23
1 Henrik Loos [email protected] du 1 Undulator BBA Results LCLS FAC, June 8, Beam-Based Alignment Results Henrik Loos, for the LCLS Commissioning Team

Beam-Based Alignment Results

  • Upload
    elton

  • View
    43

  • Download
    0

Embed Size (px)

DESCRIPTION

Beam-Based Alignment Results. Henrik Loos, for the LCLS Commissioning Team. Undulator Trajectory Requirements. Beam through undulator rms 2 μ m per gain length Undulator with 33 segments total 100 m Not possible with conventional alignment - PowerPoint PPT Presentation

Citation preview

Page 1: Beam-Based Alignment Results

1 Henrik [email protected]

1Undulator BBA ResultsLCLS FAC, June 8, 2009

Beam-Based Alignment Results

Henrik Loos, for the LCLS Commissioning Team

Page 2: Beam-Based Alignment Results

2 Henrik [email protected]

2Undulator BBA ResultsLCLS FAC, June 8, 2009

Undulator Trajectory Requirements

Beam through undulator rms 2 μm per gain length

Undulator with 33 segments total 100 m

Not possible with conventional alignment

Use beam based alignment using set of different energies

RF BPM resolution < 1 μm

Page 3: Beam-Based Alignment Results

3 Henrik [email protected]

3Undulator BBA ResultsLCLS FAC, June 8, 2009

Undulator Configuration

Undulator, Quad, BPM, BFW move with girderBeam Finder Wire (BFW) retractableHorizontal translation of undulator

Complete retract (80 mm)Undulator K adjustment (± 5 mm)

In/Out

Scan

Beam

Undulator Quad RF BPM

Girder

BFWCorr

Girder Movers

K

Page 4: Beam-Based Alignment Results

4 Henrik [email protected]

4Undulator BBA ResultsLCLS FAC, June 8, 2009

Beam Based Alignment Principle

BPM offsets unknownMagnetic fields (earth, quad kicks, etc.) unknownCorrect field integrals with quad offsets or correctors for dispersion free trajectory at BPM positionTrajectory between BPMs remains unknownMeasure trajectory at different energies to extrapolate to straight line at infinite energyFixed undulator quad fieldsBPM position is BPM offset at infinite energy

Page 5: Beam-Based Alignment Results

5 Henrik [email protected]

5Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Measurement Schematic

Δq1 Δq3Δq2

Δb1 Δb3Δb2

Δy1 Δy3Δy2Δy0 Δy4

Δb0Δb0

E1

E2

BPM Offsets Δbi

Quad Offsets Δqi

x,x’

E1 < E2

Page 6: Beam-Based Alignment Results

6 Henrik [email protected]

6Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Procedure

Model beam position (yj) at BPMs as function of initial launch at 1st BPM (xi), quad offsets (Δqi), BPM offsets (Δbi)

y = [Rx Rq Rb] [x’ Δq’ Δb’]’

Rxj = Rj

1,1:2

Rqj = [R1,j

end - R1j

beg … Ri<j,jend

- Ri<j,j 0 … 0]11

Rb = -IFit solution for y arbitrary to adding linear function to quad and BPM offsetsAdd constraint equations for quad or BPM offsets

0 = Σi Δqi and Σi zi Δqi for linear quad offset constraint

0 = Δqi for minimum quad offset constraint

Page 7: Beam-Based Alignment Results

7 Henrik [email protected]

7Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Implementation

Setup accelerator for one energyCalculate response matrix for this energyMeasure N orbits at this energy and averageRepeat for all energiesGenerate final matrix with separate launch parameters for each energy and selected constraintsFit quad and BPM offsets and implementRepeat BBA procedure

Page 8: Beam-Based Alignment Results

8 Henrik [email protected]

8Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Simulation

-2000

-1000

0

1000

2000

3000

x P

os (

m)

BBA Scan Orbit 27-Feb-2009 00:07:31

1540 1560 1580 1600 1620 1640 1660 1680 1700-2000

-1000

0

1000

2000

3000

y P

os (

m)

Position z (m)

En = 4.30 GeV, x = 470.2 um

En = 6.54 GeV, x = 623.5 um

En = 13.64 GeV, x = 468.3 um

En = 4.30 GeV, y = 595.1 um

En = 6.54 GeV, y = 993.3 um

En = 13.64 GeV, y = 573.7 um

-300

-200

-100

0

100

200

x O

ff (

m)

BBA Scan Fit Result 27-Feb-2009 00:07:31

-400

-200

0

200

400

y O

ff (

m)

1540 1560 1580 1600 1620 1640 1660 1680 1700-100

-50

0

50

100

Off

( m

)

Position z (m)

BPM Offset Fit

Quad Offset FitBPM Simul

Quad Simul

BPM Offset Fit

Quad Offset FitBPM Simul

Quad Simul

Error BPM Fit x

Error BPM Fit yError Quad Fit x

Error Quad Fit y

Simulation OrbitsSimulation Orbits Simulation Fit Lin. QuadSimulation Fit Lin. Quad

Page 9: Beam-Based Alignment Results

9 Henrik [email protected]

9Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Results: 1st Run

First test: Energy range only 10 – 13.64 GeV50 orbits each, averagedBPMs not well calibratedLarge oscillation in fit of quad offset, 1mm error barAssume BPM offset worse than quad offsetApply instead constraint for minimal quad offsetInitial position rms 300 μm

-500

0

500

1000

1500

x P

os (

m)

BBA Scan Orbit 16-Jan-2009 21:02:13

1540 1560 1580 1600 1620 1640 1660 1680 1700-500

0

500

y P

os (

m)

Position z (m)

En = 10.00 GeV, x = 279.6 um

En = 11.50 GeV, x = 347.2 um

En = 13.64 GeV, x = 316.9 um

En = 10.00 GeV, y = 112.4 um

En = 11.50 GeV, y = 270.4 um

En = 13.64 GeV, y = 134.3 um

Measured OrbitMeasured Orbit

Page 10: Beam-Based Alignment Results

10 Henrik [email protected]

10Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Results: 1st Run

-4000

-3000

-2000

-1000

0

1000

2000

3000

x O

ff (

m)

BBA Scan Fit Result 16-Jan-2009 21:02:13

1540 1560 1580 1600 1620 1640 1660 1680 1700-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

y O

ff (

m)

Position z (m)

BPM Offset Fit

Quad Offset Fit

BPM Offset Fit

Quad Offset Fit

-1200

-1000

-800

-600

-400

-200

0

200

400

x O

ff (

m)

BBA Scan Fit Result 16-Jan-2009 21:02:13

1540 1560 1580 1600 1620 1640 1660 1680 1700-400

-300

-200

-100

0

100

200

300

400

y O

ff (

m)

Position z (m)

BPM Offset Fit

Quad Offset Fit

BPM Offset Fit

Quad Offset Fit

Fit with Linear Quad ConstraintFit with Linear Quad Constraint Fit with Min. Quad ConstraintFit with Min. Quad Constraint

Applied this to BPM offsetsApplied this to BPM offsets

Page 11: Beam-Based Alignment Results

11 Henrik [email protected]

11Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Results: 2nd Run

Energy range now 7 – 13.64 GeV

Still large ~1 mm oscillation on quad offset fit

Apply relaxed minimum quad constraint, 100 μm error bar

Orbits very similar after correction

Position rms ~50 μm after

-300

-200

-100

0

100

200

300

400

x P

os (

m)

BBA Scan Orbit 22-Jan-2009 11:36:38

1540 1560 1580 1600 1620 1640 1660 1680 1700-400

-300

-200

-100

0

100

200

300

y P

os (

m)

Position z (m)

En = 7.00 GeV, x = 95.3 um

En = 9.25 GeV, x = 124.4 um

En = 13.64 GeV, x = 74.8 um

En = 7.00 GeV, y = 105.7 um

En = 9.25 GeV, y = 114.3 um

En = 13.64 GeV, y = 161.7 um

Measured OrbitMeasured Orbit

Page 12: Beam-Based Alignment Results

12 Henrik [email protected]

12Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Results: 2nd Run

-300

-200

-100

0

100

200

300

x O

ff (

m)

BBA Scan Fit Result 22-Jan-2009 11:36:38

1540 1560 1580 1600 1620 1640 1660 1680 1700-400

-300

-200

-100

0

100

200

300

y O

ff (

m)

Position z (m)

BPM Offset Fit

Quad Offset Fit

BPM Offset Fit

Quad Offset Fit

-150

-100

-50

0

50

100

150

x P

os (

m)

BBA Scan Orbit 22-Jan-2009 15:18:37

1540 1560 1580 1600 1620 1640 1660 1680 1700-300

-200

-100

0

100

200

300

y P

os (

m)

Position z (m)

En = 7.00 GeV, x = 42.3 um

En = 9.25 GeV, x = 48.4 um

En = 13.64 GeV, x = 51.2 um

En = 7.00 GeV, y = 66.3 um

En = 9.25 GeV, y = 80.8 um

En = 13.64 GeV, y = 117.1 um

Fit with Min Quad Scale 20Fit with Min Quad Scale 20 Measured Orbit after CorrectionMeasured Orbit after Correction

Page 13: Beam-Based Alignment Results

13 Henrik [email protected]

13Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Results: 3rd Run

-150

-100

-50

0

50

100

150

200

x P

os (

m)

BBA Scan Orbit 07-Feb-2009 18:35:30

1540 1560 1580 1600 1620 1640 1660 1680 1700-40

-20

0

20

40

60

y P

os (

m)

Position z (m)

En = 4.30 GeV, x = 44.8 um

En = 7.00 GeV, x = 31.2 um

En = 9.25 GeV, x = 26.9 um

En = 13.64 GeV, x = 18.9 um

En = 4.30 GeV, y = 15.9 um

En = 7.00 GeV, y = 18.2 um

En = 9.25 GeV, y = 16.2 um

En = 13.64 GeV, y = 12.2 um

-100

-50

0

50

100

150

x O

ff (

m)

BBA Scan Fit Result 07-Feb-2009 18:35:30

1540 1560 1580 1600 1620 1640 1660 1680 1700-80

-60

-40

-20

0

20

40

60

y O

ff (

m)

Position z (m)

BPM Offset Fit

Quad Offset Fit

BPM Offset Fit

Quad Offset Fit

Measured Orbit 4.3 – 13.64 GeVMeasured Orbit 4.3 – 13.64 GeV Fit with Linear Quad ConstraintFit with Linear Quad Constraint

Page 14: Beam-Based Alignment Results

14 Henrik [email protected]

14Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Results: 3rd Run

-30

-20

-10

0

10

20

x P

os (

m)

BBA Scan Orbit 08-Feb-2009 00:02:30

1540 1560 1580 1600 1620 1640 1660 1680 1700-30

-20

-10

0

10

20

30

y P

os (

m)

Position z (m)

En = 4.30 GeV, x = 5.5 um

En = 7.00 GeV, x = 2.2 um

En = 9.25 GeV, x = 6.7 um

En = 13.64 GeV, x = 5.9 um

En = 4.30 GeV, y = 10.1 um

En = 7.00 GeV, y = 2.0 um

En = 9.25 GeV, y = 1.7 um

En = 13.64 GeV, y = 3.5 um

-60

-40

-20

0

20

40

60

x O

ff (

m)

BBA Scan Fit Result 08-Feb-2009 00:02:30

1540 1560 1580 1600 1620 1640 1660 1680 1700-30

-20

-10

0

10

20

30

y O

ff (

m)

Position z (m)

BPM Offset Fit

Quad Offset Fit

BPM Offset Fit

Quad Offset Fit

Measured Orbit 4th IterationMeasured Orbit 4th Iteration Fit with Linear Quad ConstraintFit with Linear Quad Constraint

Position rms 2 – 10 μmPosition rms 2 – 10 μm Offset Error Bar 10 μmOffset Error Bar 10 μm

Page 15: Beam-Based Alignment Results

15 Henrik [email protected]

15Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Results: Best Orbit

Carefully calibrated BPMsEnergy range 4.3 – 13.64 GeV4 different energiesUndulator launch feedback onAverage position rms 1 – 2 μmBetatron jitter ~20 μm

-10

-5

0

5

x P

os (

m)

BBA Scan Orbit 09-Feb-2009 15:57:53

1540 1560 1580 1600 1620 1640 1660 1680 1700-4

-2

0

2

4

6

y P

os (

m)

Position z (m)

En = 13.64 GeV, x = 1.8 um

En = 13.64 GeV, y = 1.1 um

Page 16: Beam-Based Alignment Results

16 Henrik [email protected]

16Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA Results: Girder Bump Test

-400

-300

-200

-100

0

100

200

300

400

x P

os

(m

)

BBA Scan Orbit 21-May-2009 15:44:33

1540 1560 1580 1600 1620 1640 1660 1680 1700-250

-200

-150

-100

-50

0

50

100

150

200

250

y P

os

(m

)

Position z (m)

En = 4.30 GeV, x = 151.8 um

En = 7.00 GeV, x = 62.6 um

En = 9.25 GeV, x = 33.6 um

En = 13.70 GeV, x = 11.1 um

En = 4.30 GeV, y = 74.3 um

En = 7.00 GeV, y = 46.9 um

En = 9.25 GeV, y = 21.6 um

En = 13.70 GeV, y = 7.5 um

-200

-100

0

100

200

300

400

500

x O

ff

(m

)

BBA Scan Fit Result 21-May-2009 15:44:33

1540 1560 1580 1600 1620 1640 1660 1680 1700

-500

-400

-300

-200

-100

0

100

200

y O

ff

(m

)

Position z (m)

BPM Offset Fit

Quad Offset FitInitial Quad Offset

Initial BPM Offset

BPM Offset Fit

Quad Offset FitInitial Quad Offset-48um bump @ 13.7 GeV-48um bump @ 13.7 GeV

58um bump @ 13.7 GeV &-58um BPM offset

58um bump @ 13.7 GeV &-58um BPM offset

BBA procedure finds both quad offsets and BPM offsetsBBA procedure finds both quad offsets and BPM offsets

Page 17: Beam-Based Alignment Results

17 Henrik [email protected]

17Undulator BBA ResultsLCLS FAC, June 8, 2009

Typical BBA After Several Months

-60

-40

-20

0

20

40

60

80

x P

os

(m

)

BBA Scan Orbit 30-May-2009 09:57:22

1540 1560 1580 1600 1620 1640 1660 1680 1700-350

-300

-250

-200

-150

-100

-50

0

50

100

y P

os

(m

)

Position z (m)

En = 4.30 GeV, x = 19.3 um

En = 7.00 GeV, x = 13.5 um

En = 9.25 GeV, x = 14.2 um

En = 13.50 GeV, x = 21.6 um

En = 4.30 GeV, y = 55.1 um

En = 7.00 GeV, y = 23.9 um

En = 9.25 GeV, y = 12.9 um

En = 13.50 GeV, y = 9.5 um

-100

-80

-60

-40

-20

0

20

40

60

x O

ff

(m

)

BBA Scan Fit Result 30-May-2009 09:57:22

1540 1560 1580 1600 1620 1640 1660 1680 1700-200

-150

-100

-50

0

50

100

y O

ff

(m

)

Position z (m)

BPM Offset Fit

Quad Offset Fit

BPM Offset Fit

Quad Offset Fit

Some quad & BPM offsets in end region of undulator from incrementalorbit corrections (retracting undulators, changing of taper)

Some quad & BPM offsets in end region of undulator from incrementalorbit corrections (retracting undulators, changing of taper)

Observe mostly changes in BPM offsets ~ 10 – 30umObserve mostly changes in BPM offsets ~ 10 – 30um

Page 18: Beam-Based Alignment Results

18 Henrik [email protected]

18Undulator BBA ResultsLCLS FAC, June 8, 2009

Quad Alignment Measurement

8 8 m rmsm rmsEarth’s field effectEarth’s field effect

Z (m)Z (m)

undulators installed (with undulators installed (with -metal)-metal)

Measure quadrupole offset from beam axisVary quad magnetic field and fit offset to trajectory kickVerifies earth field compensation from BBA

P. Emma

Page 19: Beam-Based Alignment Results

19 Henrik [email protected]

19Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA User Interface

SimulationSimulation

MeasurementMeasurement

Fit OptionsFit Options

CorrectionsCorrections

Page 20: Beam-Based Alignment Results

20 Henrik [email protected]

20Undulator BBA ResultsLCLS FAC, June 8, 2009

Fast Linac Energy Change

User interface to run an automated scriptBlock/unblock beamActivate saved klystron configurationTrim saved magnet configurationToggles feedbacksEnables one BBA run in 10 - 15min (at best), ~2 – 4 h (worst)

Page 21: Beam-Based Alignment Results

21 Henrik [email protected]

21Undulator BBA ResultsLCLS FAC, June 8, 2009

BBA & Undulator Taper

Orbit effects from undulator motionNo earth field shielding with retracted undulatorUndulator translation (~80 mm) shifts entire girder by ~10 - 100 um (quad & BPM)Undulator field integral depends on taper

GoalStraight trajectory for all undulator translations

StrategyDo BBA at design taper, correct quad positionCompensate field integral change for different taper with corrector coilCompensate girder shift for retracted undulator with corrector coils and BPM offset

Page 22: Beam-Based Alignment Results

22 Henrik [email protected]

22Undulator BBA ResultsLCLS FAC, June 8, 2009

Undulator Field Integral Measurement

Apply 1st field integral to corrector coilApply 1st field integral to corrector coil

Page 23: Beam-Based Alignment Results

23 Henrik [email protected]

23Undulator BBA ResultsLCLS FAC, June 8, 2009

Summary

AchievedBBA procedure successfully implementedConverges to ~1 μm trajectory rmsImportant to have full energy rangeErrors on fitted quad offsets decreased from 1 mm to 10 μm with increasing energy rangeFast energy switching 15 min BBA possibleComplemented by measurement of quad offsets by varying quad strength

To DoFully automate energy change (Interface to energy management, orbit feedback in linac)Study BBA at low charge (< 250 pC)Implement orbit correction from undulator translationCompare girder position from BBA with alignment diagnostic system (ADS)Monitor and study BPM offset drifts