75
Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Embed Size (px)

Citation preview

Page 1: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Biogeochemical modelling

Corinne Le Quéré

University of East Anglia and the British Antarctic Survey

Page 2: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

• project the future

• test hypothesis (e.g. CLAW)

• quantify feedbacks

• formalize your ideas e.g. FCO2 = kg·(∆pCO2)

Page 3: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

SOLAS Science

Page 4: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Model dimensions:

0D FCO2 = kg·(∆pCO2)

1D depth/height

2D depth/height + latitude

3D depth/height + latitude + longitude

4D depth/height + latitude + longitude + time

Page 5: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Outline of lecture:

1. Introduction

2. Chemical processes

3. Biological processes

4. Physical processes

5. Model evaluation and benchmarking

6. One example (ocean CO2 sink)

7. The modeller’s psychology

Page 6: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Outline of lecture:

1. IntroductionIntroduction

2. Chemical processes

3. Biological processesBiological processes

4. Physical processesPhysical processes

5. Model evaluation and benchmarkingModel evaluation and benchmarking

6. One example (ocean CO2 sink)One example (ocean CO2 sink)

7. The modeller’s psychologyThe modeller’s psychology

Page 7: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

SOLAS Science

Page 8: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

• known processes

• measured species

• derived rates

Parameterisation of chemical processes are 0-Dimensional:

Page 9: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Typical chemical processes in the atmosphere:

1. ozone

2. NOx

3. hydrocarbon (Volatile Organic Carbon)

4. OH-

5. aerosols

6. CO, CH4

Page 10: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

NOx AND VOC processes (D. Jacobs)

Emission

NOh (420 nm)

NO2

HNO3

1 day

NITROGEN OXIDES (NOx) VOLATILE ORGANIC COMPOUNDS (VOC)

Emission

VOC

OHHCHOh (340 nm)

hoursCO

hours

BOUNDARYLAYER

~ 2 km

Deposition

Page 11: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Tropospheric ozone processes (D. Jacobs)

O3

O2h

O3

OH HO2

h, H2O

Deposition

NO

H2O2

CO, VOC

NO2

h

STRATOSPHERE

TROPOSPHERE

8-18 km

Page 12: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

!================================================================= !

! The decay for CH4 is calculated by: ! OH + CH4 -> CH3 + H2O ! k = 2.45E-12 exp(-1775/T) ! ! This is from JPL '97. JPL '00 does not revise '97 value. (jsw) !================================================================= DO L = 1, MAXVAL( LPAUSE ) DO J = 1, JJPAR DO I = 1, IIPAR ! Only consider tropospheric boxes IF ( L < LPAUSE(I,J) ) THEN

!jsw Is it all right that I'm using ! 24-hr avg temperature to calc. rate coeff.? KRATE = 2.45d-12 * EXP( -1775d0 / Tavg(I,J,L) )

! Conversion from [kg/box] --> [molec/cm3] ! [kg CH4/box] * [box/cm3] * XNUMOL_CH4 [molec CH4/kg CH4] STT2GCH4 = 1d0 / AIRVOL(I,J,L) / 1d6 * XNUMOL_CH4

! CH4 in [molec/cm3] GCH4 = STT(I,J,L,1) * STT2GCH4

! Sum loss in TCH4(3) (molecules/box) TCH4(I,J,L,3) = TCH4(I,J,L,3)+ & ( GCH4 * BOXVL(I,J,L) * KRATE * BOH(I,J,L) * DT )

! Calculate new CH4 value: [CH4]=[CH4](1-k[OH]*delt) GCH4 = GCH4 * ( 1d0 - KRATE * BOH(I,J,L) * DT )

! Convert back from [molec/cm3] --> [kg/box] STT(I,J,L,1) = GCH4 / STT2GCH4

ENDIF ENDDO ENDDO ENDDO

example of model

code from GEOS-

CHEM

Page 13: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Typical chemical processes in the ocean:

1. C cycle (CO2, CO32-,HCO3

-,CaCO3,H2CO3)

2. pH

3. Si cycle (SiO2 to Si(OH)4-)

4. Fe cycle (Fe3+ to Fe2+)

5. photochemistry (degration of Organic C by light)

Page 14: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

The Fe cycle in the oceans

Fe(III)L

Fe2+

Fe3+

pFe

dissolved Fe

P, B

organic or inorganic

sedimentationCoagulationDissociation

L

growth

hμ = photoreduction

dissolved, colloidal

Page 15: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

carbon cycle

CO2

CO2 + H2O + CO2-3 2HCO-

3

chemical reactions

90

numbers in PgC/yr

atmosphere

ocean

Page 16: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

! Set volumetric solubility constants for co2 in mol/l*atm (Weiss, 1974)! ------------------------------------------------------------------------------------! c00 = -58.0931 c01 = 90.5069 c02 = 22.2940 c03 = 0.027766 c04 = -0.025888 c05 = 0.0050578!! ln(k0) of solubility of co2 (eq. 12, Weiss, 1974)! ---------------------------------------------------------! cek0 = c00+c01/qtt+c02*zqtt+sal*(c03+c04*qtt+c05*qtt2) ak0 = exp(cek0) * smicr!! this is Wanninkhof (1992) equation 8 (with chemical enhancement), in cm/h! -------------------------------------------------------------------------! kgwanin(ji,jj) = (0.3*ws*ws + 2.5*(0.5246+ttc*(0.016256+ttc*0.00049946)))!! convert from cm/h to m/s and apply ice cover! --------------------------------------------! kgwanin(ji,jj) = kgwanin(ji,jj) /100./3600. * (1-freeze(ji,jj))

! Set Schmit constants! --------------------------------------------------------------------------

schmico2 = 2073.1-125.62*ttc+3.6276*ttc**2-0.043126*ttc**3!! compute gas exchange kg in mol/m2/yr/uatm! --------------------------------------------------------------------------

gasex = kgwanin * (660/schmico2)**0.5 kg = gasex * ak0 * 1.e3 * (3600.*24.*365.25)

example of model

code for CO2 gas

exchange

formulation

Page 17: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Outline of lecture:

1. IntroductionIntroduction

2. CChemicalhemical processes processes

3. Biological processes

4. PhysicalPhysical processes processes

5. Model evaluation and benchmarkingModel evaluation and benchmarking

6. One example (ocean CO2 sink)One example (ocean CO2 sink)

7. The modeller’s psychologyThe modeller’s psychology

Page 18: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

SOLAS Science

Page 19: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Typical biological processes in the ocean:

1. phytoplankton growth

2. zooplankton grazing

3. bacterial remineralisation

4. particulate dynamics

Page 20: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

• poorly known processes

• some measured rates

• vertical transport of particles

Parameterisation of biological processes are 1-Dimensional:

Page 21: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

carbon cycle

45

34

CO2

CO2 + H2O + CO2-3 2HCO-

3

chemical reactions

90

numbers in PgC/yr

biological activity

11

atmosphere

ocean

Page 22: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

surface

mixed layer depth

atmosphere

100 m

biological activity

Page 23: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

real surface

atmosphere

100 m

biological activity

Page 24: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

phyto-plankton

pico-autotrophs

N2-fixers

calcifiers

DMS-producersmixed

silicifiers

Primary Production

45 PgC/y

what they do

Page 25: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

phyto-plankton

pico-autotrophs

N2-fixers

calcifiers

DMS-producersmixed

silicifiers

what they do

these bloom

Page 26: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

phyto-plankton

pico-autotrophs

N2-fixers

calcifiers

DMS-producersmixed

silicifiers

what they do

these form shells

Page 27: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

phyto-plankton

pico-autotrophs

N2-fixers

calcifiers

DMS-producersmixed

silicifiers

what they do

these respond to

pH

Page 28: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

phyto-plankton

pico-autotrophs

N2-fixers

calcifiers

DMS-producersmixed

silicifiers

what they do

these float

Page 29: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

phyto-plankton

pico-autotrophs

N2-fixers

calcifiers

DMS-producersmixed

silicifiers

what they need

Fe P N

Fe P N

Fe P NFe P NFe P N

Fe P N Si

Page 30: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Respiration

34 PgC/y

Primary Production

45 PgC/y

pico-heterotrophsbacteria

phyto-plankton

pico-autotrophs

N2-fixers

calcifiers

DMS-producers

mixed

silicifiers

zoo-plankton

proto

meso

macro

Page 31: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Respiration

34 PgC/ypico-heterotrophsbacteria

zoo-plankton

proto

meso

macro

what they do

Page 32: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

pico-heterotrophsbacteria

zoo-plankton

proto

meso

macro

what they do

these control blooms

Page 33: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

pico-heterotrophsbacteria

zoo-plankton

proto

meso

macro

what they do

these produce big

feacal pellets

Page 34: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

pico-heterotrophsbacteria

zoo-plankton

proto

meso

macro

what they need

F O O D

F O O D

F O O D

F O O D

Page 35: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

time scale

a few +1 days

a few days

Page 36: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

NO3

NH4

Si

DICFe

PO4

light

T

predation

mortality, sedimentation

environment

biogeochemistry

biology

maximum growth rate

phytoplankton growth

Page 37: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

gro

wth

rate

(1/d

)

temperature (˚C)

pico phytoplankton

diatoms

micro zooplankton

meso zooplankton

Page 38: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

gro

wth

rate

(1/d

)

temperature (˚C)

pico phytoplankton

diatoms

micro zooplankton

meso zooplankton

Page 39: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Modelling strategy:

diagnostic models (Najjar et al., 1992; OCMIP2 1998-200)

Pt

max 0, Pobs Pmod

biogeochemical models (Maier-Reimer et al., 1990-1993)

Pt

r g T g EP2

KP P

ecosystem models (Fasham et al., 1993)

N P

ZD

Calcifiers

PO4Fe

Nutrient Phytoplankton Zooplankton Detritus

(NPZD)

Dynamic Green Ocean Models

(DGOM)

Page 40: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

!! Evolution of Mesozooplankton! ------------------------! trn(ji,jj,jk,jpmes) = trn(ji,jj,jk,jpmes) & & +mesoge(ji,jj,jk)*gramet(ji,jj,jk) & & -tortz2(ji,jj,jk)-respz2(ji,jj,jk)!! Evolution of DOC! ----------------! trn(ji,jj,jk,jpdoc) = trn(ji,jj,jk,jpdoc) & & +rn_sigpoc*orem(ji,jj,jk)-olimi(ji,jj,jk) & & +grarem(ji,jj,jk)*(1.-rn_sigmic)+grarem2(ji,jj,jk) & & *(1.-rn_sigmes)-xaggdoc(ji,jj,jk)-xaggdoc2(ji,jj,jk)& & +depdoc(ji,jj,jk)!! Evolution of POC! ------------------------------------------------------------------! trn(ji,jj,jk,jpgoc) = trn(ji,jj,jk,jpgoc) & & +grapoc2(ji,jj,jk)+resphy(ji,jj,jk,jpdia,1)+xagg(ji,jj,jk) & & +tortz2(ji,jj,jk)-orem2(ji,jj,jk)-grazgoc(ji,jj,jk) & & +xaggdoc2(ji,jj,jk) & & +(sinking2(ji,jj,jk)-sinking2(ji,jj,jk+1))/e3t_0(jk)!! Evolution of dissolved IRON! ------------------------------------------------------------------! trn(ji,jj,jk,jpfer) = trn(ji,jj,jk,jpfer)- & & xbactfer(ji,jj,jk)+ferat3*( & & respz2(ji,jj,jk)+respz(ji,jj,jk))+grafer(ji,jj,jk) & & +grafer2(ji,jj,jk)+ofer(ji,jj,jk) & & +(1.-rn_siggoc)*ofer2(ji,jj,jk) & & -xscave(ji,jj,jk)+irondep(ji,jj,jk) & & +depfer(ji,jj,jk)-xaggdfe(ji,jj,jk)!

example of model

code from PlankTOM

ecosystem model

Page 41: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Outline of lecture:

1. IntroductionIntroduction

2. CChemicalhemical processes processes

3. BiologicalBiological processes processes

4. Physical processes

5. Model evaluation and benchmarkingModel evaluation and benchmarking

6. One example (ocean CO2 sink)One example (ocean CO2 sink)

7. The modeller’s psychologyThe modeller’s psychology

Page 42: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

SOLAS Science

Page 43: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Typical physical processes in the atmosphere and ocean:

1. advection

2. diffusion

3. mixing

4. convection

Page 44: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

• well known processes with physical equations

• difficult to represent because of size of grid

• sub-grid scale parameterisations developed and tuned to give reasonable physical transport

Parameterisation of physical processes are 3-Dimensional:

Page 45: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

convection and horizontal advection

Page 46: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

vertical advection

Page 47: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Eddies and mixing

Page 48: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

! Horizontal advective fluxes ! ----------------------------- ! ! =============== DO jk = 1, jpkm1 ! Horizontal slab ! ! =============== DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ! upstream indicator zcofi = MAX( zind(ji+1,jj,jk), zind(ji,jj,jk) ) zcofj = MAX( zind(ji,jj+1,jk), zind(ji,jj,jk) ) ! volume fluxes * 1/2

zfui = 0.5 * e2u(ji,jj) * pun(ji,jj,jk) zfvj = 0.5 * e1v(ji,jj) * pvn(ji,jj,jk)

! centered scheme zcenut = zfui * ( tn(ji,jj,jk) + tn(ji+1,jj ,jk) ) zcenvt = zfvj * ( tn(ji,jj,jk) + tn(ji ,jj+1,jk) ) zcenus = zfui * ( sn(ji,jj,jk) + sn(ji+1,jj ,jk) ) zcenvs = zfvj * ( sn(ji,jj,jk) + sn(ji ,jj+1,jk) ) END DO END DO ! Tracer flux divergence at t-point added to the general trend ! -------------------------------------------------------------- DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt.

zbtr = btr2(ji,jj) ! horizontal advective trends

zta = - zbtr * ( zwx(ji,jj,jk) - zwx(ji-1,jj ,jk) & & + zwy(ji,jj,jk) - zwy(ji ,jj-1,jk) ) zsa = - zbtr * ( zww(ji,jj,jk) - zww(ji-1,jj ,jk) & & + zwz(ji,jj,jk) - zwz(ji ,jj-1,jk) ) ! add it to the general tracer trends ta(ji,jj,jk) = ta(ji,jj,jk) + zta sa(ji,jj,jk) = sa(ji,jj,jk) + zsa END DO END DO !

example of model

code from NEMO

ocean physical model

Page 49: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

carbon cycle

45

34

physical transport

11

33

CO2

CO2 + H2O + CO2-3 2HCO-

3

chemical reactions

90

numbers in PgC/yr

biological activity

11

atmosphere

ocean

Page 50: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Outline of lecture:

1. IntroductionIntroduction

2. CChemicalhemical processes processes

3. BiologicalBiological processes processes

4. PhysicalPhysical processes processes

5. Model evaluation and benchmarking

6. One example (ocean CO2 sink)One example (ocean CO2 sink)

7. The modeller’s psychologyThe modeller’s psychology

Page 51: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

validation: process of checking if something satisfies

a certain criterion

evaluation: systematic determination of merit, worth

and significance of something using criteria against a

set of standards

benchmarking: process of comparing the quality of a

product to another that is widely considered to be a

standard. Benchmarking provides a snapshot of the

performance of your model, and helps to keep track

of model evalution.

Page 52: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

41.e-5

Example benchmark for marine carbon cycle model:

• CO2 sink in 1990 between 1.8-2.6 PgC/y

• export of carbon between 9-12 PgC/y

• primary production between 40-70 PgC/y

• CO2 variability in equatorial Pacific between 0.6-1.0 PgC

• mezo-zooplankton grazing << micro-zooplankton grazing

• all phytoplankton biomass > 0.02 PgC

• no phytoplankton biomass dominate globally

Page 53: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Carbon-cycle model intercomparison Project (OCMIP)

visual evaluation of model results

Page 54: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

formal evaluation of model results using a Taylor

diagram

Carbon-cycle model intercomparison Project (OCMIP)

Page 55: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Model Bias

100*

D

MDPbias

M: Model Results

D: Observational Data

-50

-40

-30

-20

-10

0

10

20

30

40

50

% M

odel

Bia

s Excellent

Excellent

Very Good

Very Good

Good

Good

Poor

Poor

Page 56: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Cost functions

D

MD

nCF

1

N: Number of Observations

D: Observational Data

σD: Standard deviation Data

CF < 1 = very good,1–2 = good,

2–5 = reasonable,>5 = poor

OSPAR Commission (1998).

CF < 1 = very good, 1–2 = good,

2–3 = reasonable, >3 = poor

Radach and Moll (2006).

0

0.2

0.4

0.6

0.8

1

1.2

Cos

t Fun

ctio

n

Very Good

Good

examples: ERSEMCourtesy of I.Allen

Page 57: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Model efficiency

2

2

1

DD

MDME

D: Observational Data

D_bar: Mean of Data

M: Model Results

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Mod

el E

ffici

ency

Excellent

No Skill

Poor

Very Good

Good

Page 58: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Outline of lecture:

1. IntroductionIntroduction

2. CChemicalhemical processes processes

3. BiologicalBiological processes processes

4. PhysicalPhysical processes processes

5. Model evaluation and benchmarkingModel evaluation and benchmarking

6. One example (ocean CO2 sink)

7. The modeller’s psychologyThe modeller’s psychology

Page 59: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

carbon cycle

45

34

physical transport

11

33

CO2

CO2 + H2O + CO2-3 2HCO-

3

chemical reactions

90

numbers in PgC/yr

biological activity

11

atmosphere

ocean

Page 60: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Smith and Reynolds 2005 and IPCC 2007

water

energy

winds

observed warming trend 1979-2005

Page 61: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

physical transport

chemical reactions

ocean

biological activity

Page 62: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

sea-air CO2 flux anomaly

Page 63: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

• PISCES-T ecosystem model • 2 phyto, 2 zoo., 2 sinking particles• limitation by Fe, P, and Si• initialise with observations in 1948

(Buitenhuis et al., GBC 2006)

OPA model

• OPA General Circulation model • 0.5-1.5ox2o resolution• 31 vertical levels • calculated vertical mixing• NCEP daily forcing

Page 64: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

• PISCES-T ecosystem model • 2 phyto, 2 zoo., 2 sinking particles• limitation by Fe, P, and Si• initialise with observations in 1948

(Buitenhuis et al., GBC 2006)

OPA model

• OPA General Circulation model • 0.5-1.5ox2o resolution• 31 vertical levels • calculated vertical mixing• NCEP daily forcing for year 1967

Page 65: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Change in Southern Ocean CO2 sink in model

real forcing

Page 66: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

real forcing

1967 forcing

Change in Southern Ocean CO2 sink in model

changes in winds

Page 67: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

Outline of lecture:

1. IntroductionIntroduction

2. CChemicalhemical processes processes

3. BiologicalBiological processes processes

4. PhysicalPhysical processes processes

5. Model evaluation and benchmarkingModel evaluation and benchmarking

6. One example (ocean COOne example (ocean CO22 sink) sink)

7. The modeller’s psychology

Page 68: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

truth

time

The modeller‘s psychology

Page 69: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

truth

time

illusion (everybody is happy)

Page 70: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

truth

illusion (everybody is happy)

time

Page 71: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

truth

time

chaos (everybody is

happy)

illusion (everybody is happy)

Page 72: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

truth

illusion (everybody is happy)

chaos (everybody is

happy)

relief (need a new job)

time

Page 73: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

truth

illusion (everybody is happy)

chaos (everybody is

happy)

relief (need a new job)

climate modelsland ecosystem

modelsocean biogeochemistr

y models

climate models

time

Page 74: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey

• do your best, but simplify to answer your question

• use benchmarking to

• i) validate, and

• ii) follow improvements in your model

• EVERYTHING must make sense

Putting it all together:

Page 75: Biogeochemical modelling Corinne Le Quéré University of East Anglia and the British Antarctic Survey