39
, '. , e t' . . ATTACHMEtlT BEST ESTIl%TE ftSL3 A!!ALYSIS TO ASSESS flSSS Aft 0 C0ITAIt:ME?iT RESP 0:lSE MITH AUT0ttATIC AUXILIARY FEEDWATER ACTUATICil . . . * . . i809 260' . Combustion Engineering January, 1980 .. ' 8001250 EOY

Best Estimate Main Steam Line Break Analysis to Assess

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Best Estimate Main Steam Line Break Analysis to Assess

,

'.,

e

t'

.

.

ATTACHMEtlT

BEST ESTIl%TE ftSL3 A!!ALYSIS TO ASSESS flSSS

Aft 0 C0ITAIt:ME?iT RESP 0:lSE MITH AUT0ttATIC

AUXILIARY FEEDWATER ACTUATICil

.

.

.

*.

.

i809 260'.

Combustion EngineeringJanuary, 1980

..

' 8001250 EOY

Page 2: Best Estimate Main Steam Line Break Analysis to Assess

*.

,

'

l.0 ItlTR00UCTt0:1s

A set of calculations has been performed on a generic basis with plantcharacteristics representative of CE operatinq plants to nodel containment -

building pressure and temperature response and overall flSSS behavior,including core reactivity, following a liain Stean Line Break (liSLB) insidecontainment. The intent of these calculations is to deternine if thecontainment building response (pressure) and the core reactiv'ty response(return to power) are acceptable following a fiSLB whn auxiliary feed-water is added without regard to the identification of the affected steangenerator. The auxiliary feedwater flow is assumed to be activated at theinitiation of the transient to maximize its effects. fiain feedwater flowincluding post trip rampdown is simulated. fio isolation of main orauxiliary feedwater is considered unless a high water level conditionis reached.

2.0 ASSUit?TI0 tis A:D CA3ES

Assunptions for the analyses are given .in Table 1. The four casesanalyzed are listed in Table 2.

3.0 ~ DISCUSSICil 0F D.ESULTS

!!aximum containment pressure and least negat.ve core reactivity for thefour cases are listed in Table 3. Both the containment pressure andthe reactivity (return to power) values are within acceptable limits,

liain feedwater flow, auxiliary feedwater ficw, core reactivity chance,core power, containment pressure, primary loop temperatures, and steamgenerator secondary temperatures for the four cases are detailad inFigures A-1 through A-7, 3-1 through B-7, C-1 through C-7, and 0-1through D-7, respectively.

The results of the analyses using best estimate codels for steam generatermoisture carryover and containnent cassive heat sink heat transferdemonstrate that the additional auxiliary feedwater has a negligibleimpact on containment peak pressure. The containnent peak pressure is

detemined primarily by the initial inventory in the ruptured unit. This.

1809 261

Page 3: Best Estimate Main Steam Line Break Analysis to Assess

*

,

'.

'

inventory is released within the first few minutes, dependng upon the5

break si:e, so that the contribution of auxiliary feedwater flcu to theruptured unit over this tire frame is small. Over the lancer time franc,the secondary inventory is boiled off at essentially the decay heat ratewhich the containnent a,tive heat removal systems can accc=odate whilereducing containment p11ssure. The excess feedwater which is not boiledoff remains in the steam generater, causing the secondary level to rise.Ti. centainnent peak pressure is essentially an initial inventory limitedphenomenon.

The results of the analyses also shcw that the additional auxiliary feed-water has a negligible impact en core reactivity. Cases A and C assune no

stuck rods and a best estinate moderator cooldown curve. For cenparisen,

Cases B and 0 assume that the most reactive red is stuck and that themoderater cooldcwn curve is a licensing curve. All cases took credit for

boron injection via three charging pumps; hcwever, safety injection boroncredit was not taken. These cases do not have a return to power for thefollcwing. reason. The initial prinary loop temperature decreases are limited

2by' the two-phase blowdown process associated with large break P2 f t ),since much of the break flow is saturated liquid which has not absorbedsignificant amounts of energy frca the prinary loop, tor staller break

2areas (c2 ft ), the blowdown is pure steam which does require large amountsof energy per unit mass to boil via primary to secondary heat transfer;however, the rate of primary-to-secondary heat transfer is controlled by theblowdown ficwrate which in turn is limited by the small break area. The

net result is that over approximately the first 100 seconds of the event,the amount of ccre and loop cooldown is about the sace regardless of breaksize. This time frame is most important since .the presence of delayedneutrons minimizes the amount of cooldewn needed to produce a core criticalityproblem.

Without a return to power (via primary loop cooldewn and delayed neutrons),the remainder of the transient is a gradual increase in reactivity due toloop cooldewn which is coupled to the centainnent pressure, plus a decreasein reactivity due to boren injeccien. In time (aporeximately KO sccends),the reactivity decrease due to beration overtakes the reactivity increases

,

due to loop cocidewn; thereafter, the total reactivity steadily decreases.The ruptured steam generator is at the containment backpressure and with

1809 262

Page 4: Best Estimate Main Steam Line Break Analysis to Assess

.

. .

&

RCPs operating the sensible heat from the non-ruptured unit is quickly,

removed resulting in RCS and SG secondary temperatures essentially in

equilibrium with the containment conditions in about 10 minutes..

With licensing assumptions, the peak in the reactivity transient iscalculated to be within the first two minutes of the event. A 3 minute

time delay, if added to the automatic actuation circuit, would justify astatement that automatic auxiliary feedwater actuation will not impactexisting SAR core cooldown MSL3 analyses.

4.0 COMPARISC:1 WITH LICE:ISI m CALCULATIO!is

The following items are important in comparing the results containedherein with those obtained with traditional licensing models and assumptiens:

1. The moisture carryover model used is a best estimate model which givesa two-phase blowdown for large break areas. The two-phase binwdown

results in a lower containment pressure and less initial primary loopcooldown than a pure steam blowdown. Chapter 15 analyses assume a pure

steam blowdown regardless of break size.

2. Chapter 15 analyses assume that the most reactive rod is stock.Itoreover, the remaining rod worth is assicned a conservative value inconjunction with a conservative moderator cooldown curve.

3. A best estimate containment heat transfer model provides containmentpressurization results significantly lower than those provided inChapter 6 analyses.

.

.4

1809 263-.

Page 5: Best Estimate Main Steam Line Break Analysis to Assess

TABLE 1.

., .

i ASSUMiTIC*iS 0@@

f(SSS Initial Conditiens .,

* 2700 f t'.!';Power-

Core Inlet Temperature 548 F

Primary Pressure 2250 PSIA

Secondary Pressure 875 PSIA

Secondary Temperature 529 F

Containment Data

6 3Free Volume 2.5 x 10 ft

Design Pressure 44 psig

Heat 3 inks SAR values

Heat Transfer Model Best estinate codelilumber of Fan Coolers 4 (no single failure)

6Fan Cooler Capacity, each 68 x 10 3/hr at 250'F

containment tencerature~

100 F CC'l Temperature

Fan Cooler Actuation Setpoint Fans are operational0t=0

fiumber of Sprays 2 (no single failure)

Spray rate, each 2700 GPit

Spray Actuation Setpoint 10 PSIG + 50 seconds

Other Data

Steam Generator Isolation Signal(MSIS) setpoint 500 psia

Decay Heat Curve AftS-5

Main Feedwater Flow

Ruptured Unit: Ramped to 105 over 60 sec:nd-folicwing React:r Tria: (10;represents twice tr.e bycassncminal value of 51, taisaccounts for puro run-cut wi-reduced back:ressure),temperature is reduced to ic,to account for turnine off_line. Flev ter ina:c: if tr.;

elevation of u :01:evel ta:is reached. ce ru;ures A_1,-

1809 264 B-1. c-1, and o-i-.

Page 6: Best Estimate Main Steam Line Break Analysis to Assess

.

'

TABLE 1 ---- continued.' .

Main Feedwater Flcw -- continued-

Unaffected Unit: Same as ruptured unit except thatficw is ranced to 55. SeeFigures A-1, B-1, C-1 and 0-1..

Auxiliary Feedwater Flew -

Ruptured Unit: Initiated at t = 0. Flow rate isa function of unit pressure. Allcontrol valves assumed to befully opened.

Unaffected Unit: No flow; all ficw is totallydiverted to the ruptured unit.

Reactor Ccolant Pumps Operating during the transient.

CEA Insertion Ucrth

All rods in (ARI) -8.9% (no stuck rod)!!ost reactive rod stuck -7.12% (bestestimate)

Moderator Ucrth

SAR Value See Figure 1

Best Estimate Value See Figure 2

Doppler Morth See Figure 3'

Moisture Carryover On SteamGenerator Secondary Side Best Estimate Model

~ '

Baron Injection ParametersSafety Injection Credi.t Hot TakenCharging PumpsNumber of Purps 3Flow Rate 44 GP!1 per pucpActuaticn Time SIAS

8% by weightBoric Acid Concentration -

Boron Worth 00 PP!1/5Boric Acid Conversion Factor 1749 PPl1 boron /5 by weight boric

acidliixing Model Used Slug Flcu Model

Loop Transit Time 10.5 seconds

.

9

1809 265

.

Page 7: Best Estimate Main Steam Line Break Analysis to Assess

. .,.

TABLE 2,-

CASES .

'.

2Case CEA Scram '.!arth (",) !!cderator Curve Creak Area (Ft )

A -8.9 Figure 2 6.63(I)

B -7.12 Figure 1 6.63(I)

C -8.9 Figure 2 1.99( }.

D -7.12 Figure 1 1.99(2)

(1) Couble-ended severance of main steam line (two-phase bicudewn).

(2) Largest break area corresponding to pure steam blowdown.

.

G

'l809 266..

e

- . . . . . . . . . _ . _ . , . . . . . . . - - . . . - . . - - , .. - -_. _.. .._ .. -... . . ---, , ,_ _

Page 8: Best Estimate Main Steam Line Break Analysis to Assess

.

.

. .

4

TABLE 3

'

.

~RESULTS .

.

. -: . ..

e Least flecative -.

Case Containr.ent Peak Pressure (PSIG) Core Reaciivity"

A 29.7/83.0 (sec.) -4.31

B 29.7/83.0 (sec.) -2.34....

C 35.0/231.9 (sec.) -3.54

0 35.0/231.9 (sec.) -1.55

- -..

,

.

O

/

e

e

e

e

' ~

~1809 267

,

Page 9: Best Estimate Main Steam Line Break Analysis to Assess

7 i i i i 4.

..

:. .

. ..

.

FIGURE 1..

'

REACTIVITY VS l'0DEPATOR TEliPERATURE-

6 - - -

(SAR VALUE)..

,

.

. ..

..

. ..

. . .

7-

. -

.-

. .

,-. .

.

*.

..

q . .-

.

< . .-

-.

.

15 ,* _ _

... .,

Z -

O-

P -

e ..

w e.D ).

Z .=H

h *

..-w~ -

> .seo2 __

<w -.

x -.

.

-

.-

.

1'

- --.

.-

. .

.

.. ..

-.

. .

0.

-

.

-1 i i '-- e i

300 350 400 450 500 550 600

N,O D m.3. .T'm^.: .o . ". 0 3 7. .'.'. , , 0c

i809 268_ . .s. '

.

Page 10: Best Estimate Main Steam Line Break Analysis to Assess

.

' *.

'.

. .

.

.. .

*.

' '

7 4 .i i i i.

. . , .- - , .. .

FIGUP,E 2.

'*

P.EACTIVITY VS l'OCEPATCP, TE!'PEPATUP.E*

.

(BEST ESTI!! ATE VALUE). ..

-

. .

.

'

5--

..

.

.>. s.

.

' .

o.<

a.--

- -

.s. . .*7 -

..

o..

p -..

M. W' nw o .- - _

2 .m *

>-}-- -

H> .

s}-- 2 --

0. -g .

m -

.

x..

- -,.

,

..

~

1- ~ -

..

.

. .

.

..

1809 269'..

.

-1 i ' '- ' '

300 350 400 450 500 550 609

MO D E R . . , ,, . - . . ., -, . _ , , :. , o ,-u u ::. . .r n. - - r

Page 11: Best Estimate Main Steam Line Break Analysis to Assess

-. 6.v

.

,.FIGURE 3*;

1.8 .| . . .. ..

-.-.

. . .. .

I DOPPLER REACTIVITY VS FUEL TE",PERATURE.

i. . . . . . . . . . . . . . . _ . . . . .._ . 3,5 , . .

,

** e

.. ,

. ,.

1.4 f .-- --

.. .

- ~ * . - - -

-

\ .

'.D D

:- - . -.., 3,2 .. . . . . . . . . . . . . ....

. ... . . ....

---- - - -- - -- - -

1.0 -.

. . .. . ..

- --

. - . . . . . . ., g,g . . . . . . . . -. . . . . .. . . . - . . . . .. ... .. ... .

.. * g

, , . . ..... ... .... .

.

. . .. . .... .

..... .... .... . . .

O g*5 1 '-

- -. - - - - . . . . . . ..'

-.

.

: '

|.. .. .

-

& -.. <e .

;. . . . . . . . . - - . -........ .. - . . -. . . . . . . . . .- ... . ....

- g o,4 :8

| . .. . +. . .s.

= ,-

o 0.2 i.

- --.

- -- - - - - - - --

. . ---

W .x s .. ... . . -

....

w | ...

en .

0.0<

00 1000 1E00 2000 2500---

|-

>-b

. .'

&> . , . . - . _ . - . -

- - -

-0.21 - - - - - - - - - - - -~

. . . . . .g ;

. . . . . . . . . . . . . ,-- ' . - -

.u .--

.-< -0.4 - -----..m. - - - - - -- - - - - - - - -

uw 3, ..- *

. .

. . .. . ..,

- -- - - - - - - - - -

0.G -. --

-2 ,

. -. . . . . .

. .. . . .. .. .

.

... ..

.-. 0,g .i . . ....- -. . - -.-..... ...... - . - - - . . . . . . . . - .- . - .. .. .. . . - .-

...

.. .

.

F

b .

. . . . . .- - - . ~ . - . . . ~. -3,o .p..

! . . . .

|.

-.

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . .. -.

. . I,-

, .

,

4 .... .

. .. . ..

. .

; ....

..

.t . . .. .

i 1809 270.,

l. .

| .. . . .

.

, ' , FUEL TEl:PERATURE *F

Page 12: Best Estimate Main Steam Line Break Analysis to Assess

*

,. %

.

*J

1800 -

_

-

,

-,

.

...,

1500 .

'.

-

o FIGURE A-1g ,

v)N

i4gr~

itAIN FEECIATERrC ' "

FLO'.! V5 III'E-

2O

Ju.

1200ccws-.C .

1oww ICCC _ . .u.z-

cr

.

800 _

.

.

SCO _.

.

400 _

-

.

1809 271200 - AFFECTED U; LIT

_,

.,

,

iUt!AFF,ECTE0 U::IT I

i

i'

C I f f I J -

C 200 400 6CC SCC CCC :200T I tE 5 E : :

.

Page 13: Best Estimate Main Steam Line Break Analysis to Assess

wvu.

.

.

.

360 _.

[-

'

FIGUREA-E320 _-

Et1ERGEtlCY FEE 0' DATER FLO'J VS TIttE.

.

110 FL0ll TO U.':AFFECTED Ut!IT280 ..__

u .

w.

v3%rco

d 240__ -

,

=O-s-

12

ccw 200 __

s .

C2oww

|u. .

160 L>-o=w -

oceti.1

5 120 ._

~

l

80 1.

.

.

40 ~i'

1809 2721

!-

|-

I ' ' ' ' '0O 200 400 500 SCO |000 :20:

TIME fSEC]

Page 14: Best Estimate Main Steam Line Break Analysis to Assess

LU.

.., -

FIGURE.A-3,' REACTI'/ITY CHA.'!GES1

VS- .'g TIttE_

,

.

.',.

..

.*

6 _ -'

n00ERATOR.

.

.

.

4 *-

*

.

.

.

~

2 '>-

|zLuLJ k% Ito D0PPLERCL~ .

-

0 '

>->---

>-

->-u

-2!Cto 50R0tl-

Cd .

-4 ,_

_

_

TOTAL

-6 ai'il.

-

,

t -

-

,.

*<

-8--18'09 273'

_

t* .

CEA

-10 t I -- i- '

0 200 400 SCO S00 ,C00 .on-. <_ %

TIME (SEC1

Page 15: Best Estimate Main Steam Line Break Analysis to Assess

i .w

..

. . .

*,

.'

+

O.T '

_

,

,

*..

,

- -*

FIGURE A-4

0.30. ,

~

CORE P0uEn vs TIr:E_

.

0.70 _ ,

.

0.60 _

0.50 -

u: iw2o .

o_

wM 0.4 0 .'_ou

.-

I -

||

0L0.3

.

I

1

0.2 0 j_

,

,

0.10 L '

. .

1809 274'. "

i' , -0. 0 0 _ ___ ..

' ' ',ncr . ,, c .

0 200 400 500 ouu v"" ""-TIME ESEC)

Page 16: Best Estimate Main Steam Line Break Analysis to Assess

. - . - . - . . .

.

.,

. .

.

FIGURE A-5.

'55 '

cottTAIrmENT PnESSURE VS TIf!E-

-.,

. .,

.. .

50 _

.

.

.

45 _

.

_

.

-

C-

E 40_

wx ..

Omaw 35 __

.xG. .

F-zwrz 30 1.-

CF- -

z 'au

25 _.

.

20 _ .

...

. .

15 _ ',.

1809 275~

..

. 10 ' I ' ' '

0 200 400 SCC 8CO 1C00 120:TIME (SEC)

Page 17: Best Estimate Main Steam Line Break Analysis to Assess

600..

'-.

FIGURE A-6-

-

pp.It ARY LOOP TEt'PERATURES. -

k540 Ji

'/s,

o ,,

) . TIf tE'

, ,.

j r.

-

||,.

,; . ,

480e

COLD LEG OF

U_l!.A. F..F.ECTED U LIT~~*

420

.

'

_ HOT. . LEG-

s

360 _ewa -

.

.

enw -

E300 COLD LEG 0F /

3 AFFECTED U:!IT , ',

Cewa-

.

t '

ww 2A 0 _ .

c_OOJ

.

180 _

.

.

120 _

.

.

60 _

1809 276.

.

d7OL~ I ' ' '4~

0 200 400 600 SCO .- c- -.

- , . . . , e. : e .

Page 18: Best Estimate Main Steam Line Break Analysis to Assess

...

~''

FIGURE A-7540 STEA!! GEttEMTOR TEttPEMTURES-

.

VS -.

TI!!E ,,

-

480 _ .

.

420 ---_

u

OwQ UttAFFECTED UtlIT-

360 .!.wWoHC&wcsi 300w

_

&

e AFFECTED UtlITo&CM 240 _wz -

WerCW 180 _en

.

120 _

.

'

60 _ '

- !

1809 277 j|

0 i L I I '

O 200 400 800 800 1000 120:TIME ISEC1

. _ _ . _ . _ _ . . . . . . . . _ . . . _ _ _ _ . . _ . .

Page 19: Best Estimate Main Steam Line Break Analysis to Assess

.

~

s..

,

.

.

.).

[800 -_

-

,

, .

.

*..

.

e

1600 ._

.

-

d FIGURE B-1-

.

mN

14 g r- !!Alti FEEC'.|ATERr3 FLO',l VS TIllE

* ~'

2o *

_;LL.

1200'

c:ws-C3 -

awW ICOC _ .u.

zCr

800 _

t

.

600 _

400 _

.

.

- - -

1809 278'200 -

AFFECTED UMIT

.

--

*

I

UtiAFF,ECTED U :IT !

11

0 ' i f i I'

O 200 400 SCO 80u '200.-ev .

TIME '5:.C;,

_.

Page 20: Best Estimate Main Steam Line Break Analysis to Assess

,- .

.

.

360__.

.

,.

,

'

FIGURE B-2320 ~~

El1ERGEflCY FEEDt!ATEi! FL0tl- . VS

TIl1E.

.

fl0 FL0ll TO UilAFFECTED280 '- UNIT"'

b-

-

m ,

NEed 240 __

-

= .

OJ

LL

CCw 200 __

H ..

CC3 .

OWLL.lLL

160 _3oZWOCdW

5 120 ._

.

80 .I_

.

40 ._

.

1809 279,

.

IIO ff f i i i

0 200 400 600 800 1000 :20fTIME fSEC)

,

Page 21: Best Estimate Main Steam Line Break Analysis to Assess

_

.,

. '

FIGUP.E B-3-

-

REACTIVITY CHAi!GES: VS.

.

8 TIl1E,

-

. -,...

-..,

6 _ t:00ERATOR,

4 -

,

~

2H ,z

|Wu .

Ix n

W I #

c. D0PPLER -

~

0 -'>- ,

W-

>-

Hu

5 -2 _

x ____ . ... _=

TOTAL -

TOTAL

-4 _

i BORO?!

!.|

-6 _

.

CEA

-8 _

-

1809 280.

-10 I i ! L_ '

O 200 400~ 600 800 1000 '20CTite (SEC)

Page 22: Best Estimate Main Steam Line Break Analysis to Assess

. . . .

.

. . ,,

FIGURE 3-4*.

,

0.90 _.C0RE POWER -

VS, TIliE , .

.

...

.

0.[G*

_.

.

0.70 _ ,

0.60 _

0_ -.0.5e

tozOCL.

Lt.Je 0 .40 -oo .

.

0.30 c-

.

1

0_0.2 7

.

0.10 ' .

r

1809 281 1

010 0 ' i i I '

O 200 400 600 500 000 :200TIME (SE01

Page 23: Best Estimate Main Steam Line Break Analysis to Assess

|.-

FIGURE B-5* '

.

:

55 _ C0t!TAlftf1EllT PRESSUREVS

'

TIllE*

. .

.

.. .

50 _

. .

.

.

45 _

'N -

-

C-

m4OC.

_

toeammto 35 __

ec

Hztuzz 30 _-

E hz'o

u

25 _

.

.

20 _i

.

15 _ ',~

180c) 28210 ' f ' ' '

O 200 400 500 800 1000 120:TIhE (SEC1

.

-- - . .. ~ . ;r . ..z. =.. . .. : --- - - - -....----.........=:s--:_ ' . .L"" ~~- * ~ ~..

Page 24: Best Estimate Main Steam Line Break Analysis to Assess

600,

..

.

*

3

FIGURE B-6- .

540 PRIllARY LCOP TEi:PERATURES;. <VS ,

'' .TIIE%

t.

. .,

II ..

.

480;

COLD LEG OFUtlAFFECTED UtlIT

,

420 _ .

.

'

HOT LEG '-

u_

360 ,o -

wa

--,

'

en aw .

e /O 300 _ COLD LEG 0F ,

Hg AFFECTED UtlIT, ,

ewar !

.: 1H 2A 0 _ . .

c..

Oo_a

180 _

120 _,,

.

.

SC _.

.

1809 2830 ' I ' ' '

0 200 400 600 800 1000 '2C:,

. . . . . - ,..c,. , _ . . _

Page 25: Best Estimate Main Steam Line Break Analysis to Assess

vvv

-.

.

FIGURE B-7''

540 STEAtt GE?lEPATOR TEl'PEPATURES-

VS*

TItt: -

-

(..

,

l

480,_ .

:

.

420 __'

-

u.ow '

UilAFFECTED UttITO-

360 __we:DF--CCCwa.r 300 _

wl-

AFFECTED UtlIT$ ,

nCe 240 -wzw ,

orC

W l80 _.

tn

-.

.

.

120

.

60 _

.

*

.

1809 284'-..

0---- i , , ,

0 200 400 600 6en '000 :2c-TIME ? SEC 1

.~ ~ .-.

Page 26: Best Estimate Main Steam Line Break Analysis to Assess

..

. ..

.-

.

1800 _ FIGURE C-1itAIII FEED'.!ATER FLC'.l VS tit:E,

.,

.

'..

i

1600 .-

.

1400 _ ,

-

uwen

2 1200a

!-

.

1o

d 100C _- -

ccWF--C1OW 80C __wu_ ,

z-

Cr

600 _

.

400 -.

.

200 - AFFECTED Ui!IT,

1809 285Ut!AFFECTED U'!IT ,

,,

:

i

0 -I ' I ' ' J

~

0 200 400 500 SCO 'CCC '20:

TIME (SEC1

Page 27: Best Estimate Main Steam Line Break Analysis to Assess

,ve . _ . _ _ . _ . .

.

. .

..

.

<

360'

_

'.

.,

,

;

FIGURE C-2320 _'

,,

E''CI,0C 'C'I i:CC'.;f,T C.n. FL0ttVS

TI."e.

}

280 _ tl0 FL0tl TO, '

VilAFFECTED UllITuWmN=

d 240N;m

,

=O.JLL .

&W 200 _-C2CWm . .

LL160 _.,

u -zLA.J

O&LAJ

5 120 _

80 _

-.

40 _.

..

809 286 i

0 i !' ' ' -J

0 200 400 60C Sau 5000 '2C..

TIi1E (SEC

Page 28: Best Estimate Main Steam Line Break Analysis to Assess

..

-.

''

FIGURE C-3.

8 REACTIVITY CHAiMES_

VS

TIf E'

<.,

.-.

6 _

fiODERATOR-

.

4 - .-,

'.

[ ~2 _

ztaU

D0PPLER

0. >-

F-

>-

>-u BOR0ftc: -2 .-ge

.

-4 - TOTAL

- i

!

!-6 ._ .

J

J

~* ~~ '

'

i809 287'

'CEA

-10 __.I f ___ ' I ' '

-

0 200 400 600 600 '000 '2C:.

TIME J5EC:.

Page 29: Best Estimate Main Steam Line Break Analysis to Assess

.

. .

.-

FIGURE C-4*.

0. 9 0 -- CORE POWER -

VS.' TIME

.

'< -

.

: .

0 .80 ' _ .-

.

l

.

|-

.

0.70 .

,

.

0.60 __

0.5 0 ._

ew1oo_

wM 0.0 __ou

.

.

0.30 __

.

~

0.20 _ .

.

.

0.10 __ '

.

.

1809 288-

0 I I ! I l

0*0V ~

O 200 400 SCO SCO '000 1200TIME ISEC1

Page 30: Best Estimate Main Steam Line Break Analysis to Assess

.. .

,

.

''

FIGURE C-5.

4 COIITAIi;;'EilT PRESSURE55 vs-

TIliE.

-..

-,.

50 _

.

45,

-

e-

* 40 ._

_

mCd'3mom 35 _

-

eC.

>--zm -

zz 30 .-

e-~

zOU

25 __ ,

20 _

~

15 _

.

|~

1809 289-

10 i--

i i i ! -

0 200 400 SCC 80G ;000 120:TIME (SEC1

Page 31: Best Estimate Main Steam Line Break Analysis to Assess

ovu,

*-

.

. .

'>

FIGURE C-6'

'

PRIt'ARY LOOP TEf'PERATURES540 L' vs[ TIftE

',

.

' '.

*

* ..4

.

480 _*.-.

.

420 COLD LEG OF_

UNAFFECTED Uili.T,

-

u. ,M0T LES/360 _

'awQw

v)wCda 300$

- COLD LEG OF'

AFFECTED U!ITjCcwCLz -

wH 240 _

o' .

a .-

a

180 _

d

.

120 _

60 _.

'

f809 290.

'

0 l i I f '-

0 200 400 6C0 800 'CCC '200.

TIME (SEC1

Page 32: Best Estimate Main Steam Line Break Analysis to Assess

6UU.

'

.

FIGURE C .7-

STENT GEilERATOR TEMPEMTurtES540 _

VS.,

TIftE <.,

fu' '

\480

.

420 _- ,

_

.x .

OWo UtlAFFECTED UIIIT-

360 _weaw -

CM .-

'

wCL

300 -

AFFECTEDgH UtlIT .

eO&C -

e 240 _wZ -

W.

O

r .

C

d 180 _

m

120 _

.

s

.

60 _

1809 291''

O i i i i i

0 200 400 600 800 :CCG 12 C ':

TIME fSEC1

Page 33: Best Estimate Main Steam Line Break Analysis to Assess

- 'JUUU,

.

.

.-.

FIGURE 0-1180G ~

tiAIN FEED'..'ATEF. FLO!!VS

'

.

'

TIltE

,

1600 ._.

.

1400 _.,

-,

uu -

<n

s 1200a_) ~

-w

=0_.2u_ 1000 _

cr:wHC2ow 800 _w11.

.

z-

Cr

600 _

s

400 _

.

.

200 _ AFFECTED UNIT'

'

- 1809 292UNAFFECTED UNIT !

'

.--

| .,0 ___.

I I ! ' ' !

0 200 400 SCO 800 !C00 ;2C:TrM- r c. c :

Page 34: Best Estimate Main Steam Line Break Analysis to Assess

400 __.

.

.

.-.

e

360 _

-

-

.

. .

,

-.

FIGURE D-2 -

320 _*

El1ERGE! ICY FEEC!lATER FLO!!-

VS

TIl1E.

(10 FL0tl TOUilAFFECTED Uf!IT280

_I_ -

uwmNr

1eJ 2 4 0 c,

-

T-

=0

-aL .

Mw 200 _

.

- *

C=Q;1)

m . .

L.L.

160 _

3u

-

ZuJ <

0eW

5 120 _

80 _

.

.

40 ,__

k809 293 i.

!;

O I ' ' ' ' I

O 200 400 SCC 800 1000 '23..

TIMF f c, F e 1

Page 35: Best Estimate Main Steam Line Break Analysis to Assess

.

'

FIGURE 0-3.

,. REACTIVITY CHAftGESVS,

,

- TIliE8

.-

-

'

,

, *

.

...

6 _. liODERATOR

' ''.

.

.

4 _.. ,

,

.

~

2 -wzu;o

@ DOPPLER,o-

O "

>-W-

> "._.

Hu

5 - 2 '-TOTALx -

'.

TOTAL

BOR0tl_4 _

- 6 ,_

.

CEA .

-8 -'

.

. ',

1809 294-10 I I I= ' I

O 200 400 600 800 1000 1200TIME (SEC1

Page 36: Best Estimate Main Steam Line Break Analysis to Assess

I .U V

.

4*

s'

+'

.

,

0.90 ; -

_. .

1 -' '

FIGURE 0-4.

,

CORE POWER .-'

,'

| VS

O.80 '._ *E-

:;

. .

,

0.70 ._.. .- ,.

.

.

.

0.60 ._

.

.

.

0.50 ._ .

zw2:o

-a..

we 0.40 ._ou

.

..

0.30 ._

0.20 ._ .

-

..

.

0.10 __ .

- l'809 295~

.,

0.00 i i I ' '

O 200 400 SCO SCO 1000 1200TIME ('S E C )

Page 37: Best Estimate Main Steam Line Break Analysis to Assess

,'...,

*

FIGURE 0-5. ,,

C0:4TAItUiEtiT PRESSURE-

55 _ vs'

TItiE.

-,,

-.

50 _-

445

_ f\'

-

c-

E 40 _

_

wCdawnw 35 _

cca_ >

&2wr2 30c

-szOo

25 __,

20 _

t

15 _

|

1809 296-

1 0 _.___.' I i ' '

O 200 400 600 SCC 1000 12CCTIME fSEC1

_ _..

Page 38: Best Estimate Main Steam Line Break Analysis to Assess

, .

[-**.

,

.

. . . , ,

FIGURE D-6-

540 '

p pRIltARY LOOP TEftPERATURESV VS

-

, .

. TItiE *

,

, ,,

480 _

'

)COLD LEG OF

UttA_FfECTED _U: LIT -

420 _

,

.

-

u. HOT L_EG

360 _awC*

. .

mwc:: COLD LEG OFa 300n

- AFFECTED UtiIi ,Ccc:u% -

2 -

w -

~ 240 _

c.o *

a -.

J

180 _

120 _

.

.

..

60 _.

-

1809 297.

'

0 ' ' I r f

0 200 400 600 800 '000 '200TIME (SEC1

Page 39: Best Estimate Main Steam Line Break Analysis to Assess

600,,4.

.

'>

* ; FIGURE D-7

540 STEArt GEtiERATOR TE?1FERATURES_

VS-

'

TIttE -

v .-

,v ,\ -

_\480 t -

.

420 _ .-

_

u.

@ U!!AFFECTED U? LIT

C-

360 _wxawC

.gwc_ .

r 300 -, AFFECTEDH UtlIT

eQHC -

'e 240 _wz -

u '

orC

d 180 _

m

.

120 _

.

.

SC _

1809 298.

O I I I ' '

O 200 400 600 800 !CCG '2C:.

T I M .C I SE C 1