118
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recap . . . . . . . . . . . . . . Asymptotic Normality . . . . . . . Asymptotic Efficiency . Summary . . Biostatistics 602 - Statistical Inference Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 1 / 33

Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

  • Upload
    others

  • View
    9

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

.

......

Biostatistics 602 - Statistical InferenceLecture 17

Asymptotic Evaluation of Point Estimators

Hyun Min Kang

March 19th, 2013

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 1 / 33

Page 2: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Last Lecture

• What is a Bayes Risk?

• What is the Bayes rule Estimator minimizing squared error loss?• What is the Bayes rule Estimator minimizing absolute error loss?• What are the tools for proving a point estimator is consistent?• Can a biased estimator be consistent?

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 2 / 33

Page 3: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Last Lecture

• What is a Bayes Risk?• What is the Bayes rule Estimator minimizing squared error loss?

• What is the Bayes rule Estimator minimizing absolute error loss?• What are the tools for proving a point estimator is consistent?• Can a biased estimator be consistent?

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 2 / 33

Page 4: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Last Lecture

• What is a Bayes Risk?• What is the Bayes rule Estimator minimizing squared error loss?• What is the Bayes rule Estimator minimizing absolute error loss?

• What are the tools for proving a point estimator is consistent?• Can a biased estimator be consistent?

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 2 / 33

Page 5: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Last Lecture

• What is a Bayes Risk?• What is the Bayes rule Estimator minimizing squared error loss?• What is the Bayes rule Estimator minimizing absolute error loss?• What are the tools for proving a point estimator is consistent?

• Can a biased estimator be consistent?

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 2 / 33

Page 6: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Last Lecture

• What is a Bayes Risk?• What is the Bayes rule Estimator minimizing squared error loss?• What is the Bayes rule Estimator minimizing absolute error loss?• What are the tools for proving a point estimator is consistent?• Can a biased estimator be consistent?

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 2 / 33

Page 7: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Bayes Estimator based on absolute error loss

Suppose that L(θ, θ) = |θ − θ|.

The posterior expected loss is

E[L(θ, θ(x))] =

∫Ω|θ − θ(x)|π(θ|x)dθ

= E[|θ − θ||X = x]

=

∫ θ

−∞−(θ − θ)π(θ|x)dθ +

∫ ∞

θ(θ − θ)π(θ|x)dθ

∂θE[L(θ, θ(x))] =

∫ θ

−∞π(θ|x)dθ −

∫ ∞

θπ(θ|x)dθ = 0

Therefore, θ is posterior median.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 3 / 33

Page 8: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Bayes Estimator based on absolute error loss

Suppose that L(θ, θ) = |θ − θ|. The posterior expected loss is

E[L(θ, θ(x))] =

∫Ω|θ − θ(x)|π(θ|x)dθ

= E[|θ − θ||X = x]

=

∫ θ

−∞−(θ − θ)π(θ|x)dθ +

∫ ∞

θ(θ − θ)π(θ|x)dθ

∂θE[L(θ, θ(x))] =

∫ θ

−∞π(θ|x)dθ −

∫ ∞

θπ(θ|x)dθ = 0

Therefore, θ is posterior median.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 3 / 33

Page 9: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Bayes Estimator based on absolute error loss

Suppose that L(θ, θ) = |θ − θ|. The posterior expected loss is

E[L(θ, θ(x))] =

∫Ω|θ − θ(x)|π(θ|x)dθ

= E[|θ − θ||X = x]

=

∫ θ

−∞−(θ − θ)π(θ|x)dθ +

∫ ∞

θ(θ − θ)π(θ|x)dθ

∂θE[L(θ, θ(x))] =

∫ θ

−∞π(θ|x)dθ −

∫ ∞

θπ(θ|x)dθ = 0

Therefore, θ is posterior median.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 3 / 33

Page 10: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Bayes Estimator based on absolute error loss

Suppose that L(θ, θ) = |θ − θ|. The posterior expected loss is

E[L(θ, θ(x))] =

∫Ω|θ − θ(x)|π(θ|x)dθ

= E[|θ − θ||X = x]

=

∫ θ

−∞−(θ − θ)π(θ|x)dθ +

∫ ∞

θ(θ − θ)π(θ|x)dθ

∂θE[L(θ, θ(x))] =

∫ θ

−∞π(θ|x)dθ −

∫ ∞

θπ(θ|x)dθ = 0

Therefore, θ is posterior median.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 3 / 33

Page 11: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Bayes Estimator based on absolute error loss

Suppose that L(θ, θ) = |θ − θ|. The posterior expected loss is

E[L(θ, θ(x))] =

∫Ω|θ − θ(x)|π(θ|x)dθ

= E[|θ − θ||X = x]

=

∫ θ

−∞−(θ − θ)π(θ|x)dθ +

∫ ∞

θ(θ − θ)π(θ|x)dθ

∂θE[L(θ, θ(x))] =

∫ θ

−∞π(θ|x)dθ −

∫ ∞

θπ(θ|x)dθ = 0

Therefore, θ is posterior median.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 3 / 33

Page 12: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Bayes Estimator based on absolute error loss

Suppose that L(θ, θ) = |θ − θ|. The posterior expected loss is

E[L(θ, θ(x))] =

∫Ω|θ − θ(x)|π(θ|x)dθ

= E[|θ − θ||X = x]

=

∫ θ

−∞−(θ − θ)π(θ|x)dθ +

∫ ∞

θ(θ − θ)π(θ|x)dθ

∂θE[L(θ, θ(x))] =

∫ θ

−∞π(θ|x)dθ −

∫ ∞

θπ(θ|x)dθ = 0

Therefore, θ is posterior median.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 3 / 33

Page 13: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Evaluation of Point EstimatorsWhen the sample size n approaches infinity, the behaviors of an estimatorare unknown as its asymptotic properties.

.Definition - Consistency..

......

Let Wn = Wn(X1, · · · ,Xn) = Wn(X) be a sequence of estimators forτ(θ). We say Wn is consistent for estimating τ(θ) if Wn

P→ τ(θ) underPθ for every θ ∈ Ω.

WnP→ τ(θ) (converges in probability to τ(θ)) means that, given any

ϵ > 0.lim

n→∞Pr(|Wn − τ(θ)| ≥ ϵ) = 0

limn→∞

Pr(|Wn − τ(θ)| < ϵ) = 1

When |Wn − τ(θ)| < ϵ can also be represented that Wn is close to τ(θ).Consistency implies that the probability of Wn close to τ(θ) approaches to1 as n goes to ∞.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 4 / 33

Page 14: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Evaluation of Point EstimatorsWhen the sample size n approaches infinity, the behaviors of an estimatorare unknown as its asymptotic properties..Definition - Consistency..

......

Let Wn = Wn(X1, · · · ,Xn) = Wn(X) be a sequence of estimators forτ(θ). We say Wn is consistent for estimating τ(θ) if Wn

P→ τ(θ) underPθ for every θ ∈ Ω.

WnP→ τ(θ) (converges in probability to τ(θ)) means that, given any

ϵ > 0.lim

n→∞Pr(|Wn − τ(θ)| ≥ ϵ) = 0

limn→∞

Pr(|Wn − τ(θ)| < ϵ) = 1

When |Wn − τ(θ)| < ϵ can also be represented that Wn is close to τ(θ).Consistency implies that the probability of Wn close to τ(θ) approaches to1 as n goes to ∞.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 4 / 33

Page 15: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Evaluation of Point EstimatorsWhen the sample size n approaches infinity, the behaviors of an estimatorare unknown as its asymptotic properties..Definition - Consistency..

......

Let Wn = Wn(X1, · · · ,Xn) = Wn(X) be a sequence of estimators forτ(θ). We say Wn is consistent for estimating τ(θ) if Wn

P→ τ(θ) underPθ for every θ ∈ Ω.

WnP→ τ(θ) (converges in probability to τ(θ)) means that, given any

ϵ > 0.lim

n→∞Pr(|Wn − τ(θ)| ≥ ϵ) = 0

limn→∞

Pr(|Wn − τ(θ)| < ϵ) = 1

When |Wn − τ(θ)| < ϵ can also be represented that Wn is close to τ(θ).Consistency implies that the probability of Wn close to τ(θ) approaches to1 as n goes to ∞.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 4 / 33

Page 16: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Evaluation of Point EstimatorsWhen the sample size n approaches infinity, the behaviors of an estimatorare unknown as its asymptotic properties..Definition - Consistency..

......

Let Wn = Wn(X1, · · · ,Xn) = Wn(X) be a sequence of estimators forτ(θ). We say Wn is consistent for estimating τ(θ) if Wn

P→ τ(θ) underPθ for every θ ∈ Ω.

WnP→ τ(θ) (converges in probability to τ(θ)) means that, given any

ϵ > 0.lim

n→∞Pr(|Wn − τ(θ)| ≥ ϵ) = 0

limn→∞

Pr(|Wn − τ(θ)| < ϵ) = 1

When |Wn − τ(θ)| < ϵ can also be represented that Wn is close to τ(θ).

Consistency implies that the probability of Wn close to τ(θ) approaches to1 as n goes to ∞.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 4 / 33

Page 17: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Evaluation of Point EstimatorsWhen the sample size n approaches infinity, the behaviors of an estimatorare unknown as its asymptotic properties..Definition - Consistency..

......

Let Wn = Wn(X1, · · · ,Xn) = Wn(X) be a sequence of estimators forτ(θ). We say Wn is consistent for estimating τ(θ) if Wn

P→ τ(θ) underPθ for every θ ∈ Ω.

WnP→ τ(θ) (converges in probability to τ(θ)) means that, given any

ϵ > 0.lim

n→∞Pr(|Wn − τ(θ)| ≥ ϵ) = 0

limn→∞

Pr(|Wn − τ(θ)| < ϵ) = 1

When |Wn − τ(θ)| < ϵ can also be represented that Wn is close to τ(θ).Consistency implies that the probability of Wn close to τ(θ) approaches to1 as n goes to ∞.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 4 / 33

Page 18: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Tools for proving consistency

• Use definition (complicated)

• Chebychev’s Inequality

Pr(|Wn − τ(θ)| ≥ ϵ) = Pr((Wn − τ(θ))2 ≥ ϵ2)

≤ E[Wn − τ(θ)]2

ϵ2

=MSE(Wn)

ϵ2=

Bias2(Wn) + Var(Wn)

ϵ2

Need to show that both Bias(Wn) and Var(Wn) converges to zero

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 5 / 33

Page 19: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Tools for proving consistency

• Use definition (complicated)• Chebychev’s Inequality

Pr(|Wn − τ(θ)| ≥ ϵ) = Pr((Wn − τ(θ))2 ≥ ϵ2)

≤ E[Wn − τ(θ)]2

ϵ2

=MSE(Wn)

ϵ2=

Bias2(Wn) + Var(Wn)

ϵ2

Need to show that both Bias(Wn) and Var(Wn) converges to zero

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 5 / 33

Page 20: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Tools for proving consistency

• Use definition (complicated)• Chebychev’s Inequality

Pr(|Wn − τ(θ)| ≥ ϵ) = Pr((Wn − τ(θ))2 ≥ ϵ2)

≤ E[Wn − τ(θ)]2

ϵ2

=MSE(Wn)

ϵ2=

Bias2(Wn) + Var(Wn)

ϵ2

Need to show that both Bias(Wn) and Var(Wn) converges to zero

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 5 / 33

Page 21: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Theorem for consistency

.Theorem 10.1.3..

......

If Wn is a sequence of estimators of τ(θ) satisfying• limn−>∞ Bias(Wn) = 0.• limn−>∞ Var(Wn) = 0.

for all θ, then Wn is consistent for τ(θ)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 6 / 33

Page 22: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Weak Law of Large Numbers

.Theorem 5.5.2..

......

Let X1, · · · ,Xn be iid random variables with E(X) = µ andVar(X) = σ2 < ∞. Then Xn converges in probability to µ.i.e. Xn

P→ µ.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 7 / 33

Page 23: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Consistent sequence of estimators

.Theorem 10.1.5..

......

Let Wn is a consistent sequence of estimators of τ(θ). Let an, bn besequences of constants satisfying

..1 limn→∞ an = 1

..2 limn→∞ bn = 0.

Then Un = anWn + bn is also a consistent sequence of estimators of τ(θ).

.Continuous Map Theorem..

......If Wn is consistent for θ and g is a continuous function, then g(Wn) isconsistent for g(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 8 / 33

Page 24: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Consistent sequence of estimators

.Theorem 10.1.5..

......

Let Wn is a consistent sequence of estimators of τ(θ). Let an, bn besequences of constants satisfying

..1 limn→∞ an = 1

..2 limn→∞ bn = 0.Then Un = anWn + bn is also a consistent sequence of estimators of τ(θ).

.Continuous Map Theorem..

......If Wn is consistent for θ and g is a continuous function, then g(Wn) isconsistent for g(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 8 / 33

Page 25: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Consistent sequence of estimators

.Theorem 10.1.5..

......

Let Wn is a consistent sequence of estimators of τ(θ). Let an, bn besequences of constants satisfying

..1 limn→∞ an = 1

..2 limn→∞ bn = 0.Then Un = anWn + bn is also a consistent sequence of estimators of τ(θ).

.Continuous Map Theorem..

......If Wn is consistent for θ and g is a continuous function, then g(Wn) isconsistent for g(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 8 / 33

Page 26: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example - Exponential Family

.Problem..

......

Suppose X1, · · · ,Xni.i.d.∼ Exponential(β).

..1 Propose a consistent estimator of the median.

..2 Propose a consistent estimator of Pr(X ≤ c) where c is constant.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 9 / 33

Page 27: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example - Exponential Family

.Problem..

......

Suppose X1, · · · ,Xni.i.d.∼ Exponential(β).

..1 Propose a consistent estimator of the median.

..2 Propose a consistent estimator of Pr(X ≤ c) where c is constant.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 9 / 33

Page 28: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example - Exponential Family

.Problem..

......

Suppose X1, · · · ,Xni.i.d.∼ Exponential(β).

..1 Propose a consistent estimator of the median.

..2 Propose a consistent estimator of Pr(X ≤ c) where c is constant.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 9 / 33

Page 29: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Consistent estimator of Pr(X ≤ c)

Pr(X ≤ c) =

∫ c

0

1

βe−x/βdx

= 1− e−c/β

As X is consistent for β, 1− e−c/β is continuous function of β.By continuous mapping Theorem, g(X) = 1− e−c/X is consistent forPr(X ≤ c) = 1− e−c/β = g(β)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 10 / 33

Page 30: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Consistent estimator of Pr(X ≤ c)

Pr(X ≤ c) =

∫ c

0

1

βe−x/βdx

= 1− e−c/β

As X is consistent for β, 1− e−c/β is continuous function of β.By continuous mapping Theorem, g(X) = 1− e−c/X is consistent forPr(X ≤ c) = 1− e−c/β = g(β)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 10 / 33

Page 31: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Consistent estimator of Pr(X ≤ c)

Pr(X ≤ c) =

∫ c

0

1

βe−x/βdx

= 1− e−c/β

As X is consistent for β, 1− e−c/β is continuous function of β.

By continuous mapping Theorem, g(X) = 1− e−c/X is consistent forPr(X ≤ c) = 1− e−c/β = g(β)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 10 / 33

Page 32: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Consistent estimator of Pr(X ≤ c)

Pr(X ≤ c) =

∫ c

0

1

βe−x/βdx

= 1− e−c/β

As X is consistent for β, 1− e−c/β is continuous function of β.By continuous mapping Theorem, g(X) = 1− e−c/X is consistent forPr(X ≤ c) = 1− e−c/β = g(β)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 10 / 33

Page 33: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Consistent estimator of Pr(X ≤ c) - Alternative Method

Define Yi = I(Xi ≤ c). Then Yii.i.d.∼ Bernoulli(p) where p = Pr(X ≤ c).

Y =1

n

n∑i=1

Yi =1

n

n∑i=1

I(Xi ≤ c)

is consistent for p by Law of Large Numbers.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 11 / 33

Page 34: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Consistent estimator of Pr(X ≤ c) - Alternative Method

Define Yi = I(Xi ≤ c). Then Yii.i.d.∼ Bernoulli(p) where p = Pr(X ≤ c).

Y =1

n

n∑i=1

Yi =1

n

n∑i=1

I(Xi ≤ c)

is consistent for p by Law of Large Numbers.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 11 / 33

Page 35: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Consistency of MLEs

.Theorem 10.1.6 - Consistency of MLEs..

......

Suppose Xii.i.d.∼ f(x|θ). Let θ be the MLE of θ, and τ(θ) be a continuous

function of θ. Then under ”regularity conditions” on f(x|θ), the MLE ofτ(θ) (i.e. τ(θ)) is consistent for τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 12 / 33

Page 36: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Normality

.Definition: Asymptotic Normality..

......

A statistic (or an estimator) Wn(X) is asymptotically normal if√

n(Wn − τ(θ))d→N (0, ν(θ))

for all θwhere d→ stands for ”converge in distribution”

• τ(θ) : ”asymptotic mean”• ν(θ) : ”asymptotic variance”

We denote Wn ∼ AN(τ(θ), ν(θ)n

).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 13 / 33

Page 37: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Normality

.Definition: Asymptotic Normality..

......

A statistic (or an estimator) Wn(X) is asymptotically normal if√

n(Wn − τ(θ))d→N (0, ν(θ))

for all θwhere d→ stands for ”converge in distribution”

• τ(θ) : ”asymptotic mean”• ν(θ) : ”asymptotic variance”

We denote Wn ∼ AN(τ(θ), ν(θ)n

).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 13 / 33

Page 38: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Normality

.Definition: Asymptotic Normality..

......

A statistic (or an estimator) Wn(X) is asymptotically normal if√

n(Wn − τ(θ))d→N (0, ν(θ))

for all θwhere d→ stands for ”converge in distribution”

• τ(θ) : ”asymptotic mean”• ν(θ) : ”asymptotic variance”

We denote Wn ∼ AN(τ(θ), ν(θ)n

).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 13 / 33

Page 39: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Central Limit Theorem

.Central Limit Theorem..

......

Assume Xii.i.d.∼ f(x|θ) with finite mean µ(θ) and variance σ2(θ).

X ∼ AN(µ(θ),

σ2(θ)

n

)

⇔√

n(X − µ(θ)

) d→ N (0, σ2(θ))

.Theorem 5.5.17 - Slutsky’s Theorem..

......

If Xnd→ X, Yn

P→ a, where a is a constant,..1 Yn · Xn

d→ aX..2 Xn + Yn

d→ X + a

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 14 / 33

Page 40: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Central Limit Theorem

.Central Limit Theorem..

......

Assume Xii.i.d.∼ f(x|θ) with finite mean µ(θ) and variance σ2(θ).

X ∼ AN(µ(θ),

σ2(θ)

n

)⇔

√n(X − µ(θ)

) d→ N (0, σ2(θ))

.Theorem 5.5.17 - Slutsky’s Theorem..

......

If Xnd→ X, Yn

P→ a, where a is a constant,..1 Yn · Xn

d→ aX..2 Xn + Yn

d→ X + a

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 14 / 33

Page 41: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Central Limit Theorem

.Central Limit Theorem..

......

Assume Xii.i.d.∼ f(x|θ) with finite mean µ(θ) and variance σ2(θ).

X ∼ AN(µ(θ),

σ2(θ)

n

)⇔

√n(X − µ(θ)

) d→ N (0, σ2(θ))

.Theorem 5.5.17 - Slutsky’s Theorem..

......

If Xnd→ X, Yn

P→ a, where a is a constant,

..1 Yn · Xnd→ aX

..2 Xn + Ynd→ X + a

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 14 / 33

Page 42: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Central Limit Theorem

.Central Limit Theorem..

......

Assume Xii.i.d.∼ f(x|θ) with finite mean µ(θ) and variance σ2(θ).

X ∼ AN(µ(θ),

σ2(θ)

n

)⇔

√n(X − µ(θ)

) d→ N (0, σ2(θ))

.Theorem 5.5.17 - Slutsky’s Theorem..

......

If Xnd→ X, Yn

P→ a, where a is a constant,..1 Yn · Xn

d→ aX

..2 Xn + Ynd→ X + a

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 14 / 33

Page 43: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Central Limit Theorem

.Central Limit Theorem..

......

Assume Xii.i.d.∼ f(x|θ) with finite mean µ(θ) and variance σ2(θ).

X ∼ AN(µ(θ),

σ2(θ)

n

)⇔

√n(X − µ(θ)

) d→ N (0, σ2(θ))

.Theorem 5.5.17 - Slutsky’s Theorem..

......

If Xnd→ X, Yn

P→ a, where a is a constant,..1 Yn · Xn

d→ aX..2 Xn + Yn

d→ X + a

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 14 / 33

Page 44: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example - Estimator of Pr(X ≤ c)

Define Yi = I(Xi ≤ c). Then Yii.i.d.∼ Bernoulli(p) where p = Pr(X ≤ c).

Y =1

n

n∑i=1

Yi =1

n

n∑i=1

I(Xi ≤ c)

is consistent for p. Therefore,

1

n

n∑i=1

I(Xi ≤ c) ∼ AN(

E(Y),Var(Y)

n

)= = AN

(p, p(1− p)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 15 / 33

Page 45: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example - Estimator of Pr(X ≤ c)

Define Yi = I(Xi ≤ c). Then Yii.i.d.∼ Bernoulli(p) where p = Pr(X ≤ c).

Y =1

n

n∑i=1

Yi =1

n

n∑i=1

I(Xi ≤ c)

is consistent for p. Therefore,

1

n

n∑i=1

I(Xi ≤ c) ∼ AN(

E(Y),Var(Y)

n

)= = AN

(p, p(1− p)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 15 / 33

Page 46: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example - Estimator of Pr(X ≤ c)

Define Yi = I(Xi ≤ c). Then Yii.i.d.∼ Bernoulli(p) where p = Pr(X ≤ c).

Y =1

n

n∑i=1

Yi =1

n

n∑i=1

I(Xi ≤ c)

is consistent for p. Therefore,

1

n

n∑i=1

I(Xi ≤ c) ∼ AN(

E(Y),Var(Y)

n

)= = AN

(p, p(1− p)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 15 / 33

Page 47: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

Let X1, · · · ,Xn be iid samples with finite mean µ and variance σ2. Define

S2n =

1

n − 1

n∑i=1

(Xi − X)2

By Central Limit Theorem,

Xn ∼ AN(µ,

σ2

n

)⇔

√n(X − µ)

d→ N (0, σ2)

⇔√

n(X − µ)

σ

d→ N (0, 1)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 16 / 33

Page 48: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

Let X1, · · · ,Xn be iid samples with finite mean µ and variance σ2. Define

S2n =

1

n − 1

n∑i=1

(Xi − X)2

By Central Limit Theorem,

Xn ∼ AN(µ,

σ2

n

)

⇔√

n(X − µ)d→ N (0, σ2)

⇔√

n(X − µ)

σ

d→ N (0, 1)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 16 / 33

Page 49: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

Let X1, · · · ,Xn be iid samples with finite mean µ and variance σ2. Define

S2n =

1

n − 1

n∑i=1

(Xi − X)2

By Central Limit Theorem,

Xn ∼ AN(µ,

σ2

n

)⇔

√n(X − µ)

d→ N (0, σ2)

⇔√

n(X − µ)

σ

d→ N (0, 1)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 16 / 33

Page 50: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

Let X1, · · · ,Xn be iid samples with finite mean µ and variance σ2. Define

S2n =

1

n − 1

n∑i=1

(Xi − X)2

By Central Limit Theorem,

Xn ∼ AN(µ,

σ2

n

)⇔

√n(X − µ)

d→ N (0, σ2)

⇔√

n(X − µ)

σ

d→ N (0, 1)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 16 / 33

Page 51: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example (cont’d)

√n(X − µ)

Sn=

σ

Sn

√n(X − µ)

σ

We showed previously S2n

P→ σ2 ⇒ SnP→ σ ⇒ σ/Sn

P→ 1.Therefore, By Slutsky’s Theorem

√n(X−µ)

Sn

P→N (0, 1).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 17 / 33

Page 52: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example (cont’d)

√n(X − µ)

Sn=

σ

Sn

√n(X − µ)

σ

We showed previously S2n

P→ σ2 ⇒ SnP→ σ ⇒ σ/Sn

P→ 1.

Therefore, By Slutsky’s Theorem√

n(X−µ)Sn

P→N (0, 1).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 17 / 33

Page 53: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example (cont’d)

√n(X − µ)

Sn=

σ

Sn

√n(X − µ)

σ

We showed previously S2n

P→ σ2 ⇒ SnP→ σ ⇒ σ/Sn

P→ 1.Therefore, By Slutsky’s Theorem

√n(X−µ)

Sn

P→N (0, 1).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 17 / 33

Page 54: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Delta Method

.Theorem 5.5.24 - Delta Method..

......

Assume Wn ∼ AN(θ, ν(θ)n

). If a function g satisfies g′(θ) = 0, then

g(Wn) ∼ AN(

g(θ), [g′(θ)]2 ν(θ)n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 18 / 33

Page 55: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Delta Method - ExampleX1, · · · ,Xn

i.i.d.∼ Bernoulli(p) where p = 12 , we want to know the

asymptotic distribution of X(1− X).

By central limit Theorem,√

n(Xn − p)√p(1− p)

d→ N (0, 1)

⇔ Xn ∼ AN(

p, p(1− p)n

)Define g(y) = y(1− y), then X(1− X) = g(X).

g′(y) = (y − y2)′ = 1− 2yBy Delta Method,

g(X) = X(1− X) ∼ AN(

g(p), [g′(p)]2 p(1− p)n

)= AN

(p(1− p), (1− 2p)2 p(1− p)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 19 / 33

Page 56: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Delta Method - ExampleX1, · · · ,Xn

i.i.d.∼ Bernoulli(p) where p = 12 , we want to know the

asymptotic distribution of X(1− X). By central limit Theorem,√

n(Xn − p)√p(1− p)

d→ N (0, 1)

⇔ Xn ∼ AN(

p, p(1− p)n

)Define g(y) = y(1− y), then X(1− X) = g(X).

g′(y) = (y − y2)′ = 1− 2yBy Delta Method,

g(X) = X(1− X) ∼ AN(

g(p), [g′(p)]2 p(1− p)n

)= AN

(p(1− p), (1− 2p)2 p(1− p)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 19 / 33

Page 57: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Delta Method - ExampleX1, · · · ,Xn

i.i.d.∼ Bernoulli(p) where p = 12 , we want to know the

asymptotic distribution of X(1− X). By central limit Theorem,√

n(Xn − p)√p(1− p)

d→ N (0, 1)

⇔ Xn ∼ AN(

p, p(1− p)n

)

Define g(y) = y(1− y), then X(1− X) = g(X).g′(y) = (y − y2)′ = 1− 2y

By Delta Method,

g(X) = X(1− X) ∼ AN(

g(p), [g′(p)]2 p(1− p)n

)= AN

(p(1− p), (1− 2p)2 p(1− p)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 19 / 33

Page 58: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Delta Method - ExampleX1, · · · ,Xn

i.i.d.∼ Bernoulli(p) where p = 12 , we want to know the

asymptotic distribution of X(1− X). By central limit Theorem,√

n(Xn − p)√p(1− p)

d→ N (0, 1)

⇔ Xn ∼ AN(

p, p(1− p)n

)Define g(y) = y(1− y), then X(1− X) = g(X).

g′(y) = (y − y2)′ = 1− 2yBy Delta Method,

g(X) = X(1− X) ∼ AN(

g(p), [g′(p)]2 p(1− p)n

)= AN

(p(1− p), (1− 2p)2 p(1− p)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 19 / 33

Page 59: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Delta Method - ExampleX1, · · · ,Xn

i.i.d.∼ Bernoulli(p) where p = 12 , we want to know the

asymptotic distribution of X(1− X). By central limit Theorem,√

n(Xn − p)√p(1− p)

d→ N (0, 1)

⇔ Xn ∼ AN(

p, p(1− p)n

)Define g(y) = y(1− y), then X(1− X) = g(X).

g′(y) = (y − y2)′ = 1− 2y

By Delta Method,

g(X) = X(1− X) ∼ AN(

g(p), [g′(p)]2 p(1− p)n

)= AN

(p(1− p), (1− 2p)2 p(1− p)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 19 / 33

Page 60: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Delta Method - ExampleX1, · · · ,Xn

i.i.d.∼ Bernoulli(p) where p = 12 , we want to know the

asymptotic distribution of X(1− X). By central limit Theorem,√

n(Xn − p)√p(1− p)

d→ N (0, 1)

⇔ Xn ∼ AN(

p, p(1− p)n

)Define g(y) = y(1− y), then X(1− X) = g(X).

g′(y) = (y − y2)′ = 1− 2yBy Delta Method,

g(X) = X(1− X) ∼ AN(

g(p), [g′(p)]2 p(1− p)n

)

= AN(

p(1− p), (1− 2p)2 p(1− p)n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 19 / 33

Page 61: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Delta Method - ExampleX1, · · · ,Xn

i.i.d.∼ Bernoulli(p) where p = 12 , we want to know the

asymptotic distribution of X(1− X). By central limit Theorem,√

n(Xn − p)√p(1− p)

d→ N (0, 1)

⇔ Xn ∼ AN(

p, p(1− p)n

)Define g(y) = y(1− y), then X(1− X) = g(X).

g′(y) = (y − y2)′ = 1− 2yBy Delta Method,

g(X) = X(1− X) ∼ AN(

g(p), [g′(p)]2 p(1− p)n

)= AN

(p(1− p), (1− 2p)2 p(1− p)

n

)Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 19 / 33

Page 62: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Normality

Given a statistic Wn(X), for example X, s2X, e−X

√n(Wn − τ(θ))

d→ N (0, ν(θ)) for all θ

⇐⇒ Wn ∼ AN(τ(θ),

ν(θ)

n

)Tools to show asymptotic normality

..1 Central Limit Theorem

..2 Slutsky Theorem

..3 Delta Method (Theorem 5.5.24)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 20 / 33

Page 63: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Normality

Given a statistic Wn(X), for example X, s2X, e−X

√n(Wn − τ(θ))

d→ N (0, ν(θ)) for all θ

⇐⇒ Wn ∼ AN(τ(θ),

ν(θ)

n

)

Tools to show asymptotic normality..1 Central Limit Theorem..2 Slutsky Theorem..3 Delta Method (Theorem 5.5.24)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 20 / 33

Page 64: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Normality

Given a statistic Wn(X), for example X, s2X, e−X

√n(Wn − τ(θ))

d→ N (0, ν(θ)) for all θ

⇐⇒ Wn ∼ AN(τ(θ),

ν(θ)

n

)Tools to show asymptotic normality

..1 Central Limit Theorem

..2 Slutsky Theorem

..3 Delta Method (Theorem 5.5.24)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 20 / 33

Page 65: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Normality

Given a statistic Wn(X), for example X, s2X, e−X

√n(Wn − τ(θ))

d→ N (0, ν(θ)) for all θ

⇐⇒ Wn ∼ AN(τ(θ),

ν(θ)

n

)Tools to show asymptotic normality

..1 Central Limit Theorem

..2 Slutsky Theorem

..3 Delta Method (Theorem 5.5.24)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 20 / 33

Page 66: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Normality

Given a statistic Wn(X), for example X, s2X, e−X

√n(Wn − τ(θ))

d→ N (0, ν(θ)) for all θ

⇐⇒ Wn ∼ AN(τ(θ),

ν(θ)

n

)Tools to show asymptotic normality

..1 Central Limit Theorem

..2 Slutsky Theorem

..3 Delta Method (Theorem 5.5.24)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 20 / 33

Page 67: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Using Central Limit Theorem

X ∼ AN(µ(θ),

σ2(θ)

n

)where µ(θ) = E(X), and σ2(θ) = Var(X).

For example, in order to get the asymptotic distribution of 1n∑n

i=1 X2i ,

define Yi = X2i , then

1

n

n∑i=1

X2i =

1

n

n∑i=1

Yi = Y

∼ AN(

EY,Var(Y)

n

)∼ AN

(EX2,

Var(X2)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 21 / 33

Page 68: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Using Central Limit Theorem

X ∼ AN(µ(θ),

σ2(θ)

n

)where µ(θ) = E(X), and σ2(θ) = Var(X).For example, in order to get the asymptotic distribution of 1

n∑n

i=1 X2i ,

define Yi = X2i , then

1

n

n∑i=1

X2i =

1

n

n∑i=1

Yi = Y

∼ AN(

EY,Var(Y)

n

)∼ AN

(EX2,

Var(X2)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 21 / 33

Page 69: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Using Central Limit Theorem

X ∼ AN(µ(θ),

σ2(θ)

n

)where µ(θ) = E(X), and σ2(θ) = Var(X).For example, in order to get the asymptotic distribution of 1

n∑n

i=1 X2i ,

define Yi = X2i , then

1

n

n∑i=1

X2i =

1

n

n∑i=1

Yi = Y

∼ AN(

EY,Var(Y)

n

)∼ AN

(EX2,

Var(X2)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 21 / 33

Page 70: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Using Central Limit Theorem

X ∼ AN(µ(θ),

σ2(θ)

n

)where µ(θ) = E(X), and σ2(θ) = Var(X).For example, in order to get the asymptotic distribution of 1

n∑n

i=1 X2i ,

define Yi = X2i , then

1

n

n∑i=1

X2i =

1

n

n∑i=1

Yi = Y

∼ AN(

EY,Var(Y)

n

)

∼ AN(

EX2,Var(X2)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 21 / 33

Page 71: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Using Central Limit Theorem

X ∼ AN(µ(θ),

σ2(θ)

n

)where µ(θ) = E(X), and σ2(θ) = Var(X).For example, in order to get the asymptotic distribution of 1

n∑n

i=1 X2i ,

define Yi = X2i , then

1

n

n∑i=1

X2i =

1

n

n∑i=1

Yi = Y

∼ AN(

EY,Var(Y)

n

)∼ AN

(EX2,

Var(X2)

n

)Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 21 / 33

Page 72: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Using Slutsky Theorem

When Xnd→ X, Yn

P→ a, then..1 YnXn

d→ aX..2 Xn + Yn

d→ X + a.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 22 / 33

Page 73: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Using Delta Method (Theorem 5.5.24)

Assume Wn ∼ AN(θ, ν(θ)n

). If a function g satisfies g′(θ) = 0, then

g(Wn) ∼ AN(

g(θ), [g′(θ)]2 ν(θ)n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 23 / 33

Page 74: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

.Problem..

......

X1, · · · ,Xni.i.d.∼N (µ, σ2) µ = 0

Find the asymptotic distribution of MLE of µ2.

.Solution..

......

..1 It can be easily shown that MLE of µ is X.

..2 By the invariance property of MLE, MLE of µ2 is X2.

..3 By central limit theorem, we know thatX ∼ AN

(µ,

σ2

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 24 / 33

Page 75: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

.Problem..

......

X1, · · · ,Xni.i.d.∼N (µ, σ2) µ = 0

Find the asymptotic distribution of MLE of µ2.

.Solution..

......

..1 It can be easily shown that MLE of µ is X.

..2 By the invariance property of MLE, MLE of µ2 is X2.

..3 By central limit theorem, we know thatX ∼ AN

(µ,

σ2

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 24 / 33

Page 76: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

.Problem..

......

X1, · · · ,Xni.i.d.∼N (µ, σ2) µ = 0

Find the asymptotic distribution of MLE of µ2.

.Solution..

......

..1 It can be easily shown that MLE of µ is X.

..2 By the invariance property of MLE, MLE of µ2 is X2.

..3 By central limit theorem, we know thatX ∼ AN

(µ,

σ2

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 24 / 33

Page 77: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

.Problem..

......

X1, · · · ,Xni.i.d.∼N (µ, σ2) µ = 0

Find the asymptotic distribution of MLE of µ2.

.Solution..

......

..1 It can be easily shown that MLE of µ is X.

..2 By the invariance property of MLE, MLE of µ2 is X2.

..3 By central limit theorem, we know thatX ∼ AN

(µ,

σ2

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 24 / 33

Page 78: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution (cont’d)

.

......

..4 Define g(y) = y2, and apply Delta Method.

g′(y) = 2y

X2 ∼ AN(

g(µ), [g′(µ)]2σ2

n

)∼ AN

(µ2, (2µ)2

σ2

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 25 / 33

Page 79: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution (cont’d)

.

......

..4 Define g(y) = y2, and apply Delta Method.g′(y) = 2y

X2 ∼ AN(

g(µ), [g′(µ)]2σ2

n

)∼ AN

(µ2, (2µ)2

σ2

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 25 / 33

Page 80: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution (cont’d)

.

......

..4 Define g(y) = y2, and apply Delta Method.g′(y) = 2y

X2 ∼ AN(

g(µ), [g′(µ)]2σ2

n

)

∼ AN(µ2, (2µ)2

σ2

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 25 / 33

Page 81: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution (cont’d)

.

......

..4 Define g(y) = y2, and apply Delta Method.g′(y) = 2y

X2 ∼ AN(

g(µ), [g′(µ)]2σ2

n

)∼ AN

(µ2, (2µ)2

σ2

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 25 / 33

Page 82: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can comparetheir asymptotic variance.

.Definition 10.1.16 : Asymptotic Relative Efficiency..

......

If two estimators Wn and Vn satisfy√

n[Wn − τ(θ)]d→N (0, σ2

W)√

n[Vn − τ(θ)]d→N (0, σ2

V)

The asymptotic relative efficiency (ARE) of Vn with respect to Wn is

ARE(Vn,Wn) =σ2

Wσ2

V

If ARE(Vn,Wn) ≥ 1 for every θ ∈ Ω, then Vn is asymptotically moreefficient than Wn.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 26 / 33

Page 83: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can comparetheir asymptotic variance..Definition 10.1.16 : Asymptotic Relative Efficiency..

......

If two estimators Wn and Vn satisfy√

n[Wn − τ(θ)]d→N (0, σ2

W)√

n[Vn − τ(θ)]d→N (0, σ2

V)

The asymptotic relative efficiency (ARE) of Vn with respect to Wn is

ARE(Vn,Wn) =σ2

Wσ2

V

If ARE(Vn,Wn) ≥ 1 for every θ ∈ Ω, then Vn is asymptotically moreefficient than Wn.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 26 / 33

Page 84: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can comparetheir asymptotic variance..Definition 10.1.16 : Asymptotic Relative Efficiency..

......

If two estimators Wn and Vn satisfy√

n[Wn − τ(θ)]d→N (0, σ2

W)√

n[Vn − τ(θ)]d→N (0, σ2

V)

The asymptotic relative efficiency (ARE) of Vn with respect to Wn is

ARE(Vn,Wn) =σ2

Wσ2

V

If ARE(Vn,Wn) ≥ 1 for every θ ∈ Ω, then Vn is asymptotically moreefficient than Wn.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 26 / 33

Page 85: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can comparetheir asymptotic variance..Definition 10.1.16 : Asymptotic Relative Efficiency..

......

If two estimators Wn and Vn satisfy√

n[Wn − τ(θ)]d→N (0, σ2

W)√

n[Vn − τ(θ)]d→N (0, σ2

V)

The asymptotic relative efficiency (ARE) of Vn with respect to Wn is

ARE(Vn,Wn) =σ2

Wσ2

V

If ARE(Vn,Wn) ≥ 1 for every θ ∈ Ω, then Vn is asymptotically moreefficient than Wn.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 26 / 33

Page 86: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

.Problem..

......

Let Xii.i.d.∼ Poisson(λ). consider estimating

Pr(X = 0) = e−λ

Our estimators areWn =

1

n

n∑i=1

I(Xi = 0)

Vn = e−X

Determine which one is more asymptotically efficient estimator.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 27 / 33

Page 87: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

.Problem..

......

Let Xii.i.d.∼ Poisson(λ). consider estimating

Pr(X = 0) = e−λ

Our estimators areWn =

1

n

n∑i=1

I(Xi = 0)

Vn = e−X

Determine which one is more asymptotically efficient estimator.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 27 / 33

Page 88: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

.Problem..

......

Let Xii.i.d.∼ Poisson(λ). consider estimating

Pr(X = 0) = e−λ

Our estimators areWn =

1

n

n∑i=1

I(Xi = 0)

Vn = e−X

Determine which one is more asymptotically efficient estimator.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 27 / 33

Page 89: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Example

.Problem..

......

Let Xii.i.d.∼ Poisson(λ). consider estimating

Pr(X = 0) = e−λ

Our estimators areWn =

1

n

n∑i=1

I(Xi = 0)

Vn = e−X

Determine which one is more asymptotically efficient estimator.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 27 / 33

Page 90: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Vn

Vn(X) = e−X, by CLT,

X ∼ AN (EX,VarX/n) ∼ AN (λ, λ/n)

Define g(y) = e−y, then Vn = g(X) and g′(y) = −e−y. By Delta Method

Vn = e−X ∼ AN(

g(λ), [g′(λ)]2λn

)∼ AN

(e−λ, e−2λλ

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 28 / 33

Page 91: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Vn

Vn(X) = e−X, by CLT,

X ∼ AN (EX,VarX/n) ∼ AN (λ, λ/n)

Define g(y) = e−y, then Vn = g(X) and g′(y) = −e−y. By Delta Method

Vn = e−X ∼ AN(

g(λ), [g′(λ)]2λn

)∼ AN

(e−λ, e−2λλ

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 28 / 33

Page 92: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Vn

Vn(X) = e−X, by CLT,

X ∼ AN (EX,VarX/n) ∼ AN (λ, λ/n)

Define g(y) = e−y, then Vn = g(X) and g′(y) = −e−y. By Delta Method

Vn = e−X ∼ AN(

g(λ), [g′(λ)]2λn

)∼ AN

(e−λ, e−2λλ

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 28 / 33

Page 93: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Vn

Vn(X) = e−X, by CLT,

X ∼ AN (EX,VarX/n) ∼ AN (λ, λ/n)

Define g(y) = e−y, then Vn = g(X) and g′(y) = −e−y. By Delta Method

Vn = e−X ∼ AN(

g(λ), [g′(λ)]2λn

)

∼ AN(

e−λ, e−2λλ

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 28 / 33

Page 94: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Vn

Vn(X) = e−X, by CLT,

X ∼ AN (EX,VarX/n) ∼ AN (λ, λ/n)

Define g(y) = e−y, then Vn = g(X) and g′(y) = −e−y. By Delta Method

Vn = e−X ∼ AN(

g(λ), [g′(λ)]2λn

)∼ AN

(e−λ, e−2λλ

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 28 / 33

Page 95: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Wn

Define Zi = I(Xi = 0)

Wn =1

n

n∑i=1

I(Xi = 0) = Zn

Zi ∼ Bernoulli(E(Z))E(Z) = Pr(X = 0) = e−λ

Var(Z) = e−λ(1− e−λ)

By CLT,

Wn = Zn ∼ AN (E(Z),Var(Z)/n)

∼ AN(

e−λ,e−λ(1− e−λ)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 29 / 33

Page 96: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Wn

Define Zi = I(Xi = 0)

Wn =1

n

n∑i=1

I(Xi = 0) = Zn

Zi ∼ Bernoulli(E(Z))E(Z) = Pr(X = 0) = e−λ

Var(Z) = e−λ(1− e−λ)

By CLT,

Wn = Zn ∼ AN (E(Z),Var(Z)/n)

∼ AN(

e−λ,e−λ(1− e−λ)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 29 / 33

Page 97: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Wn

Define Zi = I(Xi = 0)

Wn =1

n

n∑i=1

I(Xi = 0) = Zn

Zi ∼ Bernoulli(E(Z))

E(Z) = Pr(X = 0) = e−λ

Var(Z) = e−λ(1− e−λ)

By CLT,

Wn = Zn ∼ AN (E(Z),Var(Z)/n)

∼ AN(

e−λ,e−λ(1− e−λ)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 29 / 33

Page 98: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Wn

Define Zi = I(Xi = 0)

Wn =1

n

n∑i=1

I(Xi = 0) = Zn

Zi ∼ Bernoulli(E(Z))E(Z) = Pr(X = 0) = e−λ

Var(Z) = e−λ(1− e−λ)

By CLT,

Wn = Zn ∼ AN (E(Z),Var(Z)/n)

∼ AN(

e−λ,e−λ(1− e−λ)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 29 / 33

Page 99: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Wn

Define Zi = I(Xi = 0)

Wn =1

n

n∑i=1

I(Xi = 0) = Zn

Zi ∼ Bernoulli(E(Z))E(Z) = Pr(X = 0) = e−λ

Var(Z) = e−λ(1− e−λ)

By CLT,

Wn = Zn ∼ AN (E(Z),Var(Z)/n)

∼ AN(

e−λ,e−λ(1− e−λ)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 29 / 33

Page 100: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Wn

Define Zi = I(Xi = 0)

Wn =1

n

n∑i=1

I(Xi = 0) = Zn

Zi ∼ Bernoulli(E(Z))E(Z) = Pr(X = 0) = e−λ

Var(Z) = e−λ(1− e−λ)

By CLT,

Wn = Zn ∼ AN (E(Z),Var(Z)/n)

∼ AN(

e−λ,e−λ(1− e−λ)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 29 / 33

Page 101: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Asymptotic Distribution of Wn

Define Zi = I(Xi = 0)

Wn =1

n

n∑i=1

I(Xi = 0) = Zn

Zi ∼ Bernoulli(E(Z))E(Z) = Pr(X = 0) = e−λ

Var(Z) = e−λ(1− e−λ)

By CLT,

Wn = Zn ∼ AN (E(Z),Var(Z)/n)

∼ AN(

e−λ,e−λ(1− e−λ)

n

)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 29 / 33

Page 102: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Calculating ARE

ARE(Wn,Vn) =e−2λλ/n

e−λ(1− e−λ)/n

eλ(1− e−λ)

eλ − 1

=λ(

1 + λ+ λ2

2 + λ3

3! + · · ·)− 1

≤ 1 (∀λ ≥ 0)

Therefore Wn = 1n∑

I(Xi = 0) is less efficient than Vn (MLE), and AREattains maximum at λ = 0.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 30 / 33

Page 103: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Calculating ARE

ARE(Wn,Vn) =e−2λλ/n

e−λ(1− e−λ)/n

eλ(1− e−λ)

eλ − 1

=λ(

1 + λ+ λ2

2 + λ3

3! + · · ·)− 1

≤ 1 (∀λ ≥ 0)

Therefore Wn = 1n∑

I(Xi = 0) is less efficient than Vn (MLE), and AREattains maximum at λ = 0.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 30 / 33

Page 104: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Calculating ARE

ARE(Wn,Vn) =e−2λλ/n

e−λ(1− e−λ)/n

eλ(1− e−λ)

eλ − 1

=λ(

1 + λ+ λ2

2 + λ3

3! + · · ·)− 1

≤ 1 (∀λ ≥ 0)

Therefore Wn = 1n∑

I(Xi = 0) is less efficient than Vn (MLE), and AREattains maximum at λ = 0.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 30 / 33

Page 105: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Calculating ARE

ARE(Wn,Vn) =e−2λλ/n

e−λ(1− e−λ)/n

eλ(1− e−λ)

eλ − 1

=λ(

1 + λ+ λ2

2 + λ3

3! + · · ·)− 1

≤ 1 (∀λ ≥ 0)

Therefore Wn = 1n∑

I(Xi = 0) is less efficient than Vn (MLE), and AREattains maximum at λ = 0.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 30 / 33

Page 106: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Calculating ARE

ARE(Wn,Vn) =e−2λλ/n

e−λ(1− e−λ)/n

eλ(1− e−λ)

eλ − 1

=λ(

1 + λ+ λ2

2 + λ3

3! + · · ·)− 1

≤ 1 (∀λ ≥ 0)

Therefore Wn = 1n∑

I(Xi = 0) is less efficient than Vn (MLE), and AREattains maximum at λ = 0.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 30 / 33

Page 107: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Solution - Calculating ARE

ARE(Wn,Vn) =e−2λλ/n

e−λ(1− e−λ)/n

eλ(1− e−λ)

eλ − 1

=λ(

1 + λ+ λ2

2 + λ3

3! + · · ·)− 1

≤ 1 (∀λ ≥ 0)

Therefore Wn = 1n∑

I(Xi = 0) is less efficient than Vn (MLE), and AREattains maximum at λ = 0.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 30 / 33

Page 108: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Efficiency.Definition : Asymptotic Efficiency for iid samples..

......

A sequence of estimators Wn is asymptotically efficient for τ(θ) if for allθ ∈ Ω,

√n(Wn − τ(θ))

d→ N(0,

[τ ′(θ)]2

I(θ)

)⇐⇒ Wn ∼ AN

(τ(θ),

[τ ′(θ)]2

nI(θ)

)I(θ) = E

[∂

∂θlog f(X|θ)

2

]

= −E[∂2

∂θ2log f(X|θ)|θ

](if interchangeability holds)

Note: [τ ′(θ)]2

nI(θ) is the C-R bound for unbiased estimators of τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 31 / 33

Page 109: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Efficiency.Definition : Asymptotic Efficiency for iid samples..

......

A sequence of estimators Wn is asymptotically efficient for τ(θ) if for allθ ∈ Ω,√

n(Wn − τ(θ))d→ N

(0,

[τ ′(θ)]2

I(θ)

)

⇐⇒ Wn ∼ AN(τ(θ),

[τ ′(θ)]2

nI(θ)

)I(θ) = E

[∂

∂θlog f(X|θ)

2

]

= −E[∂2

∂θ2log f(X|θ)|θ

](if interchangeability holds)

Note: [τ ′(θ)]2

nI(θ) is the C-R bound for unbiased estimators of τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 31 / 33

Page 110: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Efficiency.Definition : Asymptotic Efficiency for iid samples..

......

A sequence of estimators Wn is asymptotically efficient for τ(θ) if for allθ ∈ Ω,√

n(Wn − τ(θ))d→ N

(0,

[τ ′(θ)]2

I(θ)

)⇐⇒ Wn ∼ AN

(τ(θ),

[τ ′(θ)]2

nI(θ)

)

I(θ) = E[

∂θlog f(X|θ)

2

]

= −E[∂2

∂θ2log f(X|θ)|θ

](if interchangeability holds)

Note: [τ ′(θ)]2

nI(θ) is the C-R bound for unbiased estimators of τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 31 / 33

Page 111: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Efficiency.Definition : Asymptotic Efficiency for iid samples..

......

A sequence of estimators Wn is asymptotically efficient for τ(θ) if for allθ ∈ Ω,√

n(Wn − τ(θ))d→ N

(0,

[τ ′(θ)]2

I(θ)

)⇐⇒ Wn ∼ AN

(τ(θ),

[τ ′(θ)]2

nI(θ)

)I(θ) = E

[∂

∂θlog f(X|θ)

2

]

= −E[∂2

∂θ2log f(X|θ)|θ

](if interchangeability holds)

Note: [τ ′(θ)]2

nI(θ) is the C-R bound for unbiased estimators of τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 31 / 33

Page 112: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Efficiency.Definition : Asymptotic Efficiency for iid samples..

......

A sequence of estimators Wn is asymptotically efficient for τ(θ) if for allθ ∈ Ω,√

n(Wn − τ(θ))d→ N

(0,

[τ ′(θ)]2

I(θ)

)⇐⇒ Wn ∼ AN

(τ(θ),

[τ ′(θ)]2

nI(θ)

)I(θ) = E

[∂

∂θlog f(X|θ)

2

]

= −E[∂2

∂θ2log f(X|θ)|θ

](if interchangeability holds)

Note: [τ ′(θ)]2

nI(θ) is the C-R bound for unbiased estimators of τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 31 / 33

Page 113: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Efficiency.Definition : Asymptotic Efficiency for iid samples..

......

A sequence of estimators Wn is asymptotically efficient for τ(θ) if for allθ ∈ Ω,√

n(Wn − τ(θ))d→ N

(0,

[τ ′(θ)]2

I(θ)

)⇐⇒ Wn ∼ AN

(τ(θ),

[τ ′(θ)]2

nI(θ)

)I(θ) = E

[∂

∂θlog f(X|θ)

2

]

= −E[∂2

∂θ2log f(X|θ)|θ

](if interchangeability holds)

Note: [τ ′(θ)]2

nI(θ) is the C-R bound for unbiased estimators of τ(θ).Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 31 / 33

Page 114: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Efficiency of MLEs.Theorem 10.1.12..

......

Let X1, · · · ,Xn be iid samples from f(x|θ). Let θ denote the MLE of θ.Under same regularity conditions, θ is consistent and asymptoticallynormal for θ, i.e.

√n(θ − θ)

d→ N(0,

1

I(θ)

)for every θ ∈ Ω

And if τ(θ) is continuous and differentiable in θ, then√

n(θ − θ)d→ N

(0,

[τ ′(θ)]

I(θ)

)=⇒ τ(θ) ∼ AN

(τ(θ),

[τ ′(θ)]2

nI(θ)

)Again, note that the asymptotic variance of τ(θ) is Cramer-Rao lowerbound for unbiased estimators of τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 32 / 33

Page 115: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Efficiency of MLEs.Theorem 10.1.12..

......

Let X1, · · · ,Xn be iid samples from f(x|θ). Let θ denote the MLE of θ.Under same regularity conditions, θ is consistent and asymptoticallynormal for θ, i.e.

√n(θ − θ)

d→ N(0,

1

I(θ)

)for every θ ∈ Ω

And if τ(θ) is continuous and differentiable in θ, then√

n(θ − θ)d→ N

(0,

[τ ′(θ)]

I(θ)

)=⇒ τ(θ) ∼ AN

(τ(θ),

[τ ′(θ)]2

nI(θ)

)

Again, note that the asymptotic variance of τ(θ) is Cramer-Rao lowerbound for unbiased estimators of τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 32 / 33

Page 116: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Asymptotic Efficiency of MLEs.Theorem 10.1.12..

......

Let X1, · · · ,Xn be iid samples from f(x|θ). Let θ denote the MLE of θ.Under same regularity conditions, θ is consistent and asymptoticallynormal for θ, i.e.

√n(θ − θ)

d→ N(0,

1

I(θ)

)for every θ ∈ Ω

And if τ(θ) is continuous and differentiable in θ, then√

n(θ − θ)d→ N

(0,

[τ ′(θ)]

I(θ)

)=⇒ τ(θ) ∼ AN

(τ(θ),

[τ ′(θ)]2

nI(θ)

)Again, note that the asymptotic variance of τ(θ) is Cramer-Rao lowerbound for unbiased estimators of τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 32 / 33

Page 117: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Summary

.Today..

......

• Central Limit Theorem• Slutsky Theorem• Delta Method• Asymptotic Relative Efficiency

.Next Lecture..

......• Hypothesis Testing

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 33 / 33

Page 118: Biostatistics 602 - Statistical Inference Lecture 17 …...Lecture 17 Asymptotic Evaluation of Point Estimators Hyun Min Kang March 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . . .Recap

. . . . . . . . . . . . . .Asymptotic Normality

. . . . . . .Asymptotic Efficiency

.Summary

Summary

.Today..

......

• Central Limit Theorem• Slutsky Theorem• Delta Method• Asymptotic Relative Efficiency

.Next Lecture..

......• Hypothesis Testing

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 33 / 33