21
Bioactive Hydrogels for Implantable Biosensors Gusphyl Justin, Abdur Rub Abdur Rahman, Anthony Guiseppi-Elie Center for Bioelectronics, Biosensors and Biochips (C3B) Department of Chemical and Biomolecular Engineering, and Department of Bioengineering, College of Engineering and Science, Clemson University Clemson, South Carolina 29634 [email protected] url=http://www.biochips.org

Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

  • Upload
    halien

  • View
    217

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Bioactive Hydrogels for Implantable Biosensors

Gusphyl Justin, Abdur Rub Abdur Rahman, Anthony Guiseppi-Elie

Center for Bioelectronics, Biosensors and Biochips (C3B)Department of Chemical and Biomolecular Engineering, and

Department of Bioengineering, College of Engineering and Science, Clemson University

Clemson, South Carolina [email protected] url=http://www.biochips.org

Page 2: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

AcknowledgmentsClemson C3B ConsortiumClemson C3B ConsortiumDoDDoD USAMRMC PRMRP PRMRP

Undergraduates:Stephen FinleyAmber SmithLaura BrewerRyan GeorgianaDavid CochranRyan TrullBrad GordonNyan WinElizabeth HorahanMahammed AshrafCarolina FunkeyChris Nixon

Graduates:Ali BoztasAshwin RaoSheena Abraham Vandana GuptaJerome EdmonsonG. Scott TaylorBrad MagrumLouise LingerfeltGopakumar SethuramanMichael ZavatskyRachel Kahn

Post Docs:Gusphyl Justin, Ph.D.Abdur Rub Abdur Rahman, Ph.D.Marta Plonska, Ph.D.Walter Torres, Ph.D.Shufeng Liu, Ph.D.Sean I. Brahim, Ph.D.Marin Gheorghe, Ph.D.Chenghong Lei, Ph.D. High School Students

Lauren KochMatthew Sebastian

Special thanks:Dr. Kenneth ChristensenDepartment of ChemistryClemson University

Page 3: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Implantable biosensors for glucose and lactate monitoring in trauma victims

Page 4: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

PSMBioChip Biotransducer Prototype

1

2

Page 5: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

50x

Counterelectrode

Referenceelectrode

Workingelectrode

50 µm

Sense Region 1(Lactate)

Sense Region 2(Glucose)

4 m

m

2 mm

(a) (b)

MDEA 5037 comprises 50 micron microdiscs, which number 37

Page 6: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Proteins do not foul the surface of cells.Chapman, et al. (1984) suggested this was due the phosphorylcholine (PC) head group.Mimic the structural composition of a cell membrane by incorporating PC-containing moieties into polyHEMA-based hydrogels – “Biomimicry”

Molecular Engineering Based on Biomimicry to Achieve Implant “Stealth”

C

CH 3

OCO

CH 2

CH 2

O P

O -

O CH 2 CH 2 N +

O CH 3

CH 3

CH 3

CH 2

2-Methacryloyloxyethyl Phosphorylcholine (MPC)

Hayward J. A., Chapman D. “Biomembrane surfaces as models for polymer design: the potential for haemocompatibility”Biomaterials (1984) 4:135-142. Durrani A. A., Hayward J. A., Chapman D. “Biomembranes as models for polymer surfaces” Biomaterials (1986) 7:121-125

Membrane bi-layer

Page 7: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Structure of the final bioactive composite

membrane containing covalently attached

enzyme

Guiseppi-Elie et al. J. Macromol. Sci. -Pure and App.Chem.(2001) A38(12), 1575.

CCH3

OC

OH

O

CH2

CH2

CH2

CH2 CCH3

OC

OHCH2

CH2

O

CCH3

OCO

CH2

CH2

CH2

CH2

OC O

CH2

CH2

N

CH2

CCH

OCH2 C

CH3

OC

OH

O

CH2

CH2

CH2 COC

O

CH2

CH2

OC O

CH2 CCH3

OCO

CH2

CH2

O PO-

O CH2 CH2 N+

CH3

CH3

CH3

CH2 CH2

CCH3

OC

OH

O

CH2

CH2

CH2

CH2 CH2

O

C

H

C

OC

O

CH2

CH2

CH3

CH3

CH2

CH2

CH2

H

NH

CH2 CCH3

OC

OH

O

CH2

CH2

CH2

C OO

OCH2

CH2

C O

CCH3

OCO

CH2

CH2

O PO-

O CH2 CH2 N+

O CH3

CH3

CH3

CH2COCCH2 CH2C

CH3

CH2

CH2

CH2

NH

C OO

OCH2

CH2

C O

OCCH

O

CH2

CH2

O

H

CH2CH2

O

H

N H

NH

Ox

200

4

110PEGMA MPCHEMA

TEGDA

MPB

Page 8: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Muscle

Area of Moderate Fibrosis and inflammation with foamy histocytesaround the site where hydrogel was placed

Residual area of Hemorrhage

Area where hydrogel existed

A

Muscle

Rim of new connective tissueforming a capsule and some residual inflammation around hydrogel

Residual area of Hemorrhage

Hydrogel

B

In-vivo Implantation in Sprague DawleyHemorrhage Model

After implantation for 2 weeks in the trapezius muscle

1 mol % MPC

un-modified p(HEMA)

Significant encapsulation and accumulation of foreign body material

Thin band of encapsulation and much reduced residual inflammation

Page 9: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

HMF viability and infiltration as a function of PEG and PC content of 3% crosslinked p(HEMA) hydrogel

Retention of human muscle fibroblasts as a function of hydrogel composition

Viability of human muscle fibroblasts as a function of hydrogel composition

Human Muscle Fibroblasts (HMF)ATCC Designation: SJCRH30 [RC 13, RMS 13, SJRH30]; CRL-2061

Growth Properties: AdherentMorphology: fibroblastOrganism: Homo sapiens (human)Tissue: Muscle, metastatic site

Central Composite Design

Page 10: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Hydration percentage as a function of hydrogel composition

Hydration as a function of PEG and PC content of 3% crosslinked p(HEMA) hydrogel

100 x W

W-W hydration of Degreedry

drywet =

Page 11: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

02468

101214161820

0 0.2 0.4 0.6 0.8 1

Relative hydration w.r.t. p(HEMA)

Rel

ativ

e ce

ll re

tent

ion

w.r.

tp(

HE

MA

)0 mol% PEGMA0.25 mol% PEGMA0.5 mol% PEGMA

Correlation of cell retention and hydration -- relative to pure 3% crosslinked p(HEMA) polymer.

Cell (HMF) retention as

a function of hydration

d1

Page 12: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Slide 11

d1 The hysteresis is used to plot the correlation between hydration and dynamic contact angle because 1) there are only 6 points (6 formulations were used)2) in the advancing and receding data there are is one point that does not follow the trend and hence throws the graph off the plot.glad, 5/8/2005

Page 13: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

STEP 1: Surface derivatization

Glass

O

Si

NH2

CH2

CH2

CH2

O

Si

CH2

CH2

CH2

O

NH2

O O O

Si

NH2

CH2

CH2

CH2

O

Si

CH2

CH2

CH2

O

NH2

O O

Acryloyl-PEG(n=110)-NHS ester

CH

CO

O CH2 O N

O

O

H2C CH2 CO

O110

OSi

NHCH

CO

O CH2 OH2C CH2 CO

CH2

CH2

CH2

OSiCH2

CH2

CH2

O

NH2

O O

N

O

O

OH

+110STEP 2:

Surface functionalization

CC H3

OC

O H

O

CH2

C H2

CH2

CH2 C

OC

O

C H2

C H2

CH3

C H2 COCC H2

OH

O

CH2

CH2

200

C

H

OCO

CH2

CH2

CH2

O

OC

O

Si

NH

CH2

CH2

C H2

O

Si

CH2

CH2

C H2

O

NH2

CCH3

OC

O H

O

CH2

CH2

O O

O

P O CH2 C H2 N+

O CH3

C H3

C H3O-

COCC H2

OCCH

O

CH2

CH2

O

H

CH2

4

CH3

CH2

110

CH2

PEGMA

MPC

HEMA

TEGDA

Partial hydrogel structure

C

CH3

OCO

CH2

CH2

O P

O-

O CH2 CH2 N+

O CH3

CH3

CH3

CH2CCH 3

OC

O H

O

CH 2

CH 2

CH 2

HEMA TEGDA PEGMA

STEP 3:UV irradiationλ= 366 nm,

10 min, Ar blanket

Methacrylate monomer cocktail

PIDMPA

CH2

O

C

CH

HC

OC

O

CH2

CH2

CH2

O

CCH3

OC

O

CH2

CH2

CH2

OH 200 MPC

STEP 1: Surface derivatization

Glass

O

Si

NH2

CH2

CH2

CH2

O

Si

CH2

CH2

CH2

O

NH2

O O

STEP 1: Surface derivatization

Glass

O

Si

NH2

CH2

CH2

CH2

O

Si

CH2

CH2

CH2

O

NH2

O O O

Si

NH2

CH2

CH2

CH2

O

Si

CH2

CH2

CH2

O

NH2

O O

O

Si

NH2

CH2

CH2

CH2

O

Si

CH2

CH2

CH2

O

NH2

O O

Acryloyl-PEG(n=110)-NHS ester

CH

CO

O CH2 O N

O

O

H2C CH2 CO

OCH

CO

O CH2 O N

O

O

H2C CH2 CO

O110

OSi

NHCH

CO

O CH2 OH2C CH2 CO

CH2

CH2

CH2

OSiCH2

CH2

CH2

O

NH2

O O

N

O

O

OH

+110

OSi

NHCH

CO

O CH2 OH2C CH2 CO

CH2

CH2

CH2

OSiCH2

CH2

CH2

O

NH2

OSi

NHCH

CO

O CH2 OH2C CH2 CO

CH2

CH2

CH2

OSiCH2

CH2

CH2

O

NH2

O OO OO O

N

O

O

OH

+110STEP 2:

Surface functionalization

CC H3

OC

O H

O

CH2

C H2

CH2

CH2 C

OC

O

C H2

C H2

CH3

C H2 COCC H2

OH

O

CH2

CH2

200

C

H

OCO

CH2

CH2

CH2

O

OC

O

Si

NH

CH2

CH2

C H2

O

Si

CH2

CH2

C H2

O

NH2

CCH3

OC

O H

O

CH2

CH2

O O

O

P O CH2 C H2 N+

O CH3

C H3

C H3O-

COCC H2

OCCH

O

CH2

CH2

O

H

CH2

4

CH3

CH2

110

CH2

PEGMA

MPC

HEMA

TEGDA

Partial hydrogel structure

C

CH3

OCO

CH2

CH2

O P

O-

O CH2 CH2 N+

O CH3

CH3

CH3

CH2CCH 3

OC

O H

O

CH 2

CH 2

CH 2

HEMA TEGDA PEGMA

STEP 3:UV irradiationλ= 366 nm,

10 min, Ar blanket

Methacrylate monomer cocktail

PIDMPA

CH2

O

C

CH

HC

OC

O

CH2

CH2

CH2

O

CCH3

OC

O

CH2

CH2

CH2

OH 200 MPC

Substrate surface modification, derivatization, monomer casting and hydrogel synthesis

Sheena Abraham, Sean Brahim, Kazuhiko Ishihara and Anthony Guiseppi-Elie “Molecularly engineered hydrogels for implant biocompatibility” Biomaterials (2005), 26(23), 4767-4778.

Page 14: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

0.30

0.35

0.40

0.45

0.50

0.55

0.60

48 50 52 54 56 58 60 62Potential (mV)

Nor

mal

ized

Cur

rent

(µA

)

hydrogel coateduncoated

0 .05 .0

1 0 .01 5 .02 0 .02 5 .03 0 .03 5 .0

4 5 5 0 5 5 6 0 6 5P o te n t ia l (m V ) v s . A g /A g C l

Cur

rent

(nA

)

∆I

ν2IC DL

∆=

Cyclic voltammetry in Tris/KCl (pH 7.2)

Page 15: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

-40

-20

0

20

40

60

0 200 400 600 800Potential (mV) vs. Ag/AgCl

Cur

rent

Den

sity

(µA

/cm

2 )

-400

-200

0

200

400

600

0 200 400 600 800Potential (mV) vs. Ag/AgCl

Cur

rent

Den

sity

(µA

/cm

2 )

-400

-200

0

200

400

600

0 200 400 600 800Potential (mV) vs Ag/AgCl

Cur

rent

den

sity

(µA

/cm

2 )

A B

C

Ferrocene-ferrocenium oxidation-reduction at microdisc electrode arrays (MDEAs)

MDEA 050

MDEA 050 + hydrogel

MDEA 5037

Page 16: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Chemical structure, electrochemical and electrical properties of conducting electroactive polypyrrole films

E (V) vs. SCE-1.0 -0.5 0.0 0.5 1.0

Con

duct

ivity

(S/c

m)

1e-6

1e-5

1e-4

1e-3

1e-2

cath

odic

I

(mA

)

anod

ic-0.6

-0.4

-0.2

0.0

0.2

0.4

Cyclic Voltammogram Electrical Conductivity

Guiseppi-Elie et al. In Handbook of Conductive Polymers 2nd Edition (1997), Chapter 34, p 963.Guiseppi-Elie et al. In, Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, Mat. Res. Soc. Symp. Proc. Vol. 413; 1996, p 439.

Polyelectrolyte

Redox switchable (ms)

High chemical stability

High hydrolytic stability

Demonstrated biocompatibility

polypyrrolepolypyrrole

A-

+

Developed in late 1970s as materials for polymer batteries…

Page 17: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Electropolymerization of Polypyrrole (PPy) Within p(HEMA)-based bioactive hydrogels

Apparatus connected to a Princeton Applied Research (PAR) Potentiostat/Galvano-stat in conjunction with a Solartron frequency response analyzer (FRA) for electropolymeriza-tion (+0.85V for 100 sec) and impedance measurements (1Hz to 10kHz).

Hydrogel (UV crosslinked)

0.4M pyrrole in 0.1M PBS/0.1M KCl solution (pH = 6)

Large area Pt counter electrode

Ag|AgCl 3M Cl-

reference electrode

Au-coated slide (working electrode)

2cm

2cm

Cloning cylinder

Page 18: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

-90-80-70-60-50-40-30-20-10

01 10 100 1000 10000

Frequency (Hz)

Thet

a

1

10

100

1000

10000

100000

1 10 100 1000 10000Frequency (Hz)

|Z|

-2500.00

-2000.00

-1500.00

-1000.00

-500.00

0.00

0 20 40 60 80 100 120

Time (s)

Cur

rent

(µA

)

PPy-Hydrogel

Hydrogel

PPy-Hydrogel

Hydrogel

Electropolymerization kinetics

0.85V vs. Ag/AgCl

Page 19: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Viability Study: Human muscle fibroblasts (RMS 13) and Rat pheochromocytoma cells

(PC12)

Neuronal progenitor cell line (PC12) and human muscle fibroblasts (RMS13) grown in F-12K and RPMI 1640, respectively.

Cells seeded onto hydrogel-polypyrrole coated gold surfaces.

Cell viability determined.

Page 20: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

Summary

Cell viability is enhanced by the incorporation of phosphorylcholine moieties into the pHEMA-based hydrogel..

Polypyrrole reduces the electrical impedance of hydrogel coated gold electrodes.

Hydrogel coated onto MDEAs increases impedance (decreased diffusion coefficient compared to aqueous solution).

Page 21: Bioactive Hydrogels for Implantable Biosensors · PDF fileArea where hydrogel existed A Muscle Rim of new connective tissue ... Microsoft PowerPoint - gjustin_ibe_2008_ver3_080307.ppt

AcknowledgmentsClemson C3B ConsortiumClemson C3B ConsortiumDoDDoD USAMRMC PRMRP PRMRP

Undergraduates:Stephen FinleyAmber SmithLaura BrewerRyan GeorgianaDavid CochranRyan TrullBrad GordonNyan WinElizabeth HorahanMahammed AshrafCarolina FunkeyChris Nixon

Graduates:Ali BoztasAshwin RaoSheena Abraham Vandana GuptaJerome EdmonsonG. Scott TaylorBrad MagrumLouise LingerfeltGopakumar SethuramanMichael ZavatskyRachel Khan

Post Docs:Gusphyl Justin, Ph.D.Abdur Rub Abdur Rahman, Ph.D.Marta Plonska, Ph.D.Walter Torres, Ph.D.Shufeng Liu, Ph.D.Sean I. Brahim, Ph.D.Marin Gheorghe, Ph.D.Chenghong Lei, Ph.D. High School Students

Lauren KochMatthew Sebastian

Special thanks:Dr. Kenneth ChristensenDepartment of ChemistryClemson University