Basic Principles Ultrasonic Krautkramer

Embed Size (px)

DESCRIPTION

Basic Principles Ultrasonic Krautkramer

Citation preview

  • Basic Principles of Ultrasonic Testing

    Basic Principles ofBasic Principles ofUltrasonic TestingUltrasonic Testing

    Theory and PracticeTheory and Practice

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingE l f ill tiExamples of oscillation

    ball on pendulum rotatingball ona spring

    pendulum rotatingearth

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic Testing

    PulseThe ball starts to oscillate as soon as it is pushed

    Pulse

    Krautkramer NDT Ultrasonic Systems

    p

  • Basic Principles of Ultrasonic Testing

    OscillationOscillation

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingMovement of the ball over time

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic Testing

    Frequencyeque cy

    Time

    One full ill ti T

    From the duration of one oscillation T th f f ( b f oscillation TT the frequency f (number of oscillations per second) is calculated:

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic Testing

    The actual displacement a is termed as:

    a180 36090 270

    Time0

    Phase

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingSpectrum of sound

    Frequency range Hz Description ExampleFrequency range Hz Description Example

    0 20 Infrasound Earth quake0 - 20 Infrasound Earth quake

    20 - 20.000 Audible sound Speech, music

    20 000 Ul d B Q l> 20.000 Ultrasound Bat, Quartz crystal

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingAt i t t

    gas liquid solid

    Atomic structures

    gas liquid solid

    low density weak bonding forces

    medium density medium bonding

    high density strong bonding forcesweak bonding forces medium bonding

    forcesstrong bonding forces

    crystallographic structure

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingU d t di tiUnderstanding wave propagation:

    Spring = elastic bonding forceBall = atom

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic Testing

    T

    distance travelleddistance travelled

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic Testing

    TDuring one oscillation T the wave f t t b th di t T front propagates by the distance :

    Distance travelled

    From this we derive:

    or Wave equation

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingSound propagation

    Di i f ill i

    Direction of propagationLongitudinal waveDirection of oscillation

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingSound propagation

    Direction of propagationTransverse waveDirection of oscillationDirection of oscillation

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingWave propagationLongitudinal waves propagate in all kind of materials.Longitudinal waves propagate in all kind of materials.Transverse waves only propagate in solid bodies. Due to the different type of oscillation, transverse wavesDue to the different type of oscillation, transverse wavestravel at lower speeds.Sound velocity mainly depends on the density and E-

    d l f th t i lmodulus of the material.

    AirWaterSteel, long

    330 m/s1480 m/s

    5920 m/sSteel, trans 3250 m/s

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingReflection and Transmission

    A d t h i t i lAs soon as a sound wave comes to a change in material characteristics ,e.g. the surface of a workpiece, or an internal inclusion, wave propagation will change too:

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingB h i t i t fBehaviour at an interface

    Medium 1 Medium 2

    Incoming wave Transmitted waveIncoming wave Transmitted wave

    Reflected wave

    Interface

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingReflection + Transmission: Perspex - Steel

    1,87

    Incoming wave Transmitted wave

    ,

    1 0Incoming wave Transmitted wave1,00,87

    Reflected wave

    Perspex Steel

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingReflection + Transmission: Steel - Perspex

    1 0Incoming wave Transmitted wave

    0 13

    1,0

    0,13

    -0,87R fl t d

    Perspex SteelReflected wave

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingA lit d f d t i iAmplitude of sound transmissions:

    Water - Steel Copper - Steel Steel - Air

    Strong reflection No reflection Strong reflection ith i t d h

    pp

    Double transmission Single transmission with inverted phase No transmission

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingPi l t i Eff tPiezoelectric Effect

    +Battery

    +y

    Piezoelectrical Crystal (Quartz)

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingPi l t i Eff tPiezoelectric Effect

    ++

    The crystal gets thicker, due to a distortion of the crystal lattice

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingPi l t i Eff tPiezoelectric Effect

    ++

    The effect inverses with polarity change

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingPi l t i Eff t

    S d

    Piezoelectric Effect

    Sound wave with

    frequency f

    U(f)

    An alternating voltage generates crystal oscillations at the frequency f

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingPi l t i Eff tPiezoelectric Effect

    Sh t lShort pulse( < 1 s )

    A short voltage pulse generates an oscillation at the crystals resonantfrequency f0

    Krautkramer NDT Ultrasonic Systems

    q y 0

  • Basic Principles of Ultrasonic TestingR ti f lt iReception of ultrasonic waves

    A sound wave hitting a piezoelectric crystal induces crystalA sound wave hitting a piezoelectric crystal, induces crystal vibration which then causes electrical voltages at the crystal surfaces.

    Electrical Piezoelectrical Ult ienergyPiezoelectrical crystal Ultrasonic wave

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingUltrasonic Probes

    socket Delay / protecting facesocketcrystalDamping

    Delay / protecting faceElectrical matchingCable Damping

    Straight beam probe Angle beam probeTR-probe

    Krautkramer NDT Ultrasonic Systems

    St a g t bea p obe g e bea p obep obe

  • Basic Principles of Ultrasonic TestingRF signal (short)

    100100 ns

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingRF signal (medium)

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingSound field

    Focus Angle of divergenceCrystalAccoustical axisAccoustical axis

    D0

    6

    N

    D0

    Near field Far field

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingUltrasonic Instrument

    0 2 4 8 106

    Krautkramer NDT Ultrasonic Systems

    0 2 4 8 106

  • Basic Principles of Ultrasonic TestingUltrasonic Instrument

    ++-Uh

    0 2 4 8 106

    Krautkramer NDT Ultrasonic Systems

    0 2 4 8 106

  • Basic Principles of Ultrasonic TestingUltrasonic Instrument

    + -+Uh

    0 2 4 8 106

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingUltrasonic Instrument

    +

    -Uv

    -

    + -Uh

    0 2 4 8 106

    Krautkramer NDT Ultrasonic Systems

    0 2 4 8 106

  • Basic Principles of Ultrasonic TestingBlock diagram: Ultrasonic Instrument

    amplifier

    horizontal IPscreen

    sweep

    clock

    BE

    clock

    pulser

    work piece

    probepulser

    Krautkramer NDT Ultrasonic Systems

    p

  • Basic Principles of Ultrasonic TestingSound reflection at a flaw

    s

    ProbeProbe

    Flaw Sound travel path

    Work piece

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingPlate testing

    IP

    BE

    F

    delaminationplate 0 2 4 6 8 10pIP = Initial pulseF = FlawBE Backwall echoBE = Backwall echo

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingWall thickness measurement

    ss

    0 2 4 6 8 10Corrosion 0 2 4 6 8 10Corrosion

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingThrough transmission testing

    Th h i i i lThrough transmission signal

    1 1T R

    2T R0 2 4 6 8 10

    2 2T R

    Flaw

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingWeld inspection

    a = s sina' = a - xF = probe anglea = a - xd' = s cos

    s probe angles = sound patha = surface distancea = reduced surface distanced = virtual depth0 20 40 60 80 100

    ad = 2T - t'

    d virtual depthd = actual depthT = material thickness

    a'd

    x

    s

    dLack of fusionWork piece with welding

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic TestingStraight beam inspection techniques:

    Direct contact, Direct contact, Fixed delaysingle element probe dual element probe

    Fixed delay

    Immersion testingThrough transmission

    Krautkramer NDT Ultrasonic Systems

  • Basic Principles of Ultrasonic Testing

    1 2

    Immersion testing

    surface =

    1 2

    water delaysound entry

    backwall flaw

    IE IEIP IP1 2IE IE

    BE BE

    0 2 4 6 8 10 0 2 4 6 8 10

    F

    Krautkramer NDT Ultrasonic Systems