflowgraphforExample324.34

  • Ex.322M1 =G(s)

    L = G(s)H(s)L11=G(s)H(s)

    1=1 =1+G(s)H(s)

    Closedlooptransferfunction

    M=Y(s) /R(s)=M1 1 / =G(s)/(1+G(s)H(s))

    y2/y1 =

    /

    Ex.324

    y4/y1 =

    * chosenoutput sameN i t d t t d i

    yout/y2 =(yout/yin)/(y2/yin)=(Mkk from yintoyout/ )/(Mkk from yintoy2/ )

    Noninputnode outputnode gain

    =(Mkk from yintoyout)/(Mkk from yin toy2 )

    35

    ( k k yin y2) Ex.325&326

  • 329ApplicationoftheGainFormulatoBlockDiagrams EXAMPLE326

    Figure334(a)Blockdiagramofacontrolsystem.(b)Equivalentsignalflowgraph.36

  • 3 2 10 Simplified Gain Formula3210SimplifiedGainFormula

    37