90
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recap . . . Regularity Condition . . . . . . . . . . Attainability . Summary . . Biostatistics 602 - Statistical Inference Lecture 12 Cramer-Rao Theorem Hyun Min Kang February 19th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 1 / 24

Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

.

......

Biostatistics 602 - Statistical InferenceLecture 12

Cramer-Rao Theorem

Hyun Min Kang

February 19th, 2013

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 1 / 24

Page 2: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Last Lecture

..1 If you know MLE of θ, can you also know MLE of τ(θ) for anyfunction τ?

..2 What are plausible ways to compare between different pointestimators?

..3 What is the best unbiased estimator or uniformly unbiased minimiumvariance estimator (UMVUE)?

..4 What is the Cramer-Rao bound, and how can it be useful to findUMVUE?

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 2 / 24

Page 3: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Last Lecture

..1 If you know MLE of θ, can you also know MLE of τ(θ) for anyfunction τ?

..2 What are plausible ways to compare between different pointestimators?

..3 What is the best unbiased estimator or uniformly unbiased minimiumvariance estimator (UMVUE)?

..4 What is the Cramer-Rao bound, and how can it be useful to findUMVUE?

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 2 / 24

Page 4: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Last Lecture

..1 If you know MLE of θ, can you also know MLE of τ(θ) for anyfunction τ?

..2 What are plausible ways to compare between different pointestimators?

..3 What is the best unbiased estimator or uniformly unbiased minimiumvariance estimator (UMVUE)?

..4 What is the Cramer-Rao bound, and how can it be useful to findUMVUE?

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 2 / 24

Page 5: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Last Lecture

..1 If you know MLE of θ, can you also know MLE of τ(θ) for anyfunction τ?

..2 What are plausible ways to compare between different pointestimators?

..3 What is the best unbiased estimator or uniformly unbiased minimiumvariance estimator (UMVUE)?

..4 What is the Cramer-Rao bound, and how can it be useful to findUMVUE?

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 2 / 24

Page 6: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap : Cramer-Rao inequality.Theorem 7.3.9 : Cramer-Rao Theorem..

......

Let X1, · · · ,Xn be a sample with joint pdf/pmf of fX(x|θ). Suppose W(X)is an estimator satisfying

..1 E[W(X)|θ] = τ(θ), ∀θ ∈ Ω.

..2 Var[W(X)|θ] < ∞.For h(x) = 1 and h(x) = W(x), if the differentiation and integrations areinterchangeable, i.e.

ddθE[h(x)|θ] =

ddθ

∫x∈X

h(x)fX(x|θ)dx =

∫x∈X

h(x) ∂∂θ

fX(x|θ)dx

Then, a lower bound of Var[W(X)|θ] is

Var[W(X)|θ] ≥ [τ ′(θ)]2

E[ ∂∂θ log fX(X|θ)2|θ

]Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 3 / 24

Page 7: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap : Cramer-Rao bound in iid case

.Corollary 7.3.10..

......

If X1, · · · ,Xn are iid samples from pdf/pmf fX(x|θ), and the assumptionsin the above Cramer-Rao theorem hold, then the lower-bound ofVar[W(X)|θ] becomes

Var[W(X)|θ] ≥ [τ ′(θ)]2

nE[ ∂∂θ log fX(X|θ)2|θ

]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 4 / 24

Page 8: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap : Score Function

.Definition: Score or Score Function for X..

......

X1, · · · ,Xni.i.d.∼ fX(x|θ)

S(X|θ) =∂

∂θlog fX(X|θ)

E [S(X|θ)] = 0

Sn(X|θ) =∂

∂θlog fX(X|θ)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 5 / 24

Page 9: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap : Fisher Information Number

.Definition: Fisher Information Number..

......

I(θ) = E[

∂θlog fX(X|θ)

2]= E

[S2(X|θ)

]In(θ) = E

[∂

∂θlog fX(X|θ)

2]

= nE[

∂θlog fX(X|θ)

2]= nI(θ)

The bigger the information number, the more information we have aboutθ, the smaller bound on the variance of unbiased estimates.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 6 / 24

Page 10: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap : Simplified Fisher Information

.Lemma 7.3.11..

......

If fX(x|θ) satisfies the two interchangeability conditionsddθ

∫x∈X

fX(x|θ)dx =

∫x∈X

∂θfX(x|θ)dx

ddθ

∫x∈X

∂θfX(x|θ)dx =

∫x∈X

∂2

∂θ2fX(x|θ)dx

which are true for exponential family, then

I(θ) = E[

∂θlog fX(X|θ)

2]= −E

[∂2

∂θ2log fX(X|θ)

]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 7 / 24

Page 11: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap - Normal Distribution

X1, · · · ,Xni.i.d.∼N (µ, σ2), where σ2 is known.

I(µ) = −E[∂2

∂µ2log fX(X|µ)

]= −E

[∂2

∂µ2log

1√2πσ2

exp(−(X − µ)2

2σ2

)]= −E

[∂2

∂µ2

−1

2log(2πσ2)− (X − µ)2

2σ2

]= −E

[∂

∂µ

2(X − µ)

2σ2

]=

1

σ2

The Cramer-Rao bound for µ is [nI(µ)]−1 = σ2

n = Var(X). Therefore Xattains the Cramer-Rao bound and thus the best unbiased estimator for µ.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 8 / 24

Page 12: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap - Normal Distribution

X1, · · · ,Xni.i.d.∼N (µ, σ2), where σ2 is known.

I(µ) = −E[∂2

∂µ2log fX(X|µ)

]

= −E[∂2

∂µ2log

1√2πσ2

exp(−(X − µ)2

2σ2

)]= −E

[∂2

∂µ2

−1

2log(2πσ2)− (X − µ)2

2σ2

]= −E

[∂

∂µ

2(X − µ)

2σ2

]=

1

σ2

The Cramer-Rao bound for µ is [nI(µ)]−1 = σ2

n = Var(X). Therefore Xattains the Cramer-Rao bound and thus the best unbiased estimator for µ.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 8 / 24

Page 13: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap - Normal Distribution

X1, · · · ,Xni.i.d.∼N (µ, σ2), where σ2 is known.

I(µ) = −E[∂2

∂µ2log fX(X|µ)

]= −E

[∂2

∂µ2log

1√2πσ2

exp(−(X − µ)2

2σ2

)]

= −E[∂2

∂µ2

−1

2log(2πσ2)− (X − µ)2

2σ2

]= −E

[∂

∂µ

2(X − µ)

2σ2

]=

1

σ2

The Cramer-Rao bound for µ is [nI(µ)]−1 = σ2

n = Var(X). Therefore Xattains the Cramer-Rao bound and thus the best unbiased estimator for µ.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 8 / 24

Page 14: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap - Normal Distribution

X1, · · · ,Xni.i.d.∼N (µ, σ2), where σ2 is known.

I(µ) = −E[∂2

∂µ2log fX(X|µ)

]= −E

[∂2

∂µ2log

1√2πσ2

exp(−(X − µ)2

2σ2

)]= −E

[∂2

∂µ2

−1

2log(2πσ2)− (X − µ)2

2σ2

]

= −E[∂

∂µ

2(X − µ)

2σ2

]=

1

σ2

The Cramer-Rao bound for µ is [nI(µ)]−1 = σ2

n = Var(X). Therefore Xattains the Cramer-Rao bound and thus the best unbiased estimator for µ.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 8 / 24

Page 15: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap - Normal Distribution

X1, · · · ,Xni.i.d.∼N (µ, σ2), where σ2 is known.

I(µ) = −E[∂2

∂µ2log fX(X|µ)

]= −E

[∂2

∂µ2log

1√2πσ2

exp(−(X − µ)2

2σ2

)]= −E

[∂2

∂µ2

−1

2log(2πσ2)− (X − µ)2

2σ2

]= −E

[∂

∂µ

2(X − µ)

2σ2

]=

1

σ2

The Cramer-Rao bound for µ is [nI(µ)]−1 = σ2

n

= Var(X). Therefore Xattains the Cramer-Rao bound and thus the best unbiased estimator for µ.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 8 / 24

Page 16: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap - Normal Distribution

X1, · · · ,Xni.i.d.∼N (µ, σ2), where σ2 is known.

I(µ) = −E[∂2

∂µ2log fX(X|µ)

]= −E

[∂2

∂µ2log

1√2πσ2

exp(−(X − µ)2

2σ2

)]= −E

[∂2

∂µ2

−1

2log(2πσ2)− (X − µ)2

2σ2

]= −E

[∂

∂µ

2(X − µ)

2σ2

]=

1

σ2

The Cramer-Rao bound for µ is [nI(µ)]−1 = σ2

n = Var(X).

Therefore Xattains the Cramer-Rao bound and thus the best unbiased estimator for µ.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 8 / 24

Page 17: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Recap - Normal Distribution

X1, · · · ,Xni.i.d.∼N (µ, σ2), where σ2 is known.

I(µ) = −E[∂2

∂µ2log fX(X|µ)

]= −E

[∂2

∂µ2log

1√2πσ2

exp(−(X − µ)2

2σ2

)]= −E

[∂2

∂µ2

−1

2log(2πσ2)− (X − µ)2

2σ2

]= −E

[∂

∂µ

2(X − µ)

2σ2

]=

1

σ2

The Cramer-Rao bound for µ is [nI(µ)]−1 = σ2

n = Var(X). Therefore Xattains the Cramer-Rao bound and thus the best unbiased estimator for µ.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 8 / 24

Page 18: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Example of Cramer-Rao lower bound attainment.Problem..

......X1, · · · ,Xn

i.i.d.∼ Bernoulli(p). Is X the best unbiased estimator of p?Does it attain the Cramer-Rao lower bound?

.Solution..

......

E(X) = p

Var(X) =1

nVar(X) =p(1− p)

n

I(p) = E[

∂θlog fX(X|θ)

2∣∣∣∣∣ p

]

= −E[∂2

∂θ2log fX(X|θ)|p

]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 9 / 24

Page 19: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Example of Cramer-Rao lower bound attainment.Problem..

......X1, · · · ,Xn

i.i.d.∼ Bernoulli(p). Is X the best unbiased estimator of p?Does it attain the Cramer-Rao lower bound?.Solution..

......

E(X) = p

Var(X) =1

nVar(X) =p(1− p)

n

I(p) = E[

∂θlog fX(X|θ)

2∣∣∣∣∣ p

]

= −E[∂2

∂θ2log fX(X|θ)|p

]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 9 / 24

Page 20: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Example of Cramer-Rao lower bound attainment.Problem..

......X1, · · · ,Xn

i.i.d.∼ Bernoulli(p). Is X the best unbiased estimator of p?Does it attain the Cramer-Rao lower bound?.Solution..

......

E(X) = p

Var(X) =1

nVar(X) =p(1− p)

n

I(p) = E[

∂θlog fX(X|θ)

2∣∣∣∣∣ p

]

= −E[∂2

∂θ2log fX(X|θ)|p

]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 9 / 24

Page 21: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Example of Cramer-Rao lower bound attainment.Problem..

......X1, · · · ,Xn

i.i.d.∼ Bernoulli(p). Is X the best unbiased estimator of p?Does it attain the Cramer-Rao lower bound?.Solution..

......

E(X) = p

Var(X) =1

nVar(X) =p(1− p)

n

I(p) = E[

∂θlog fX(X|θ)

2∣∣∣∣∣ p

]

= −E[∂2

∂θ2log fX(X|θ)|p

]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 9 / 24

Page 22: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Example of Cramer-Rao lower bound attainment.Problem..

......X1, · · · ,Xn

i.i.d.∼ Bernoulli(p). Is X the best unbiased estimator of p?Does it attain the Cramer-Rao lower bound?.Solution..

......

E(X) = p

Var(X) =1

nVar(X) =p(1− p)

n

I(p) = E[

∂θlog fX(X|θ)

2∣∣∣∣∣ p

]

= −E[∂2

∂θ2log fX(X|θ)|p

]Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 9 / 24

Page 23: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

fX(x|θ) = px(1− p)1−x

log fX(x|θ) = x log p + (1− x) log(1− p)∂

∂p log fX(x|p) =xp − 1− x

1− p∂2

∂p2 log fX(x|p) = − xp2 − 1− x

(1− p)2

I(p) = −E[− X

p2 − 1− X(1− p)2 |p

]=

pp2 +

1− p(1− p)2 =

1

p +1

1− p =1

p(1− p)

Therefore, the Cramer-Rao bound is 1nI(p) =

p(1−p)n = VarX, and X attains

the Cramer-Rao lower bound, and it is the UMVUE.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 10 / 24

Page 24: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

fX(x|θ) = px(1− p)1−x

log fX(x|θ) = x log p + (1− x) log(1− p)

∂p log fX(x|p) =xp − 1− x

1− p∂2

∂p2 log fX(x|p) = − xp2 − 1− x

(1− p)2

I(p) = −E[− X

p2 − 1− X(1− p)2 |p

]=

pp2 +

1− p(1− p)2 =

1

p +1

1− p =1

p(1− p)

Therefore, the Cramer-Rao bound is 1nI(p) =

p(1−p)n = VarX, and X attains

the Cramer-Rao lower bound, and it is the UMVUE.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 10 / 24

Page 25: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

fX(x|θ) = px(1− p)1−x

log fX(x|θ) = x log p + (1− x) log(1− p)∂

∂p log fX(x|p) =xp − 1− x

1− p

∂2

∂p2 log fX(x|p) = − xp2 − 1− x

(1− p)2

I(p) = −E[− X

p2 − 1− X(1− p)2 |p

]=

pp2 +

1− p(1− p)2 =

1

p +1

1− p =1

p(1− p)

Therefore, the Cramer-Rao bound is 1nI(p) =

p(1−p)n = VarX, and X attains

the Cramer-Rao lower bound, and it is the UMVUE.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 10 / 24

Page 26: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

fX(x|θ) = px(1− p)1−x

log fX(x|θ) = x log p + (1− x) log(1− p)∂

∂p log fX(x|p) =xp − 1− x

1− p∂2

∂p2 log fX(x|p) = − xp2 − 1− x

(1− p)2

I(p) = −E[− X

p2 − 1− X(1− p)2 |p

]=

pp2 +

1− p(1− p)2 =

1

p +1

1− p =1

p(1− p)

Therefore, the Cramer-Rao bound is 1nI(p) =

p(1−p)n = VarX, and X attains

the Cramer-Rao lower bound, and it is the UMVUE.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 10 / 24

Page 27: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

fX(x|θ) = px(1− p)1−x

log fX(x|θ) = x log p + (1− x) log(1− p)∂

∂p log fX(x|p) =xp − 1− x

1− p∂2

∂p2 log fX(x|p) = − xp2 − 1− x

(1− p)2

I(p) = −E[− X

p2 − 1− X(1− p)2 |p

]

=pp2 +

1− p(1− p)2 =

1

p +1

1− p =1

p(1− p)

Therefore, the Cramer-Rao bound is 1nI(p) =

p(1−p)n = VarX, and X attains

the Cramer-Rao lower bound, and it is the UMVUE.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 10 / 24

Page 28: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

fX(x|θ) = px(1− p)1−x

log fX(x|θ) = x log p + (1− x) log(1− p)∂

∂p log fX(x|p) =xp − 1− x

1− p∂2

∂p2 log fX(x|p) = − xp2 − 1− x

(1− p)2

I(p) = −E[− X

p2 − 1− X(1− p)2 |p

]=

pp2 +

1− p(1− p)2 =

1

p +1

1− p =1

p(1− p)

Therefore, the Cramer-Rao bound is 1nI(p) =

p(1−p)n = VarX, and X attains

the Cramer-Rao lower bound, and it is the UMVUE.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 10 / 24

Page 29: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

fX(x|θ) = px(1− p)1−x

log fX(x|θ) = x log p + (1− x) log(1− p)∂

∂p log fX(x|p) =xp − 1− x

1− p∂2

∂p2 log fX(x|p) = − xp2 − 1− x

(1− p)2

I(p) = −E[− X

p2 − 1− X(1− p)2 |p

]=

pp2 +

1− p(1− p)2 =

1

p +1

1− p =1

p(1− p)

Therefore, the Cramer-Rao bound is 1nI(p) =

p(1−p)n = VarX, and X attains

the Cramer-Rao lower bound, and it is the UMVUE.Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 10 / 24

Page 30: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Regularity condition for Cramer-Rao Theorem

ddθ

∫x∈X

h(x)fX(x|θ)dx =

∫x∈X

h(x) ∂∂θ

fX(x|θ)dx

• This regularity condition holds for exponential family.• How about non-exponential family, such as

X1, · · · ,Xni.i.d.∼ Uniform(0, θ)?

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 11 / 24

Page 31: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Regularity condition for Cramer-Rao Theorem

ddθ

∫x∈X

h(x)fX(x|θ)dx =

∫x∈X

h(x) ∂∂θ

fX(x|θ)dx

• This regularity condition holds for exponential family.

• How about non-exponential family, such asX1, · · · ,Xn

i.i.d.∼ Uniform(0, θ)?

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 11 / 24

Page 32: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Regularity condition for Cramer-Rao Theorem

ddθ

∫x∈X

h(x)fX(x|θ)dx =

∫x∈X

h(x) ∂∂θ

fX(x|θ)dx

• This regularity condition holds for exponential family.• How about non-exponential family, such as

X1, · · · ,Xni.i.d.∼ Uniform(0, θ)?

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 11 / 24

Page 33: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Using Leibnitz’s Rule.Leibnitz’s Rule..

......ddθ

∫ b(θ)

a(θ)f(x|θ)dx = f(b(θ)|θ)b′(θ)− f(a(θ)|θ)a′(θ) +

∫ b(θ)

a(θ)

∂θf(x|θ)dx

.Applying to Uniform Distribution..

......

fX(x|θ) = 1/θ

ddθ

∫ θ

0h(x)

(1

θ

)dx =

h(θ)θ

dθdθ − h(0)fX(0|θ)

d0dθ +

∫ θ

0

∂θh(x)

(1

θ

)dx

=∫ θ

0

∂θh(x)

(1

θ

)dx

The interchangeability condition is not satisfied.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 12 / 24

Page 34: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Using Leibnitz’s Rule.Leibnitz’s Rule..

......ddθ

∫ b(θ)

a(θ)f(x|θ)dx = f(b(θ)|θ)b′(θ)− f(a(θ)|θ)a′(θ) +

∫ b(θ)

a(θ)

∂θf(x|θ)dx

.Applying to Uniform Distribution..

......

fX(x|θ) = 1/θ

ddθ

∫ θ

0h(x)

(1

θ

)dx =

h(θ)θ

dθdθ − h(0)fX(0|θ)

d0dθ +

∫ θ

0

∂θh(x)

(1

θ

)dx

=∫ θ

0

∂θh(x)

(1

θ

)dx

The interchangeability condition is not satisfied.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 12 / 24

Page 35: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Using Leibnitz’s Rule.Leibnitz’s Rule..

......ddθ

∫ b(θ)

a(θ)f(x|θ)dx = f(b(θ)|θ)b′(θ)− f(a(θ)|θ)a′(θ) +

∫ b(θ)

a(θ)

∂θf(x|θ)dx

.Applying to Uniform Distribution..

......

fX(x|θ) = 1/θ

ddθ

∫ θ

0h(x)

(1

θ

)dx =

h(θ)θ

dθdθ − h(0)fX(0|θ)

d0dθ +

∫ θ

0

∂θh(x)

(1

θ

)dx

=∫ θ

0

∂θh(x)

(1

θ

)dx

The interchangeability condition is not satisfied.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 12 / 24

Page 36: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Using Leibnitz’s Rule.Leibnitz’s Rule..

......ddθ

∫ b(θ)

a(θ)f(x|θ)dx = f(b(θ)|θ)b′(θ)− f(a(θ)|θ)a′(θ) +

∫ b(θ)

a(θ)

∂θf(x|θ)dx

.Applying to Uniform Distribution..

......

fX(x|θ) = 1/θ

ddθ

∫ θ

0h(x)

(1

θ

)dx =

h(θ)θ

dθdθ − h(0)fX(0|θ)

d0dθ +

∫ θ

0

∂θh(x)

(1

θ

)dx

=∫ θ

0

∂θh(x)

(1

θ

)dx

The interchangeability condition is not satisfied.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 12 / 24

Page 37: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Using Leibnitz’s Rule.Leibnitz’s Rule..

......ddθ

∫ b(θ)

a(θ)f(x|θ)dx = f(b(θ)|θ)b′(θ)− f(a(θ)|θ)a′(θ) +

∫ b(θ)

a(θ)

∂θf(x|θ)dx

.Applying to Uniform Distribution..

......

fX(x|θ) = 1/θ

ddθ

∫ θ

0h(x)

(1

θ

)dx =

h(θ)θ

dθdθ − h(0)fX(0|θ)

d0dθ +

∫ θ

0

∂θh(x)

(1

θ

)dx

=∫ θ

0

∂θh(x)

(1

θ

)dx

The interchangeability condition is not satisfied.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 12 / 24

Page 38: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solving the Uniform Distribution Example

If X1, · · · ,Xni.i.d.∼ Uniform(0, θ), the unbiased estimator of θ is

T(X) =n + 1

n X(n)

E[

n + 1

n X(n)

]= θ

Var[

n + 1

n X(n)

]=

1

n(n + 2)θ2 <

θ2

n

The Cramer-Rao lower bound (if interchangeability condition was met) is1

nI(θ) =θ2

n .

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 13 / 24

Page 39: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solving the Uniform Distribution Example

If X1, · · · ,Xni.i.d.∼ Uniform(0, θ), the unbiased estimator of θ is

T(X) =n + 1

n X(n)

E[

n + 1

n X(n)

]= θ

Var[

n + 1

n X(n)

]=

1

n(n + 2)θ2 <

θ2

n

The Cramer-Rao lower bound (if interchangeability condition was met) is1

nI(θ) =θ2

n .

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 13 / 24

Page 40: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solving the Uniform Distribution Example

If X1, · · · ,Xni.i.d.∼ Uniform(0, θ), the unbiased estimator of θ is

T(X) =n + 1

n X(n)

E[

n + 1

n X(n)

]= θ

Var[

n + 1

n X(n)

]=

1

n(n + 2)θ2 <

θ2

n

The Cramer-Rao lower bound (if interchangeability condition was met) is1

nI(θ) =θ2

n .

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 13 / 24

Page 41: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solving the Uniform Distribution Example

If X1, · · · ,Xni.i.d.∼ Uniform(0, θ), the unbiased estimator of θ is

T(X) =n + 1

n X(n)

E[

n + 1

n X(n)

]= θ

Var[

n + 1

n X(n)

]=

1

n(n + 2)θ2 <

θ2

n

The Cramer-Rao lower bound (if interchangeability condition was met) is1

nI(θ) =θ2

n .

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 13 / 24

Page 42: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

When is the Cramer-Rao Lower Bound Attainable?

It is possible that the value of Cramer-Rao bound may be strictly smallerthan the variance of any unbiased estimator

.Corollary 7.3.15 : Attainment of Cramer-Rao Bound..

......

Let X1, · · · ,Xn be iid with pdf/pmf fX(x|θ), where fX(x|θ) satisfies theassumptions of the Cramer-Rao Theorem. Let L(θ|x) =

∏ni=1 fX(xi|θ)

denote the likelihood function. If W(X) is unbiased for τ(θ), then W(X)attains the Cramer-Rao lower bound if and only if

∂θlog L(θ|x) = Sn(x|θ) = a(θ)[W(X)− τ(θ)]

for some function a(θ).

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 14 / 24

Page 43: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

When is the Cramer-Rao Lower Bound Attainable?

It is possible that the value of Cramer-Rao bound may be strictly smallerthan the variance of any unbiased estimator.Corollary 7.3.15 : Attainment of Cramer-Rao Bound..

......

Let X1, · · · ,Xn be iid with pdf/pmf fX(x|θ), where fX(x|θ) satisfies theassumptions of the Cramer-Rao Theorem.

Let L(θ|x) =∏n

i=1 fX(xi|θ)denote the likelihood function. If W(X) is unbiased for τ(θ), then W(X)attains the Cramer-Rao lower bound if and only if

∂θlog L(θ|x) = Sn(x|θ) = a(θ)[W(X)− τ(θ)]

for some function a(θ).

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 14 / 24

Page 44: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

When is the Cramer-Rao Lower Bound Attainable?

It is possible that the value of Cramer-Rao bound may be strictly smallerthan the variance of any unbiased estimator.Corollary 7.3.15 : Attainment of Cramer-Rao Bound..

......

Let X1, · · · ,Xn be iid with pdf/pmf fX(x|θ), where fX(x|θ) satisfies theassumptions of the Cramer-Rao Theorem. Let L(θ|x) =

∏ni=1 fX(xi|θ)

denote the likelihood function. If W(X) is unbiased for τ(θ), then W(X)attains the Cramer-Rao lower bound if and only if

∂θlog L(θ|x) = Sn(x|θ) = a(θ)[W(X)− τ(θ)]

for some function a(θ).

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 14 / 24

Page 45: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

When is the Cramer-Rao Lower Bound Attainable?

It is possible that the value of Cramer-Rao bound may be strictly smallerthan the variance of any unbiased estimator.Corollary 7.3.15 : Attainment of Cramer-Rao Bound..

......

Let X1, · · · ,Xn be iid with pdf/pmf fX(x|θ), where fX(x|θ) satisfies theassumptions of the Cramer-Rao Theorem. Let L(θ|x) =

∏ni=1 fX(xi|θ)

denote the likelihood function. If W(X) is unbiased for τ(θ), then W(X)attains the Cramer-Rao lower bound if and only if

∂θlog L(θ|x) = Sn(x|θ) = a(θ)[W(X)− τ(θ)]

for some function a(θ).

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 14 / 24

Page 46: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Proof of Corollary 7.3.15

We used Cauchy-Schwarz inequality to prove that[CovW(X),

∂θlog fX(X|θ)

]2≤ Var[W(X)]Var

[∂

∂θlog fX(X|θ)

]

In Cauchy-Schwarz inequality, the equality satisfies if and only if there is alinear relationship between the two variables, that is

∂θlog fX(x|θ) =

∂θlog L(θ|x) = a(θ)W(x) + b(θ)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 15 / 24

Page 47: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Proof of Corollary 7.3.15

We used Cauchy-Schwarz inequality to prove that[CovW(X),

∂θlog fX(X|θ)

]2≤ Var[W(X)]Var

[∂

∂θlog fX(X|θ)

]In Cauchy-Schwarz inequality, the equality satisfies if and only if there is alinear relationship between the two variables, that is

∂θlog fX(x|θ) =

∂θlog L(θ|x) = a(θ)W(x) + b(θ)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 15 / 24

Page 48: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Proof of Corollary 7.3.15 (cont’d)

E[∂

∂θlog fX(X|θ)

]= E [Sn(X|θ)] = 0

E [a(θ)W(X) + b(θ)] = 0

a(θ)E [W(X)] + b(θ) = 0

a(θ)τ(θ) + b(θ) = 0

b(θ) = −a(θ)τ(θ)∂

∂θlog L(θ|x) = a(θ)W(x)− a(θ)τ(θ) = a(θ) [W(x)− τ(θ)]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 16 / 24

Page 49: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Proof of Corollary 7.3.15 (cont’d)

E[∂

∂θlog fX(X|θ)

]= E [Sn(X|θ)] = 0

E [a(θ)W(X) + b(θ)] = 0

a(θ)E [W(X)] + b(θ) = 0

a(θ)τ(θ) + b(θ) = 0

b(θ) = −a(θ)τ(θ)∂

∂θlog L(θ|x) = a(θ)W(x)− a(θ)τ(θ) = a(θ) [W(x)− τ(θ)]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 16 / 24

Page 50: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Proof of Corollary 7.3.15 (cont’d)

E[∂

∂θlog fX(X|θ)

]= E [Sn(X|θ)] = 0

E [a(θ)W(X) + b(θ)] = 0

a(θ)E [W(X)] + b(θ) = 0

a(θ)τ(θ) + b(θ) = 0

b(θ) = −a(θ)τ(θ)∂

∂θlog L(θ|x) = a(θ)W(x)− a(θ)τ(θ) = a(θ) [W(x)− τ(θ)]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 16 / 24

Page 51: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Proof of Corollary 7.3.15 (cont’d)

E[∂

∂θlog fX(X|θ)

]= E [Sn(X|θ)] = 0

E [a(θ)W(X) + b(θ)] = 0

a(θ)E [W(X)] + b(θ) = 0

a(θ)τ(θ) + b(θ) = 0

b(θ) = −a(θ)τ(θ)∂

∂θlog L(θ|x) = a(θ)W(x)− a(θ)τ(θ) = a(θ) [W(x)− τ(θ)]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 16 / 24

Page 52: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Proof of Corollary 7.3.15 (cont’d)

E[∂

∂θlog fX(X|θ)

]= E [Sn(X|θ)] = 0

E [a(θ)W(X) + b(θ)] = 0

a(θ)E [W(X)] + b(θ) = 0

a(θ)τ(θ) + b(θ) = 0

b(θ) = −a(θ)τ(θ)

∂θlog L(θ|x) = a(θ)W(x)− a(θ)τ(θ) = a(θ) [W(x)− τ(θ)]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 16 / 24

Page 53: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Proof of Corollary 7.3.15 (cont’d)

E[∂

∂θlog fX(X|θ)

]= E [Sn(X|θ)] = 0

E [a(θ)W(X) + b(θ)] = 0

a(θ)E [W(X)] + b(θ) = 0

a(θ)τ(θ) + b(θ) = 0

b(θ) = −a(θ)τ(θ)∂

∂θlog L(θ|x) = a(θ)W(x)− a(θ)τ(θ) = a(θ) [W(x)− τ(θ)]

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 16 / 24

Page 54: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Revisiting the Bernoulli Example

.Problem..

......X1, · · · ,Xn

i.i.d.∼ Bernoulli(p). Is X the best unbiased estimator of p?Does it attain the Cramer-Rao lower bound?

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 17 / 24

Page 55: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15

L(p|x) =

n∏i=1

pxi(1− p)1−xi

log L(p|x) = logn∏

i=1

pxi(1− p)1−xi

=n∑

i=1

log[pxi(1− p)1−xi ]

=

n∑i=1

[xi log p + (1− xi) log(1− p)]

= log pn∑

i=1

xi + log(1− p)(n −n∑

i=1

xi)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 18 / 24

Page 56: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15

L(p|x) =

n∏i=1

pxi(1− p)1−xi

log L(p|x) = logn∏

i=1

pxi(1− p)1−xi

=n∑

i=1

log[pxi(1− p)1−xi ]

=

n∑i=1

[xi log p + (1− xi) log(1− p)]

= log pn∑

i=1

xi + log(1− p)(n −n∑

i=1

xi)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 18 / 24

Page 57: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15

L(p|x) =

n∏i=1

pxi(1− p)1−xi

log L(p|x) = logn∏

i=1

pxi(1− p)1−xi

=n∑

i=1

log[pxi(1− p)1−xi ]

=

n∑i=1

[xi log p + (1− xi) log(1− p)]

= log pn∑

i=1

xi + log(1− p)(n −n∑

i=1

xi)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 18 / 24

Page 58: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15

L(p|x) =

n∏i=1

pxi(1− p)1−xi

log L(p|x) = logn∏

i=1

pxi(1− p)1−xi

=n∑

i=1

log[pxi(1− p)1−xi ]

=

n∑i=1

[xi log p + (1− xi) log(1− p)]

= log pn∑

i=1

xi + log(1− p)(n −n∑

i=1

xi)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 18 / 24

Page 59: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15

L(p|x) =

n∏i=1

pxi(1− p)1−xi

log L(p|x) = logn∏

i=1

pxi(1− p)1−xi

=n∑

i=1

log[pxi(1− p)1−xi ]

=

n∑i=1

[xi log p + (1− xi) log(1− p)]

= log pn∑

i=1

xi + log(1− p)(n −n∑

i=1

xi)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 18 / 24

Page 60: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15 (cont’d)

∂p log L(p|x) =

∑ni=1 xip −

n −∑n

i=1 xi1− p

=nxp − n(1− x)

1− p

=(1− p)nx − np(1− x)

p(1− p)

=n(x − p)p(1− p)

= a(p)[W(x)− τ(p)]

where a(p) = np(1−p) , W(x) = x, τ(p) = p. Therefore, X is the best

unbiased estimator for p and attains the Cramer-Rao lower bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 19 / 24

Page 61: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15 (cont’d)

∂p log L(p|x) =

∑ni=1 xip −

n −∑n

i=1 xi1− p

=nxp − n(1− x)

1− p

=(1− p)nx − np(1− x)

p(1− p)

=n(x − p)p(1− p)

= a(p)[W(x)− τ(p)]

where a(p) = np(1−p) , W(x) = x, τ(p) = p. Therefore, X is the best

unbiased estimator for p and attains the Cramer-Rao lower bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 19 / 24

Page 62: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15 (cont’d)

∂p log L(p|x) =

∑ni=1 xip −

n −∑n

i=1 xi1− p

=nxp − n(1− x)

1− p

=(1− p)nx − np(1− x)

p(1− p)

=n(x − p)p(1− p)

= a(p)[W(x)− τ(p)]

where a(p) = np(1−p) , W(x) = x, τ(p) = p. Therefore, X is the best

unbiased estimator for p and attains the Cramer-Rao lower bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 19 / 24

Page 63: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15 (cont’d)

∂p log L(p|x) =

∑ni=1 xip −

n −∑n

i=1 xi1− p

=nxp − n(1− x)

1− p

=(1− p)nx − np(1− x)

p(1− p)

=n(x − p)p(1− p)

= a(p)[W(x)− τ(p)]

where a(p) = np(1−p) , W(x) = x, τ(p) = p. Therefore, X is the best

unbiased estimator for p and attains the Cramer-Rao lower bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 19 / 24

Page 64: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15 (cont’d)

∂p log L(p|x) =

∑ni=1 xip −

n −∑n

i=1 xi1− p

=nxp − n(1− x)

1− p

=(1− p)nx − np(1− x)

p(1− p)

=n(x − p)p(1− p)

= a(p)[W(x)− τ(p)]

where a(p) = np(1−p) , W(x) = x, τ(p) = p. Therefore, X is the best

unbiased estimator for p and attains the Cramer-Rao lower bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 19 / 24

Page 65: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15 (cont’d)

∂p log L(p|x) =

∑ni=1 xip −

n −∑n

i=1 xi1− p

=nxp − n(1− x)

1− p

=(1− p)nx − np(1− x)

p(1− p)

=n(x − p)p(1− p)

= a(p)[W(x)− τ(p)]

where a(p) = np(1−p) , W(x) = x, τ(p) = p.

Therefore, X is the bestunbiased estimator for p and attains the Cramer-Rao lower bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 19 / 24

Page 66: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Method Using Corollary 7.3.15 (cont’d)

∂p log L(p|x) =

∑ni=1 xip −

n −∑n

i=1 xi1− p

=nxp − n(1− x)

1− p

=(1− p)nx − np(1− x)

p(1− p)

=n(x − p)p(1− p)

= a(p)[W(x)− τ(p)]

where a(p) = np(1−p) , W(x) = x, τ(p) = p. Therefore, X is the best

unbiased estimator for p and attains the Cramer-Rao lower bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 19 / 24

Page 67: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Normal distribution example.Problem..

......X1, · · · ,Xn

i.i.d.∼N (µ, σ2). Consider estimating σ2, assuming µ is known.Is Cramer-Rao bound attainable?

.Solution..

......

I(σ2) = −E[

∂2

∂(σ2)2log fX(X|µ, σ)|p

]f(x|µ, σ2) =

1

2πσ2exp

[−(x − µ)2

2σ2

]log f(x|µ, σ2) = −1

2log(2πσ2)− (x − µ)2

2σ2

∂(σ2)log f(x|µ, σ2) = −1

2

1

σ2+

(x − µ)2

2(σ2)2

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 20 / 24

Page 68: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Normal distribution example.Problem..

......X1, · · · ,Xn

i.i.d.∼N (µ, σ2). Consider estimating σ2, assuming µ is known.Is Cramer-Rao bound attainable?.Solution..

......

I(σ2) = −E[

∂2

∂(σ2)2log fX(X|µ, σ)|p

]

f(x|µ, σ2) =1

2πσ2exp

[−(x − µ)2

2σ2

]log f(x|µ, σ2) = −1

2log(2πσ2)− (x − µ)2

2σ2

∂(σ2)log f(x|µ, σ2) = −1

2

1

σ2+

(x − µ)2

2(σ2)2

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 20 / 24

Page 69: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Normal distribution example.Problem..

......X1, · · · ,Xn

i.i.d.∼N (µ, σ2). Consider estimating σ2, assuming µ is known.Is Cramer-Rao bound attainable?.Solution..

......

I(σ2) = −E[

∂2

∂(σ2)2log fX(X|µ, σ)|p

]f(x|µ, σ2) =

1

2πσ2exp

[−(x − µ)2

2σ2

]

log f(x|µ, σ2) = −1

2log(2πσ2)− (x − µ)2

2σ2

∂(σ2)log f(x|µ, σ2) = −1

2

1

σ2+

(x − µ)2

2(σ2)2

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 20 / 24

Page 70: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Normal distribution example.Problem..

......X1, · · · ,Xn

i.i.d.∼N (µ, σ2). Consider estimating σ2, assuming µ is known.Is Cramer-Rao bound attainable?.Solution..

......

I(σ2) = −E[

∂2

∂(σ2)2log fX(X|µ, σ)|p

]f(x|µ, σ2) =

1

2πσ2exp

[−(x − µ)2

2σ2

]log f(x|µ, σ2) = −1

2log(2πσ2)− (x − µ)2

2σ2

∂(σ2)log f(x|µ, σ2) = −1

2

1

σ2+

(x − µ)2

2(σ2)2

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 20 / 24

Page 71: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Normal distribution example.Problem..

......X1, · · · ,Xn

i.i.d.∼N (µ, σ2). Consider estimating σ2, assuming µ is known.Is Cramer-Rao bound attainable?.Solution..

......

I(σ2) = −E[

∂2

∂(σ2)2log fX(X|µ, σ)|p

]f(x|µ, σ2) =

1

2πσ2exp

[−(x − µ)2

2σ2

]log f(x|µ, σ2) = −1

2log(2πσ2)− (x − µ)2

2σ2

∂(σ2)log f(x|µ, σ2) = −1

2

1

σ2+

(x − µ)2

2(σ2)2

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 20 / 24

Page 72: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

∂2

∂(σ2)2log f(x|µ, σ2) =

1

2

1

(σ2)2− 2(x − µ)2

2(σ2)3

I(σ2) = −E[

1

2σ4− 2(x − µ)2

2σ6

]= − 1

2σ4+

1

σ6E[(x − µ)2] = − 1

2σ4+

1

σ6σ2 =

1

2σ4

Cramer-Rao lower bound is 1nI(σ2)

= 2σ4

n . The unbiased estimator ofσ2 = 1

n−1

∑ni=1(xi − x)2, gives

Var(σ2) =2σ4

n − 1>

2σ4

n

So, σ2 does not attain the Cramer-Rao lower-bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 21 / 24

Page 73: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

∂2

∂(σ2)2log f(x|µ, σ2) =

1

2

1

(σ2)2− 2(x − µ)2

2(σ2)3

I(σ2) = −E[

1

2σ4− 2(x − µ)2

2σ6

]

= − 1

2σ4+

1

σ6E[(x − µ)2] = − 1

2σ4+

1

σ6σ2 =

1

2σ4

Cramer-Rao lower bound is 1nI(σ2)

= 2σ4

n . The unbiased estimator ofσ2 = 1

n−1

∑ni=1(xi − x)2, gives

Var(σ2) =2σ4

n − 1>

2σ4

n

So, σ2 does not attain the Cramer-Rao lower-bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 21 / 24

Page 74: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

∂2

∂(σ2)2log f(x|µ, σ2) =

1

2

1

(σ2)2− 2(x − µ)2

2(σ2)3

I(σ2) = −E[

1

2σ4− 2(x − µ)2

2σ6

]= − 1

2σ4+

1

σ6E[(x − µ)2] = − 1

2σ4+

1

σ6σ2 =

1

2σ4

Cramer-Rao lower bound is 1nI(σ2)

= 2σ4

n . The unbiased estimator ofσ2 = 1

n−1

∑ni=1(xi − x)2, gives

Var(σ2) =2σ4

n − 1>

2σ4

n

So, σ2 does not attain the Cramer-Rao lower-bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 21 / 24

Page 75: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

∂2

∂(σ2)2log f(x|µ, σ2) =

1

2

1

(σ2)2− 2(x − µ)2

2(σ2)3

I(σ2) = −E[

1

2σ4− 2(x − µ)2

2σ6

]= − 1

2σ4+

1

σ6E[(x − µ)2] = − 1

2σ4+

1

σ6σ2 =

1

2σ4

Cramer-Rao lower bound is 1nI(σ2)

= 2σ4

n .

The unbiased estimator ofσ2 = 1

n−1

∑ni=1(xi − x)2, gives

Var(σ2) =2σ4

n − 1>

2σ4

n

So, σ2 does not attain the Cramer-Rao lower-bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 21 / 24

Page 76: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

∂2

∂(σ2)2log f(x|µ, σ2) =

1

2

1

(σ2)2− 2(x − µ)2

2(σ2)3

I(σ2) = −E[

1

2σ4− 2(x − µ)2

2σ6

]= − 1

2σ4+

1

σ6E[(x − µ)2] = − 1

2σ4+

1

σ6σ2 =

1

2σ4

Cramer-Rao lower bound is 1nI(σ2)

= 2σ4

n . The unbiased estimator ofσ2 = 1

n−1

∑ni=1(xi − x)2, gives

Var(σ2) =2σ4

n − 1>

2σ4

n

So, σ2 does not attain the Cramer-Rao lower-bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 21 / 24

Page 77: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

∂2

∂(σ2)2log f(x|µ, σ2) =

1

2

1

(σ2)2− 2(x − µ)2

2(σ2)3

I(σ2) = −E[

1

2σ4− 2(x − µ)2

2σ6

]= − 1

2σ4+

1

σ6E[(x − µ)2] = − 1

2σ4+

1

σ6σ2 =

1

2σ4

Cramer-Rao lower bound is 1nI(σ2)

= 2σ4

n . The unbiased estimator ofσ2 = 1

n−1

∑ni=1(xi − x)2, gives

Var(σ2) =2σ4

n − 1>

2σ4

n

So, σ2 does not attain the Cramer-Rao lower-bound.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 21 / 24

Page 78: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Solution (cont’d)

∂2

∂(σ2)2log f(x|µ, σ2) =

1

2

1

(σ2)2− 2(x − µ)2

2(σ2)3

I(σ2) = −E[

1

2σ4− 2(x − µ)2

2σ6

]= − 1

2σ4+

1

σ6E[(x − µ)2] = − 1

2σ4+

1

σ6σ2 =

1

2σ4

Cramer-Rao lower bound is 1nI(σ2)

= 2σ4

n . The unbiased estimator ofσ2 = 1

n−1

∑ni=1(xi − x)2, gives

Var(σ2) =2σ4

n − 1>

2σ4

n

So, σ2 does not attain the Cramer-Rao lower-bound.Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 21 / 24

Page 79: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Is Cramer-Rao lower-bound for σ2 attainable?

L(σ2|x) =

n∏i=1

1√2πσ2

exp[−(xi − µ)2

2σ2

]

log L(σ2|x) = −n2

log(2πσ2)−n∑

i=1

(xi − µ)2

2σ2

∂ log L(σ2|x)∂σ2

= −n2

2πσ2+

n∑i=1

(xi − µ)2

2(σ2)2

= − n2σ2

+

n∑i=1

(xi − µ)2

2σ4

=n2σ4

(∑ni=1(xi − µ)2

n − σ2

)= a(σ2)(W(x)− σ2)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 22 / 24

Page 80: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Is Cramer-Rao lower-bound for σ2 attainable?

L(σ2|x) =

n∏i=1

1√2πσ2

exp[−(xi − µ)2

2σ2

]

log L(σ2|x) = −n2

log(2πσ2)−n∑

i=1

(xi − µ)2

2σ2

∂ log L(σ2|x)∂σ2

= −n2

2πσ2+

n∑i=1

(xi − µ)2

2(σ2)2

= − n2σ2

+

n∑i=1

(xi − µ)2

2σ4

=n2σ4

(∑ni=1(xi − µ)2

n − σ2

)= a(σ2)(W(x)− σ2)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 22 / 24

Page 81: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Is Cramer-Rao lower-bound for σ2 attainable?

L(σ2|x) =

n∏i=1

1√2πσ2

exp[−(xi − µ)2

2σ2

]

log L(σ2|x) = −n2

log(2πσ2)−n∑

i=1

(xi − µ)2

2σ2

∂ log L(σ2|x)∂σ2

= −n2

2πσ2+

n∑i=1

(xi − µ)2

2(σ2)2

= − n2σ2

+

n∑i=1

(xi − µ)2

2σ4

=n2σ4

(∑ni=1(xi − µ)2

n − σ2

)= a(σ2)(W(x)− σ2)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 22 / 24

Page 82: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Is Cramer-Rao lower-bound for σ2 attainable?

L(σ2|x) =

n∏i=1

1√2πσ2

exp[−(xi − µ)2

2σ2

]

log L(σ2|x) = −n2

log(2πσ2)−n∑

i=1

(xi − µ)2

2σ2

∂ log L(σ2|x)∂σ2

= −n2

2πσ2+

n∑i=1

(xi − µ)2

2(σ2)2

= − n2σ2

+

n∑i=1

(xi − µ)2

2σ4

=n2σ4

(∑ni=1(xi − µ)2

n − σ2

)= a(σ2)(W(x)− σ2)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 22 / 24

Page 83: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Is Cramer-Rao lower-bound for σ2 attainable?

L(σ2|x) =

n∏i=1

1√2πσ2

exp[−(xi − µ)2

2σ2

]

log L(σ2|x) = −n2

log(2πσ2)−n∑

i=1

(xi − µ)2

2σ2

∂ log L(σ2|x)∂σ2

= −n2

2πσ2+

n∑i=1

(xi − µ)2

2(σ2)2

= − n2σ2

+

n∑i=1

(xi − µ)2

2σ4

=n2σ4

(∑ni=1(xi − µ)2

n − σ2

)

= a(σ2)(W(x)− σ2)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 22 / 24

Page 84: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Is Cramer-Rao lower-bound for σ2 attainable?

L(σ2|x) =

n∏i=1

1√2πσ2

exp[−(xi − µ)2

2σ2

]

log L(σ2|x) = −n2

log(2πσ2)−n∑

i=1

(xi − µ)2

2σ2

∂ log L(σ2|x)∂σ2

= −n2

2πσ2+

n∑i=1

(xi − µ)2

2(σ2)2

= − n2σ2

+

n∑i=1

(xi − µ)2

2σ4

=n2σ4

(∑ni=1(xi − µ)2

n − σ2

)= a(σ2)(W(x)− σ2)

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 22 / 24

Page 85: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Is Cramer-Rao lower-bound for σ2 attainable? (cont’d)

Therefore,..1 If µ is known, the best unbiased estimator for σ2 is

∑ni=1(xi − µ)2/n,

and it attains the Cramer-Rao lower bound, i.e.

Var[∑n

i=1(Xi − µ)2

n

]=

2σ4

n

..2 If µ is not known, the Cramer-Rao lower-bound cannot be attained.At this point, we do not know if σ2 = 1

n−1

∑ni=1(xi − x)2 is the best

unbiased estimator for σ2 or not.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 23 / 24

Page 86: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Is Cramer-Rao lower-bound for σ2 attainable? (cont’d)

Therefore,..1 If µ is known, the best unbiased estimator for σ2 is

∑ni=1(xi − µ)2/n,

and it attains the Cramer-Rao lower bound, i.e.

Var[∑n

i=1(Xi − µ)2

n

]=

2σ4

n

..2 If µ is not known, the Cramer-Rao lower-bound cannot be attained.At this point, we do not know if σ2 = 1

n−1

∑ni=1(xi − x)2 is the best

unbiased estimator for σ2 or not.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 23 / 24

Page 87: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Is Cramer-Rao lower-bound for σ2 attainable? (cont’d)

Therefore,..1 If µ is known, the best unbiased estimator for σ2 is

∑ni=1(xi − µ)2/n,

and it attains the Cramer-Rao lower bound, i.e.

Var[∑n

i=1(Xi − µ)2

n

]=

2σ4

n

..2 If µ is not known, the Cramer-Rao lower-bound cannot be attained.

At this point, we do not know if σ2 = 1n−1

∑ni=1(xi − x)2 is the best

unbiased estimator for σ2 or not.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 23 / 24

Page 88: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Is Cramer-Rao lower-bound for σ2 attainable? (cont’d)

Therefore,..1 If µ is known, the best unbiased estimator for σ2 is

∑ni=1(xi − µ)2/n,

and it attains the Cramer-Rao lower bound, i.e.

Var[∑n

i=1(Xi − µ)2

n

]=

2σ4

n

..2 If µ is not known, the Cramer-Rao lower-bound cannot be attained.At this point, we do not know if σ2 = 1

n−1

∑ni=1(xi − x)2 is the best

unbiased estimator for σ2 or not.

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 23 / 24

Page 89: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Summary

.Today : Cramero-Rao Theorem..

......

• Recap of Cramer-Rao Theorem and Corollary• Examples with Simple Distributions• Regularity Condition• Attainability

.Next Lecture..

...... • Rao-Blackwell Theorem

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 24 / 24

Page 90: Biostatistics 602 - Statistical Inference Lecture 12 … › w › images › 5 › 58 › Bios602-wi13...Recap. . . Regularity Condition. . . . . . . . . . Attainability. Summary

..........

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

.....

.....

......

.....

......

.....

.....

.

. . . . . . . . .Recap

. . .Regularity Condition

. . . . . . . . . .Attainability

.Summary

Summary

.Today : Cramero-Rao Theorem..

......

• Recap of Cramer-Rao Theorem and Corollary• Examples with Simple Distributions• Regularity Condition• Attainability

.Next Lecture..

...... • Rao-Blackwell Theorem

Hyun Min Kang Biostatistics 602 - Lecture 12 February 19th, 2013 24 / 24