54
B KASEMO Biomedical Sensor Foresight Workshop, 3 March, Cityconferensen, Stockholm Bengt Bengt Kasemo Kasemo Chemical Physics Group, Department of Applied Physics Chalmers University of Technology Göteborg, Sweden Email: [email protected] http://www.fy.chalmers.se/kemfys/ Basics and applications of QCM-D and nanoparticle plasmon sensing

Basics and applications of QCM-D and nanoparticle … · Basics and applications of QCM-D and ... • Biochips and Labchips ... “Status Report: Development of Technology Platforms

Embed Size (px)

Citation preview

B KASEMO

Biomedical Sensor Foresight Workshop, 3 March, Cityconferensen, Stockholm

BengtBengt KasemoKasemoChemical Physics Group,

Department of Applied PhysicsChalmers University of Technology

Göteborg, SwedenEmail: [email protected]

http://www.fy.chalmers.se/kemfys/

Basics and applications of QCM-D andnanoparticle plasmon sensing

B KASEMO

Automotive catalyst: 12 nm Pt on aged Al2O3

3M Riblets

-0.04

-0.03

-0.02

-0.01

0

0.01

0 5 10 15 20 25 30 35

s+

0 deg10 deg20 deg30 deg

Plasmon->e - h pair

Applications:•Chemical andbiosensing•Photocatalysis, e.g. water and air cleaning•Hydrogen production•Solar cells•Artificial photosynthesis

Ar+

Remove

Heat

EBL

CL

Particle-hole duality

Chemical Physics Group

Chalmershttp://www.fy.chalmers.se/kemfys/

B KASEMO

Biointerfaces

B KASEMO

Uniform chemistry Patterning

Microtopography NanotopographyFlat homogeneous

Hierarchical

Integration with microfluidics, readout etc

BIOMATERIAL

B KASEMO

Applications• Medical implants• Tissue engineering• Drug screening and design• Biosensors• Biochips and Labchips• Bioelectronics• Biomimetic materials science• Biofouling prevention• Artificial photosynthesis

• How are surfaces recognized by and affecting the properties and processes associated with biomolecules?• Can we learn about basic life processes by using surfaces as controlled stimulii?

Basic Research

B. Kasemo, Surf. Sci. 500 (2001) B. Ratner and D. Castner, Surf. Sci. 500 (2001)

B KASEMO

MORE INFORMATION

Vision Paper on NanoMedicine

CORDIS Web-site(www.cordis.lu/technology-platforms)

Reports (available on website)- Concept and Rationale:

“Technology Platforms from definition to Implementation of a Common Research Agenda”

- Information on individual platforms:“Status Report: Development of Technology Platforms”

ETPs generally: http://www.cordis.lu/technology-platforms/home_en.html

ETP Nanomedicine http://cordis.europa.eu.int/nanotechnology/nanomedicine.htm

B KASEMO

Surface-supported lipid membranes

or

How to make the surface look and act like a real cell membrane

E. Sackmann, Science 271, 43 (1996).C. Ziegler and W. Göpel, Curr. Op. Chem. Biol. 2, 585 (1998).B. A. Cornell et al., Nature 387, 580 (1997).C. Schmidt C et al., Angew, Chem. Int. Ed. 39, 3137 (2000).R. Pantoja R et al., Biophys. J. 81, 2389 (2001).

B KASEMO

Artificial and real Cell Membranes and Liposomes

The size, type and content of liposomes can be controlled

A spherical bag of a lipid bilayer membrane,enclosing a part of the solution in which they are formed.

Motors Sensors Enzymes

Cell components

DNA

Nano- and Micro Scale Chemical Reactors

B KASEMO

Budding/fusion of vesicles

Mem

brane bilayer

Mem

brane vesicle

From Genes V, B. Lewin (1994), Oxford University Press

B KASEMO

Applications of lipid vesicles and membranes

• Platforms for biosensing• Ditto for cell engineering• Drug targeting and screening• Coatings on medical devices• ………….

B KASEMO

Functional bilayers and vesiclescell

surface

SPB

B KASEMO

Conversion of unilamellar (phospho)lipid vesicles to surface-supported bilayers* (biomimetic membranes)

SOME EARLY WORKBRIAN & MC CONNEL, PNAS 81 (1984) 6195

NOLLERT, KIEFER, JÄHNIG, BIOPHYS. J. 69 (1995) 1447

STEINEM ET AL, BIOCHEM. BIOPHYS. ACTA 1279 (1996)169

SACKMAN AND TANAKA, TRENDS IN BIOTECHN. 18(2000) 58 + REFS

QCM-D, AFM, SPR AND ELLIPSOMETRY WORKKELLER AND KASEMO, BIOPHYS. J. 75 (1998) 1397

REVIAKINE AND BRISSON, LANGMUIR 16 (2000) 1806

REIMHULT, HÖÖK, KASEMO, LANGMUIR 19 (2003) 1681

E. Reimhult, B. Kasemo and F. Höök , Anal. Chem 2005RICHTER AND BRISSON, LANGMUIR 20 (2004) 4609)

TEXTOR ET AL, UNPUBLISHED

THEORYSEIFERT ADV. PHYSICS 46 (1997) 13

BERNARD ET AL, LANGMUIR 16 (2000) 6809

ZHDANOV, KELLER, GLASMÄSTAR AND KASEMO JCP 112 (2000) 900

?

Jass, Tjärnhage, Puu, Biophys. J., 79 (2000) 3153

B KASEMO

Methods

B KASEMO

Experimental Experimental toolstools

AFM

Monte Carlo Simulations (MCS) Sensor surfaces prepared & checked by XPS, SEM, AFM, PVD, ozon cleaning, plasma etching and cleaning,

B KASEMO

QCM-D sensing principle

∆f is proportional to the mass of the attached film (ng/cm2 sensitivity)

∆D is related to theviscoelasticity

AT-cut quartz with gold electrodes

1) Rodahl, M., Höök, F., Krozer, A., Kasemo, B. and Breszinsky, P., Quartz crystal microbalance setup for frequency and Q factor measurements in gaseous and liquid environments, Review of Scientific Instruments 66 (1995) 3924-3930

2) Rodahl, M. and Kasemo, B., Frequency and dissipation-factor response to localized liquid deposits on a QCM electrode, Sensors and Actuators B (1996) 111-116

3) Rodahl, M., Höök, F., Fredriksson, C., Keller, C., Krozer, A., Brzezinski, P., Voinova, M. and Kasemo, B., Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion, Faraday Discussions 107: Acoustic waves and Interfaces, Lester UK 107 (1998) 229

B KASEMO

Measurement chamber and sensor Measurement chamber and sensor crystal crystal ( Q( Q--Sense AB)Sense AB)

B KASEMO

Q-Sense New E4 system

4 sensor chambers that can be connected in series or in parallel

Q-Sense founded in 1996 by B Kasemo, M Rodahl, F Höök and A Krozer

www.q-sense.com

Take a look at the Q-Sense booth, and meet Patrik Bjöörn from Q-Sense

B KASEMO

A vesicle approaching a surface …

What will happen?

B KASEMO

Adsorption of vesicles on SiO2 and TiO2 -

dependence on vesicle sizevesicles of diam. 25-200nm

Erik Reimhult- postdoc at IMRE, Singapore

Fredrik Höök, Lund Univ

B KASEMO

Vesicle Vesicle adsorption on SiOadsorption on SiO22 and TiOand TiO22

E. Reimhult

SiO2

TiO2

B KASEMO

Typical QCMTypical QCM--D curves for adsorption of vesicles with D curves for adsorption of vesicles with different mean sizedifferent mean size

SiO2t1 – rupture starts

t2 – bilayer formation complete

TiO2t3 – the surface is

saturated with vesicles

E. Reimhult, F. Höök and B. Kasemo (2002), JCP, 117(16):7401

Reimhult, E., Höök, F. and Kasemo, B., Langmuir 19 (2003) 1681-1691 E. Reimhult

tt11

tt22

tt33

The interaction is surface specific

B KASEMOE. ReimhultE. Reimhult, F. Höök and B. Kasemo, JCP, 117(16) (2000) 7401

Greater Greater deformation of deformation of vesicles vesicles on SiOon SiO22..

Bilayer does Bilayer does not form on not form on TiOTiO2 2 from POPCfrom POPC

Lower ∆D/∆f on SiO2 than on TiO2

D vs. f plots

Rupture and fusion sets in

Bilayer

-+

?

SiO2

B KASEMO

Get additional information by combining QCM-D and SPR

E Reimhult, B Kasemo, F Höök, Anal. Chem., 76 (2004) 7211E Reimhult, F Höök, B Kasemo Biophys. J submitted

B KASEMO

Simultaneous Simultaneous SPR and QCMSPR and QCM--D D measurements measurements on parallell on parallell surfaces surfaces in in symmetric flowsymmetric flow

E. Reimhult

Vesicle sizeVesicle size: ~50 : ~50 nmnmLipid Lipid concconc: 0.16: 0.16 mg/mlmg/ml E Reimhult, B Kasemo, F Höök, Anal. Chem., 76 (2004) 7211

E Reimhult, F Höök, B Kasemo Biophys. J submitted

B KASEMO

Surface coverage of vesicles and SPBSurface coverage of vesicles and SPBobtained obtained by by combined combined SPR and QCMSPR and QCM

E. Reimhult, F. Höök and B. Kasemo subm. Biophys J and E. Reimhult, Kasemo and F. Höök. Anal. Chem 76 (2004) 7211E. Reimhult

B KASEMO

Microscopic information by AFM

Michael Zäch

B KASEMO

AFM vs. QCM/SPR: 140 sec

0 4.0 µm0

4.0

2.0

2.0

0

0.2 nm

0.1

• No further significant growth of vesicles; only increase of vesicle density

• Larger bilayer patches visible.

B KASEMO

Scenario based on accumulated data

B KASEMO

Three scenarios forThree scenarios forvesicle rupturevesicle rupture andand

bilayerbilayer formation on SiOformation on SiO22

1. Spontaneous rupture

2. Liposome fusion

3. Critical surface coverage and auto-catalysis

E. Reimhult

B KASEMO

How can we go further and use the lipid bilayer membrane and/or supported vesicles

B KASEMO

Functional bilayers and vesiclescell

surface

SPB

B KASEMO

Can supported bilayers be formed in the same way as above, with

incorporated membrane molecules?

B KASEMO

Model systems; transmembrane proteins

Gramicidin A (GrA) 2.2 kD

Transhydrogenase (TH)103 kD

Ref: Granéli et al, Langmuir 2003

B KASEMO

Bilayer formation from GrA-containing liposomes

QCM-D results

B KASEMO

Functional molecules can be coupled (tethered) to the bilayer

B KASEMO

DNA-PNA Hybridization via Biotin-Streptavidin Coupling

Specificstreptavidin binding

Nucleotidehybridization

TIME

SLB formation

-70

-60

-50

-40

-30

-20

-10

0

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000

∆f

∆D

∆f (H

z)

∆D (10

-6)

time (s)

Bilayer biotin-DNAstreptavidin DNAfc

B KASEMO

QCM-D detection ranges from water to small molecules to lipds

to cells

B KASEMO

1.Surface + waterDifferent bonding orientations and bondingstrengths

--

-+

2. Surface + water + proteinsNative or denatured confirmation

Adsorbedprotein

Surface layer of water

DenaturedNative

3. Surface + water + proteins + cellsAdsorbed

protein layer

Surface layer of water

DenaturedNative

BiomaterialBiomaterial

B KASEMO

Cell interactions

B KASEMO

Activation of human neutrophils

-50

-40

-30

-20

-10

0

10

-2

0

2

4

6

8

10

-5 0 5 10 15 20

∆f (Hz) ∆D (1E-6)

time (minutes)

∆D

∆f

Uncoated Polystyrene

Polystyrene

-60

-50

-40

-30

-20

-10

0

10

-10

0

10

20

30

40

50

60

-10 0 10 20 30 40 50 60

∆f (Hz) ∆D (1E-6)

time (minutes)

∆D

∆f

IgG

IgG

Fredriksson et al.: Langmuir (1998)14, 248J. Mat Sci: Materials in Medicine 1998 9, 785

B KASEMO

Phase transitions in soft matter -liquid crystals

B KASEMO

Results: near TNI

Features:1) Observe the size of D1!2) By by Sauerbrey!3) Compare D1 to Miesewicz

viscosities!

On a global level 5CB behaves as a viscous liquid: Forget elasticity.

4) An anomaly just before TNI

∆D∝ηij

a

b

c

a

b

c

1600

1700

1800

1900

2000

2100

-3800

-3600

-3400

-3200

-3000

-2800

-12 -10 -8 -6 -4 -2 0 2

D1 (1

E-6) ∆f1 (H

z)

T-TNI

-1 -0,5 0 0,5 1

1400

1500

1600

1700

1800

1900

2000

2100

-3100

-3000

-2900

-2800

-2700

-2600

-2500

-2400

-2300

-10 -5 0 5

D1 (1

E-6) F

1 (Hz)

-1 -0,5 0 0,5 1

1250

1300

1350

1400

1450

1500

1550

-3700

-3600

-3500

-3400

-3300

-3200

-3100

-12 -10 -8 -6 -4 -2 0 2

D1 (1

E-6) ∆f1 (H

z)

-1 -0,5 0 0,5 1

I

N

B KASEMO

Nanoparticles, nanoholes and -arrays for amplified and taylored

optical response, e.g. sensing.http://www.fy.chalmers.se/projects/photonano

hv

support

nano particle

e - h pairs, plasmons,...

•Basic mechnisms

•Solar - PV, H2

•Photocatalysis for e.g. cleaning

•(Bio)sensors

•Materials processing

•(Optoelectronics)

Colour depends on size - Mie scattering

B KASEMO

Importance of shape and size for the localised surface plasmon resonance (LSPR)

-theorySpheres:• LSPR redshifts for larger particles. • Increased linewidth. • Quadrupole resonance appears at shorter wavelength quasistatic approximation not valid

Oblate spheroids�:• Two LSPR associated with the minor, a, and major axis, b, of the spheroid respectively. • Major axis LSPR redshifts as ratio r = b/a, increases• Minor axis LSPR blueshifts as r increases

2a2b

r = b/aLinda Gunnarsson, Mikael Käll et al

B KASEMO

Surface-enhanced Raman scattering (SERS) for probing biomolecules

SEM images of the nanopatterned silver particles

(200 nm diameter)

100 nm

200 nm

300 nm

400 nm

500 nm

Separation:

B KASEMO

Darkfield scattering of single particles-measured from arrays with 5 µm grating constant

400 500 600 700 800 900 1000wavelength [nm]

30x 8 45x2

75

50 x 2

85

100120 150

175

195

200 nm

Dar

k fie

ld sc

atte

ring

cros

s sec

tion

(nor

m .

to a

rea)

[arb

. uni

t]

10 nm increase in diameter

27 nm redshift in peak position

Particle heights =20-25 nm

L. Gunnarsson et al , manuscript in preparation

Linda Gunnarsson, Duncan Sutherland, Per Hanarp, + collaboration w. Mikael Käll’s group,

B KASEMO

Integrated monitoring: Rational design of localised surface plasmon (LSPR) based nanoscale biosensors

Nanoparticle analogue of BIACORE SPR

LSPR

photoexcited +

-Sensitive to the local dielectric properties

0

0,1

0,2

0,3

0,4

0,5

0,6

700 900 1100 1300 1500

wavelength [nm]

extin

ctio

n lo

g(I0

/I)

nitrogenp-xylene

Basis for a sensor

Metal nanoparticle

~20-40nm

Exponential decay ~5nm

B KASEMO

R. Hillenbrand et al Applied Physics Letters 83 (2): 368-370 2003. Collab. MPI Germany

Assymetric particles: Tunable spectrally,higher field and more sensitive

P. Hanarp et al. J. Phys. Chem. B, 2003 107, 5768

More assymetric more sensitive

Hanarp/Sutherland

B KASEMO

Hole – particle symmetry

J. Prikulis et al Nano Letters 2004 Sutherland and Käll

B KASEMO

Surface plasmon modes

Hole LSPR mode

Particle LSPR

Ring LSPR

Superimpose a particle

and a slightly smaller hole

Superimposed structures for better sensors?

B KASEMO

Biosensing with Localized Plasmons

Transparent substrate (glass, fused silica etc.)

0

0.1

0.2

0.3

0.4

0.5

750 800 850 900 950 1000

Au, dia - 140 nm, height - 20 nm

sample in TRIS buffer

same - with adsorbed bBSA

extin

ctio

n, a

rb. u

nits

wavelength, nm

Au nanostructures (nanodisks)

Biotin-BSA adsorption

Optical read-out with extinction/scattering spectroscopy

0.39

0.4

0.41

0.42

0.43

0.44

780 785 790 795 800 805 810

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

835 840 845 850 855 860 865

0.158

0.159

0.16

0.161

0.162

0.163

0.164

0.165

0.166

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199

bBSA adsorption kinetics at 850 nm line

B KASEMO

Some comments and reflections

• At the generic (platform) level there are large synergies between different biointerface applications (drugs, sensors, stem ccell engineering,..)

• To focus and make a real product and commercialize it is a totally different story; mind set, money, way of working,..

• Combination of different physical principles in sensing• Nanotechnology eneterss almost all aspects of biointerface

R&D

B KASEMO

SimulationsVladimir P. ZhdanovKristian Dimitrevski

Vesicle and SPB adsorption; QCM-D, SPR, AFM expts.Erik Reimhult, SingaporeMichael ZächFredrik Höök, Lund U.Craig KellerKarin Glasmästar, Aminotech, Norway

Functional SPBs

Fredrik Höök Lund UAnnette Granéli, Columbia U., N.Y.Charlotte Larsson, AstratechIndriati PfeifferJason Benkoski, NIST

QCM-D developmentMichael Rodahl, now at Q-Sense ABFredrik Höök, now prof at Lund U.Anatol Krozer IMEGOMalin EdvardssonMarina Voinova

Colloidal lithography and optical properties of nanoparticles (NSPR)Duncan SutherlandPer Hanarp

Electron beam lithography and (G)SERSLinda Gunnarsson

Cell force sensor and cell experimentsJulie Gold (Group leader)Sarunas Petronis, MIC DenmarkAnn-Sofie AnderssonKarin GlasmästarNina TymchenkoJohan GustafssonDorota Dahlborg

Collaborations• M. Textor, J. Vörös, et al, - ETH

• B. Liedberg, P. Konradsson, I. Lundström - Linköping U.

• Mikael Käll, Chalmers• VP Zhdanov, Inst Catalysis, Novosibirsk• Peter Eriksson, Gothenburg Univ. Hospital• R. Richter, A. Brisson -Bordeaux U.• F Besenbacher, Aarhus U.• I. Reviakine - Bordeau->ETH->Houston• W. Knoll et al - MPI Mainz, U.Singapore• A Richter - Karolinska Inst.• E Arenas - - “ -• R van Duyne, Northwestern U• Q-Sense AB

Funding: SSF programs; 1) “Biocompatible Materials” and 2)“Biomics” and 3)“Photo-Nano”. 4) Swedish Science Research Council; 5) Chalmers Bioscience program, 6) Wallenberg Foundation, 7) EU Strep NANOCUES., 8) SSF+Vinnova VINST, Vinnova “BionanoIT”.

Shark skin mimic Lotus leave mimicIgor Zoric, Dinko ChakarovHåkan Rapp Per Holgersson

Optical sensingF Höök D SutherlandAndreas Dahlin, Lund U. Elin Larsson Alexandre (Sasja) Dmitriev

Liquid crystals

Christoph Langhammer Igor Zoric

Theory and SimulationsProf. Vladimir P. ZhdanovDr. Peter ThormählenDr. Hans PerssonDr. Henrik GrönbeckKristian Dimitrevski

Funding: 1) STEM, 2) MISTRA, 3) SSF “Photo-Nano” 4) Swedish Science Research Council; 5) Competence Center for Catalysis (STEM), SSF “Biomics”

Nanofabricated model catalysts and fuel cell electrodes

Dr. Ann GrantPer HanarpMarie GustafssonHans FredrikssonDr. Per HanarpDr. Peter Thormählen

Photo active nanostructures for solar cells (H2, electricity),photocatalysis and sensing

Dr. Dinko ChakarovDr. Duncan SutherlandDr. Michael ZächDr. Linda GunnarssonPer HanarpCarl HägglundHans Fredriksson

Prof Eva Olssons groupLisa Eurenius

Prof Lars Börjesson group

Dr. Shiwu Gao (Prof B ILundqvist group)

Heterogeneous catalysis for emission cleaning and nanofabricated model catalysts

Dr. Erik Fridell (Director KCK)Dr. Henrik GrönbeckDr. Ann GrantJazaer DavodyPeter BroquistDr. Peter Thormählen

Biomimetics - shark skinDr. Igor ZoricHåkan Rapp

BiointerfacesDr. Julie GoldDr. Fredrik HöökDr. Duncan SutherlandHussein AgheliIndriati PfeifferCharlotte LarssonDorota DahlborgErik ReimhultDr. Annette PerssonDr. Linda OlofssonDr Karin GlasmästarDr. Ann-Sofie AnderssonDr. Michael Zäch