Berenbrink CAREX Viterbo 2009 Web Version

Embed Size (px)

Citation preview

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    1/20

    From deep sea fish to diving birds and mammals:

    Challenges to the O2 transport systems of polar

    vertebrates

    Michael Berenbrink

    Viterbo, June 2009

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    2/20

    The buoyancy problem

    Brown algae Portuguese man-of-war Chambered nautilus Lovely hatchet fish

    Most tissues of marine organisms are denser than the surrounding medium

    must continuously spend energy to avoid sinking

    or incorporate appropriate amounts of less dense materials gas floats are most efficient

    flexible gas floats are compressed with increasing depth

    needs to be countered by swimming movements

    or needs gas secretion against high pressure to maintain neutral buoyancy

    Sea otter

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    3/20

    Aims

    - understand themechanistic (proximate)

    cause of a physiological

    phenomenon:

    "How does it work?"

    - and the ultimate (evolutionary)

    cause:

    "Why does it work this way?"

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    4/20

    Swimbladder Anatomy in a Deep Sea Fish

    Lovely hatchetfish

    Argyropelecusaculeatus

    At night: 100 - 300m

    During day: 300 - 600m

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    5/20

    Vein

    Swim-

    bladder

    capillaries

    rete mirabile

    up to 80% O2at pressures up to 90 atm

    Schematic blood supply to Swimbladder

    Swim-

    bladder

    epithelium

    Swimbladder

    Artery

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    6/20

    Oxygen tension (mmHg)

    HbO2Saturation

    (%)

    R. W. Root (1931)

    5.5

    6.0

    6.5

    7.0

    7.58.0

    8.5

    0

    100

    150

    0

    How to release O2 from the blood?

    The Root effect

    pH

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    7/20

    Species differences in the Root effect

    10 nM 100 nM 1 M 10 M

    50

    60

    70

    80

    90

    100

    Haemolysate H+activity

    HbO2(%)

    8 7 6 5

    Xenopus

    Freshwater

    butterflyfish

    African

    knifefish

    African lungfish

    Elephantnose fish

    Catfish

    Bichir

    pH

    HbO2 saturation (%)

    in air equilibrated Hb solutions

    Berenbrink J. Exp. Biol. 210: 1641 (2007)

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    8/20

    Mechanism for O2 Secretion

    Vein

    Rete mirabileArtery

    Swim bladder

    epitheliumTissuecapillaries

    HbO2

    HbO2H+

    Root

    Effect

    O2+Hb

    O2O2O2

    Hb

    3 Key

    components:- Acidification

    - Root Effect

    - Rete mirabile

    How did

    they evolve?

    After Berenbrink J. Exp. Biol. 210: 1641 (2007)

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    9/20

    10

    20

    30

    40

    50

    60

    70

    80

    Root

    effect

    (%)

    Reconstructing Root effect

    evolution

    After Berenbrink et al. Science 307: 1752 (2005)

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    10/20

    10

    20

    30

    40

    50

    60

    70

    80

    Root

    effect

    (%)

    Reconstructing Root effect

    evolution

    After Berenbrink et al. Science 307: 1752 (2005)

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    11/20

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    12/20

    Scyliorhinus

    Mustelus

    Squalus

    Protopterus

    Lepidosiren

    Xenopus

    Sus

    Homo

    Erpetoichthy

    s

    Polypterus

    Acipenser

    Lepisosteus

    Amia

    Scleropages

    Pantododn

    Xenomystus

    Campylomormyrus

    Gnathonemu

    s

    Anguilla

    Megalops

    Clupea

    Danio

    Cyprinus

    Leuciscus

    Tinca

    Misgurnus

    Pangio

    Botia

    Gyrinocheilu

    s

    Brycinus

    Apteronotus

    Synodontis

    Pelteobagrus

    Oncorhynchus

    Esox

    Gadus

    Synbranchus

    Mastacembe

    lus

    Platichthys

    Scomber

    Dicentrarchu

    s

    Perca

    Reconstructing Swim Bladder Rete Mirabile Evolution

    Sharks

    Lungfis

    hes

    Tetrapo

    ds

    Teleosts

    Ray-finned Fishes

    ?? ? ? ?

    Swim bladder retia

    mirabilia and O2 secretion

    evolved at least 4 times

    independently

    After Berenbrink et al. Science 307: 1752 (2005)

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    13/20

    Time (Mya)

    0 50 100 150 200 250 300 350 400 450

    Rooteffec

    t(%)

    0

    10

    20

    30

    40

    50

    60

    70

    Reconstructing Root effect

    evolution

    Atmospheric oxygen

    concentration (%)

    (Berner, 2007)

    Swimbladder

    rete mirabile Ocular

    rete mirabile

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    14/20

    7.88

    7.40

    6.90

    6.26

    5.26

    Human Hb A

    modified from Lukin & Ho (2004)

    Ray-finned fish Hb

    The Root effect may have evolved initially for the same purpose as the Bohr effect

    Both effects show 'aberrant' features at very low pH

    These may have subsequently been selected for in ray-finned fishes

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    15/20

    After Berenbrink et al. Science 307: 1752 (2005)

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    16/20

    After Berenbrink et al. Science 307: 1752 (2005)

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    17/20

    After Berenbrink et al. Science 307: 1752 (2005)

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    18/20

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    19/20

    Conclusions

    Understanding of physiological mechanisms needs an integrative approach

    across multiple levels of organisation

    This may be best achieved in model species

    True understanding of genetic adaptation needs a phylogenetic framework and

    thus comparative approach across species

    Because it works at the organism/environment interface, the oxygen transport

    system of vertebrates is ideally suited for studies of environmental adaptation

  • 8/12/2019 Berenbrink CAREX Viterbo 2009 Web Version

    20/20

    Acknowledgements

    Everybody who generously donatedspecies samples

    bbsrcbiotechnology and biological sciences

    research council

    Liverpool Pia Koldkjaer

    Scott Mirceta

    Andy Cossins

    Berlin Oliver Kepp