35
Behavior of a Droplet on a Thin Liquid Film Ellen R. Peterson Carnegie Mellon University Department of Mathematical Sciences Center for Nonlinear Analysis February 23, 2012 Funded by National Science Foundation Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 1 / 35

Behavior of a Droplet on a Thin Liquid FilmBehavior of a Droplet on a Thin Liquid Film Ellen R. Peterson Carnegie Mellon University Department of Mathematical Sciences Center for Nonlinear

  • Upload
    dominh

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

  • Behavior of a Droplet on a Thin Liquid Film

    Ellen R. Peterson

    Carnegie Mellon UniversityDepartment of Mathematical Sciences

    Center for Nonlinear Analysis

    February 23, 2012

    Funded by National Science Foundation

    Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 1 / 35

  • Introduction

    Project Motivation

    Goal: Improve treatment for Cystic Fibrosis- use surfactant to spread medicine over mucus in lungs

    Research Group:

    CMU Physics: Steve Garoff, Fan Gao

    CMU Chemical Engineering:Todd Przybycien, Robert Tilton, Roomi Kalita, Ramankur Sharma, AmsulKhanal

    U. Pitt Medical Center: Tim CorcoranQuestions:

    How does the fluid spread? Where is the surfactant? How do multiple droplets interact?

    Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 2 / 35

  • Introduction

    Background on Spreading

    substrate

    ruid

    Dz

    H

    HD

  • Surfactant

    Background on Spreading Surfactant

    Surfactant spreading on liquid subphase:

    Model: Gaver and Grotberg (1990)

    ht +1r

    (

    12 rh

    2()r)

    r= 1

    r

    (

    13 rh

    3hr

    )

    r 1

    r

    (

    13 rh

    3(

    1r(rhr )r

    )

    r

    )

    r

    t +1r(rh()r )r =

    1r

    (

    12 rh

    2hr)

    r 1

    r

    (

    12 rh

    2(

    1r(rhr )r

    )

    r

    )

    r+ 1

    r(rr )r

    Asymptotic spreading behavior/similarity solutions:Jensen, Grotberg (1992), Jensen (1994)

    ht 1

    r

    (

    12 rh

    2r)

    r= 0 t

    1

    r(rhr )r = 0

    Similarity scaling:

    h(r , t) = H(), (r , t) =1

    t12

    G (), =r

    t14

    Similarity solutions:

    H() = 22, G () = 18log , =

    r

    t14

    Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 4 / 35

  • Surfactant

    Numerical similarity solutions: ERP, Shearer (2012)Equations:

    ht r0(t)

    r0(t)h =

    1

    r0(t)2

    (

    12h2

    )

    t r0(t)

    r0(t) =

    1

    r0(t)2(h)

    r0 = 1

    r0h(1, t)(1, t)

    =r

    r0(t)

    Solutions:

    h(r , t) = H(), (r , t) =1

    t12

    G(), =r

    r0(t)

    H() = 22, G() = 1

    8log , =

    r

    t14

    0 0.2 0.4 0.6 0.8 1 1.20

    0.5

    1

    1.5

    2

    r/r0(t)

    h

    0 0.2 0.4 0.6 0.8 1 1.20

    1

    2

    3

    4

    r/r0(t)

    H G

    1000

  • Surfactant

    Inner Solution: ERP, Shearer (2011)

    h(r , t) = t29

    (

    H0 +1

    18G0

    (

    r

    t16

    )2

    + A

    (

    r

    t19

    )2)

    + O(r4)

    (r , t) = t49

    (

    G0 +

    H0

    (

    r

    t16

    )2)

    + O(r4)

    0 0.1 0.2 0.3 0.4

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    h(

    ,t)

    0 0.2 0.4 0.6

    0.55

    0.6

    0.65

    t4/9

    (,t)

    Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 6 / 35

  • Surfactant

    Experimental GoalsExperimental spreading:Bull et al (1999), Fallest et al (2010)

    Visualize the height of the film (using laser line)

    Visualize the location of the surfactant (fluorescence)

    Match the experimental data to the PDE model

    0 20 400

    1

    2

    H [m

    m]

    0 20 400

    2

    4

    [

    g/c

    m2]

    r [mm]

    (a) t = 1 sec

    0 20 400

    1

    2

    H [m

    m]

    0 20 400

    2

    4

    [

    g/c

    m2]

    r [mm]

    (b) t = 2 sec

    0 20 400

    1

    2

    H [m

    m]

    0 20 400

    2

    4

    [

    g/c

    m2]

    r [mm]

    (c) t = 3 sec

    0 20 400

    1

    2

    H [m

    m]

    0 20 400

    2

    4

    [

    g/c

    m2]

    r [mm]

    (d) t = 6 sec

    ring

    Karen Danielss Lab NC State University

    Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 7 / 35

    expmovie.mp4Media File (video/mp4)

  • Surfactant

    Spreading Behavior

    100

    101

    101

    102

    r 0 [m

    m]

    =0.25

    0 20 400

    1

    2

    H [m

    m]

    0 20 400

    2

    4

    [

    g/c

    m2]

    r [mm]

    (b) t = 2 sec

    tracking

    101

    100

    101

    101

    102

    t [sec]

    r M [m

    m]

    =0.295

    0 20 400

    1

    2

    H [m

    m]

    0 20 400

    2

    4

    [

    g/c

    m2](b) t = 2 sec

    tracking

    r [mm]

    t [sec]

    Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 8 / 35

  • Surfactant

    Surfactant Initial Condition

    Using time scale t = t :

    0 2 4 6

    0.5

    1

    1.5

    r

    h

    0 2 4 60

    0.5

    1

    1.5

    2

    r

    0 2 4 60

    0.5

    1

    1.5

    2

    r

    0 2 4 6

    0

    0.5

    1

    1.5

    2

    r

    0 2 4 6

    0.5

    1

    1.5

    r

    h

    0 2 4 60

    0.5

    1

    r

    0 2 4 6

    0.5

    1

    1.5

    h

    r

    0 2 4 60

    0.2

    0.4

    0.6

    0 2 4 60

    0.2

    0.4

    0.6

    0.8

    1

    r

    0 2 4 6

    0.5

    1

    1.5

    r

    h

    r

    Surfactant at

    t=9

    Height at

    t=9

    Initial Conditions

    Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 9 / 35

  • Spreading Droplet

    How do we predict the spreading behavior?

    Spreading Parameter: (Harkins 1952)

    S = F DF D

    Complete spreading (S > 0)- Spreading on a Deep Layer:

    Dipietro, Huh, & Cox, 1978; DiPietro& Cox, 1980; Foda & Cox, 1980

    - Spreading Power Law:Fraaije & Cazabat, 1989

    Lens-shape (S < 0)- Numerical axisymmetric solution,

    static lens :Pujado & Scriven, 1971

    D

    DF

    F

    S>0

    S

  • Spreading Droplet

    Assumptions

    Newtonian drop on Newtonian fluid Fluids immiscible Lubrication Approximation H

    D

  • Spreading Droplet

    Deriving Droplet Spreading Equations

    pDr =

    DuDzz , p

    DFr =

    DFuDFzz , pFr =

    FuFzz

    pDz =

    Dg , pDFz =

    DFg , pFz =

    Fg

    pD(a, t) = patm

    Darr , p

    DF (b, t) = pD(b, t) DFbrr , pF (h, t) = patm

    Fhrr

    u =0Fu =0DF

    u =0Fz

    DFu =uD

    u =0Dz

    u = uD DDF DFz z

    h(r,t)

    a(r,t)

    b(r,t)

    Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 12 / 35

  • Spreading Droplet

    Droplet Spreading Equations - axisymmetric

    ht =1

    r

    [

    r

    (

    Bohr (

    1

    r(rhr )r

    )

    r

    )

    h3

    ]

    r

    bt =1

    r

    [

    r

    (

    b3

    (

    Bo(1 )br DF(

    1

    r(rbr )r

    )

    r

    )

    +

    (

    Boar D(

    1

    r(rar )r

    )

    r

    )

    b2

    2(3a b)

    )]

    r

    at =1

    r

    {

    r

    [(

    Bo(1 )br DF(

    1

    r(rbr )r

    )

    r

    )

    b2

    2(3a b)

    +

    (

    1

    (a b)3 + a3)(

    Boar D(

    1

    r(rar )r

    )

    r

    )]}

    r

    Bo: Bond number: density ratio: viscosity ratioD : surface tension of drop and airDF : surface tension of drop and fluidrelated work: Kriegsmann & Miksis 2003Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 13 / 35

  • Equilibrium Solutions

    Equilibrium Solutions

    Bohr (

    1

    r(rhr )r

    )

    r

    = 0

    Boar D(

    1

    r(rar )r

    )

    r

    = 0

    Bo(1 )br DF(

    1

    r(rbr )r

    )

    r

    = 0.

    If 6= 1 these equations are Bessel equations. Well assume < 1

    h(r) = Ch + ChhI0

    (Bor

    )

    + ChhhK0

    (Bor

    )

    a(r) = Ca + CaI0

    (

    Bo

    Dr

    )

    + CaaaK0

    (

    Bo

    Dr

    )

    b(r) = Cb + CbbI0

    (

    Bo(1 )DF

    r

    )

    + CbbbK0

    (

    Bo(1 )DF

    r

    )

    Related studies: Kriegsmann & Miksis (2003), Pujado & Scriven (1971)Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 14 / 35

  • Equilibrium Solutions

    Boundary ConditionsEdge Conditions:

    ar (0, t) = 0, br (0, t) = 0, hr (L, t) = 0

    Continuity of Interface:

    a(r0, t) = h(r0, t), b(r0, t) = h(r0, t)

    Continuity of Pressure:(

    pDF = pF |r=r0)

    h Da DFb = 0

    r=r0

    Height of Film:

    2

    r0

    0

    b(r , t)rdr + 2

    L

    r0

    h(r , t)rdr = MassF

    Location of r0(t):

    MassD = 2

    r0

    0

    (a(r) b(r))r dr

    h(r,t)

    a(r,t)

    b(r,t)

    r (t)0

    Ellen R. Peterson (Carnegie Mellon) Spreading Droplets February 23, 2012 15 / 35

  • Equilibrium Solutions

    Boundary Conditions

    Balance of Surface Tension Forces:

    F cos F +D cos D +DF cos DF = 0

    F sin F +D sin D +DF sin DF = 0

    Apply approximations:

    F hr , D ar , DF br

    F(

    1 +2h2r2

    + . . .

    )

    D(

    1 +2a2r2

    + . . .

    )

    DF(

    1 +2b2r2

    + . . .

    )

    = 0

    F(

    hr +3h3r3

    + . . .

    )

    D(

    ar +3a3r3

    + . . .

    )

    DF(

    br +3b3r3

    + . . .

    )

    = 0

    O(1) : 1 D DF = 0= S O(2)

    O() : hr Dar DFbr = 0O(2) : h2r Da2r DFb2r = 2

    F

    D

    2-DF

    D

    F

    DF

    Ellen R. Peterson (Carnegie Mellon) Spreading