Bai_tap_giai_tich_Tap1-DoanChi-Goc

Embed Size (px)

Citation preview

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    1/364

    Mc lc

    L i ni u iii

    Cc k hiu v k hi nim vii

    Bi tp

    1 S thc 3

    1.1 Cn trn ng v cn di ng ca tp cc s thc. Linphn s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.2 Mt s bt ng thc s cp . . . . . . . . . . . . . . . . . . 11

    2 Dy s thc 19

    2.1 Dy n iu . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    2.2 Gii hn. Tnh cht ca dy hi t . . . . . . . . . . . . . . 30

    2.3 nh l Toeplitz, nh l Stolz v ng dng . . . . . . . . . 37

    2.4 im gii hn. Gii hn trn v gii hn di . . . . . . . . 42

    2.5 Cc bi ton hn hp . . . . . . . . . . . . . . . . . . . . . . 48

    3 Chui s thc 63

    3.1 Tng ca chui . . . . . . . . . . . . . . . . . . . . . . . . . 67

    3.2 Chui dng . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    3.3 Du hiu tch phn . . . . . . . . . . . . . . . . . . . . . . . 90

    3.4 Hi t tuyt i. nh l Leibniz . . . . . . . . . . . . . . . 93

    3.5 Tiu chun Dirichlet v tiu chun A bel . . . . . . . . . . . . 99

    i

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    2/364

    ii Mc lc

    3.6 Tch Cauchy ca cc chui v hn . . . . . . . . . . . . . . 102

    3.7 Sp xp li chui. Chui kp . . . . . . . . . . . . . . . . . . 104

    3.8 Tch v hn . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    Li gii

    1 S thc 121

    1.1 Cn trn ng v cn di ng ca tp cc s thc. Linphn s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    1.2 Mt s bt ng thc s cp . . . . . . . . . . . . . . . . . . 131

    2 Dy s thc 145

    2.1 Dy n iu . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    2.2 Gii hn. Tnh cht ca dy hi t . . . . . . . . . . . . . . 156

    2.3 nh l Toeplitz, nh l Stolz v ng dng . . . . . . . . . . 173

    2.4 im gii hn. Gii hn trn v gii hn di . . . . . . . . 181

    2.5 Cc bi ton hn hp . . . . . . . . . . . . . . . . . . . . . . 199

    3 Chui s thc 231

    3.1 Tng ca chui . . . . . . . . . . . . . . . . . . . . . . . . . 231

    3.2 Chui dng . . . . . . . . . . . . . . . . . . . . . . . . . . 253

    3.3 Du hiu tch phn . . . . . . . . . . . . . . . . . . . . . . . 285

    3.4 Hi t tuyt i. nh l Leibniz . . . . . . . . . . . . . . . 291

    3.5 Tiu chun Dirichlet v tiu chun Abel . . . . . . . . . . . . 304

    3.6 Tch Cauchy ca cc chui v hn . . . . . . . . . . . . . . 313

    3.7 Sp xp li chui. Chui kp . . . . . . . . . . . . . . . . . . 321

    3.8 Tch v hn . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

    T i liu tham k ho 354

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    3/364

    Li ni u

    Bn ang c trong tay tp I ca mt trong nhng sch bi tp gii tch

    (theo chng ti) hay nht th gii .Trc y, hu ht nhng ngi lm ton ca Vit Nam thng s dng

    hai cun sch ni ting sau (bng ting Nga v c dch ra ting Vit):

    1. "Bi tp gii tch ton hc"ca Demidovich (B. P. Demidovich;1969, Sbornik Zadach i Uprazhnenii po Matematicheskomu Analizu,Izdatelp1stvo "Nauka", Moskva)

    v

    2. "Gii tch ton hc, cc v d vbi tp"ca Ljaszko, Bojachuk,

    Gai, Golovach (I. I. Lyashko, A . K. Boyachuk, YA . G. Gai, G. P. Golobach; 1975, Matematicheski Analiz v Primerakh i Zadachakh,Tom 1, 2, Izdatelp1stvo Vishaya Shkola).

    ging dy hoc hc gii tch.

    Cn ch rng, cun th nht ch c bi tp v p s. Cun th haicho li gii chi tit i vi phn ln bi tp ca cun th nht v mt sbi ton khc.

    Ln ny chng ti chn cun sch (bng ting Ba Lan v c dchra ting Anh):

    3. "Bi tp gii tch. Tp I: S thc, Dy s vChui s"(W. J.Kaczkor, M. T. Nowak, Zadania z Analizy Matematycznej, Czesc Pier-wsza, Liczby Rzeczywiste, Ciagi i Szeregi Liczbowe, WydawnictwoUniversytetu Marii Curie - Sklodowskiej, Lublin, 1996),

    4. "Bi tp gii tch. Tp II: Lin tc vVi phn "(W. J. Kaczkor, M.T. Nowak, Zadania z Analizy Matematycznej, Czesc Druga, Funkcje

    iii

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    4/364

    iv Li ni u

    Jednej Zmiennej{Rachunek Rozniczowy, Wydawnictwo Universytetu

    Marii Curie - Sklodowskiej, Lublin, 1998).

    bin dch nhm cung cp thm mt ti liu tt gip bn c hc v dygii tch. Khi bin dch, chng ti tham kho bn ting Anh:

    3*. W. J. Kaczkor, M. T. Nowak, Problems in Mathematical Analy-sis I, Real Numbers, Sequences and Series, A MS, 2000.

    4*. W. J. Kaczkor, M. T. Nowak, Problems in Mathematical Analy-sis II, Continuity and Differentiation, AMS, 2001.

    Sch ny c cc u im sau:

    Cc bi tp c xp xp t d cho ti kh v c nhiu bi tp hay. Li gii kh y v chi tit. Kt hp c nhng tng hay gia ton hc s cp v ton hc

    hin i. Nhiu bi tp c ly t cc tp ch ni ting nh, Ameri-can Mathematical Monthly (ting Anh), Mathematics Today (tingNga), Delta (t ing Balan). V th, sch ny c th dng lm ti liu

    cho cc hc sinh ph thng cc lp chuyn cng nh cho cc sinhvin i hc ngnh ton.

    Cc kin thc c bn gii cc bi tp trong sch ny c th tm trong

    5. Nguyn Duy Tin, Bi Ging Gii Tch, Tp I, NX B i Hc QucGia H Ni, 2000.

    6. W. Rudin, Principles of Mathematical Analysis, McGraw -HilBook Company, New York, 1964.

    Tuy vy, trc mi chng chng ti trnh by tm tt l thuyt gipbn c nh li cc kin thc c bn cn thit khi gii bi tp trong chngtng ng.

    Tp I v II ca sch ch bn n hm s mt bin s (tr phn khnggian metric trong tp II). Kaczkor, Nowak chc s cn vit Bi Tp GiiTch cho hm nhiu bin v php tnh tch phn.

    Chng ti ang bin dch tp II, sp ti s xut bn.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    5/364

    Li ni u v

    Chng ti rt bit n :

    - Gio s Phm X un Y m (Php) gi cho chng ti bn gc tingAnh tp I ca sch ny,

    - Gio s Nguyn Hu Vit Hng (Vit Nam) gi cho chng ti bngc ting Anh tp II ca sch ny,

    - Gio s Spencer Shaw (M) gi cho chng ti bn gc ting Anhcun sch ni ting ca W. Rudin (ni trn), xut bn ln th ba, 1976,

    - TS Dng Tt Thng c v v to iu kin chng ti bin dchcun sch ny.

    Chng ti chn thnh cm n tp th sinh vin Ton - L K5 H o

    To C Nhn Khoa Hc Ti Nng, Trng HKHTN, HQGHN, ck bn tho v sa nhiu li ch bn ca bn nh my u tin.

    Chng ti hy vng rng cun sch ny s c ng o bn c nnhn v gp nhiu kin qu bu v phn bin dch v trnh by. Rt mongnhn c s ch gio ca qu v bn c, nhng kin gp xin gi v:Chi on cn b, Khoa Ton C Tin hc, trng i hc Khoahc T nhin, i hc Quc gia HNi, 334 Nguyn Tri, ThanhXun, HNi.

    X in chn thnh cm n.

    H Ni, X un 2002.Nhm bin dch

    on Chi

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    6/364

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    7/364

    Cc k hiu v khi nim

    R - tp cc s thc R+ - tp cc s thc dng Z - tp cc s nguyn N - tp cc s nguyn dng hay cc s t nhin Q - tp cc s hu t (a, b) - khong m c hai u mt l a v b

    [a, b] - on (khong ng) c hai u mt l a v b

    [x] - phn nguyn ca s thc x Vi x R, hm du ca x l

    sgn x =

    1 vi x > 0,

    1 vi x < 0,0 vi x = 0.

    Vi x

    N,

    n! = 1 2 3 ... n,(2n)!! = 2 4 6 ... (2n 2) (2n),

    (2n 1)!! = 1 3 5 ... (2n 3) (2n 1).

    K hiu nk

    = n!

    k!(nk)! , n, k N, n k, l h s ca khai trin nhthc Newton.

    vii

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    8/364

    viii Cc k hi u v khi ni m

    Nu A

    R khc rng v b chn trn th ta k hiu supA l cn

    trn ng ca n, nu n khng b chn trn th ta quy c rngsupA = +.

    Nu A R khc rng v b chn di th ta k hiu infA l cndi ng ca n, nu n khng b chn di th ta quy c rnginfA = .

    Dy {an} cc s thc c gi l n iu tng (tng ng n iugim) nu an+1 an (tng ng nu an+1 an) vi mi n N. Lpcc dy n iu cha cc dy tng v gim.

    S thc c c gi l im gii hn ca dy {an} nu tn ti mt dycon {ank} ca {an} hi t vc. Cho S l tp cc im t ca dy {an}. Cn di ng v cn trn

    ng ca dy , k hiu ln lt l limn

    an v limn

    an c xc nh

    nh sau

    limn

    an =

    + nu {an} khng b chn trn, nu {an} b chn trn v S = ,supS nu {an} b chn trn v S = ,

    limn

    an = nu {an} khng b chn di,+ nu {an} b chn di v S = ,

    infS nu {an} b chn di v S = ,

    Tch v hn

    n=1

    an hi t nu tn ti n0 N sao cho an = 0 vin n0 v dy {an0an0+1 ... an0+n} hi t khi n ti mt giihn P0 = 0. S P = an0an0+1 ... an0+n P0 c gi l gi tr catch v hn.

    Trong phn ln cc sch ton nc ta t trc n nay, cc hm

    tang v ctang cng nh cc hm ngc ca chng c k hiul tg x, cotg x, arctg x, arccotg x theo cch k hiu ca cc sch cngun gc t Php v Nga, tuy nhin trong cc sch ton ca Mv phn ln cc nc chu u, chng c k hiu tng t ltan x, cot x, arctan x, arccot x. Trong cun sch ny chng ti ss dng nhng k hiu ny bn c lm quen vi nhng k hiu c chun ho trn th gii.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    9/364

    Bi tp

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    10/364

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    11/364

    Ch-ng 1

    S thc

    Tm tt l thuyt

    Cho A l tp con khng rng ca tp cc s thc R = (, ).S thc x R c gi l mt cn trn ca A nu

    a x, x A.

    Tp A c gi l b chn trn nu A c t nht mt cn trn.S thc x R c gi l mt cn di ca A nu

    a x, a A.

    Tp A c gi l b chn di nu A c t nht mt cn di.

    Tp A c gi l b chn nu A va b chn trn v va b chn di.R rng A b chn khi v ch khi tn ti x > 0 sao cho

    |a| x, a A.

    Cho A l tp con khng rng ca tp cc s thc R = (, ).S thc x R c gi l gi tr ln nht ca A nu

    x A, a x, a A.Khi , ta vit

    x = max{a : a A} = max aaA

    .

    3

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    12/364

    4 Chng 1. S thc

    S thc x

    R c gi l gi tr b nht ca A nu

    x A, a x, a A.

    Khi , ta vitx = min{a : a A} = min a

    aA.

    Cho A l tp con khng rng ca tp cc s thc R = (, ). GisA b chn trn.

    S thc x R c gi l cn trn ng ca A, nu x l mt cntrn ca A v l cn trn b nht trong tp cc cn trn ca A. Tc l,

    a x, a A,

    > o, a A, a > x .Khi , ta vit

    x = sup{a : a A} = sup aaA

    .

    Cho A l tp con khng rng ca tp cc s thc R = (, ). GisA b chn di.

    S thc x R c gi l cn di ng ca A, nu x l mt cndi ca A v l cn trn ln nht trong tp cc cn di ca A. Tc l,

    a x, a A,

    > o, a A, a < x + .Khi , ta vit

    x = inf{a : a A} = infaaA

    .

    Tin v cn trn ng ni rng nu A l tp con khng rng,

    b chn trn ca tp cc s thc, th A c cn trn ng (duy nht).Tin trn tng ng vi: nu A l tp con khng rng, b chn

    di ca tp cc s thc, th A c cn di ng (duy nht).

    T suy ra rng A l tp con khng rng, b chn ca tp cc s thc,thA c cn trn ng, v c cn di ng.

    Nu tp A khng b chn trn, th ta qui c sup A = +; Nu tpA khng b chn di, th ta qui c infA = ;

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    13/364

    Tm tt l thuy t 5

    Cho hai s nguyn a, b. Ta ni rng b chia ht cho a hoc a chia b,

    nu tn ti s nguyn c, sao cho b = a.c. Trong trng hp ta ni a lc ca b (hoc b l bi ca a) v vit a|b.

    Cho hai s nguyn a1, a2. S nguyn m c gi l c chung caa1, a2 nu m|a1, m|a2. S nguyn m c gi l bi chung ca a1, a2nu a1|m, a2|m.

    c chung m 0 ca a1, a2 c tnh cht l chia ht cho bt k cchung no ca a1, a2) c gi l c chung ln nht ca a1, a2 vuc k hiu l (a1, a2).

    Bi chung m 0 ca a1, a2 c tnh cht l c ca bt k bi chungno ca a1, a2 c gi l bi chung nh nht ca a1, a2 v uc khiu l [a1, a2].

    Nu (a, b) = 1 th ta ni a, b nguyn t cng nhau.

    S nguyn dng p N c gi l s nguyn t, nu p ch c haic (tm thng) l 1 v p.

    Ga sm l s nguyn dng. Hai s nguyn a, b c gi l ng dtheo modulo m, nu m|(a b). Trong trng hp ta vit

    a = b (modm).

    Ta gi r l s hu t (hay phn s), nu tn ti p, q Z sao chor = p/q. Phn s ny l ti gin nu (p,q) = 1. S v t l s thc nhng khng phi l s v t. Tp hp cc s

    hu t tr mt trong tp cc s thc, tc l, gia hai s thc khcnhau bt k (a < b) tn ti t nht mt s hu t (r: a < r < b).

    Phn nguyn ca s thc x, c k hiu l [x], l s nguyn (duynht) sao cho x 1 < [x] x. Phn l ca s thc x, c k hiu l{x}, l s thc xc nh theo cng thc {x} = x [x].

    Cc hm s s cp ax, loga x, sin x, cos x, arcsin x, arccos x c nhngha theo cch thng thng. Tuy nhin, cn ch rng, ti liu ny dng

    cc k hiu tiu chun quc t sau

    tan x = sin x/ cos x, cot x = cos x/ sin x,

    cosh x =ex + ex

    2, sinh x =

    ex ex2

    ,

    tanh x = sinh x/ cosh x, coth x = cosh x/ sinh x.

    Tng t ta c cc k hiu v hm ngc arctan x, arccot x.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    14/364

    6 Chng 1. S thc

    1.1 Cn trn ng v cn d-i ng ca tp ccs thc. Lin phn s

    1.1.1. Chng minh rng

    sup{x Q : x > 0, x2 < 2} =

    2.

    1.1.2. Cho A R khc rng. nh ngha A = {x : x A}. Chngminh rng

    sup(A) = infA,inf(A) = supA.

    1.1.3. Cho A, B R l khng rng. nh nghaA+B = {z = x + y : x A, y B} ,AB = {z = x y : x A, y B} .

    Chng minh rng

    sup(A +B) = supA+ supB,

    sup(A

    B) = supA

    infB.

    Thit lp nhng cng thc tng t cho inf(A+B) v inf(AB).1.1.4. Cho cc tp khng rng A v B nhng s thc dng, nh ngha

    A B = {z = x y : x A, y B} ,1

    A=

    z =

    1

    x: x A

    .

    Chng minh rngsup(A B) = supA supB,

    v nuinfA

    > 0th

    sup 1A

    =

    1

    infA,

    khi infA = 0 thsup

    1A

    = +. Hn na nu A v B l cc tp s thc b

    chn th

    sup(A B)= max {supA supB, supA infB, infA supB, infA infB} .

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    15/364

    1.1. Cn tr n ng v cn di ng. Li n phn s 7

    1.1.5. Cho A v B l nhng tp con khc rng cc s thc. Chng minh rng

    sup(A B) = max {supA, supB}

    v

    inf(A B) = min {infA, infB} .

    1.1.6. Tm cn trn ng v cn di ng ca A1,A2 xc nh bi

    A1 = 2(1)n+1 + (1)n(n+1)

    2 2 +3

    n : n N ,A2 =

    n 1n + 1

    cos2n

    3: n N

    .

    1.1.7. Tm cn trn ng v cn di ng ca cc tp A v B , trong A = {0, 2; 0, 22;0, 222; . . . } v B l tp cc phn s thp phn gia 0 v 1m ch gm cc ch s 0 v 1.

    1.1.8. Tm cn di ng v cn trn ng ca tp cc s (n+1)2

    2n, trong

    n

    N.

    1.1.9. Tm cn trn ng v cn di ng ca tp cc s (n+m)2

    2nm, trong

    n, m N.

    1.1.10. Xc nh cn trn ng v cn di ng ca cc tp sau:

    A =m

    n: m, n N, m < 2n

    ,(a)

    B =

    n [n] : n N .(b)1.1.11. Hy tm

    sup

    x R : x2 + x + 1 > 0 ,(a)inf

    z = x + x1 : x > 0

    ,(b)

    inf

    z = 2x + 21x > 0

    .(c)

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    16/364

    8 Chng 1. S thc

    1.1.12. Tm cn trn ng v cn di ng ca nhng tp sau:

    A =

    m

    n+

    4n

    m: m, n N

    ,(a)

    B =

    mn

    4m2 + n2: m Z, n N

    ,(b)

    C =

    m

    m + n: m, n N

    ,(c)

    D =

    m

    |m| + n : m Z, n N

    ,(d)

    E = mn1 + m + n : m, n N .(e)1.1.13. Cho n 3, n N. Xt tt c dy dng hu hn (a1, . . . , an), hy

    tm cn trn ng v cn di ng ca tp cc s

    nk=1

    akak + ak+1 + ak+2

    ,

    trong an+1 = a1, an+2 = a2.

    1.1.14. Chng minh rng vi mi s v t v vi mi nN tn ti mt s

    nguyn dng qn v mt s nguyn pn sao cho pnqn < 1nqn .

    ng thi c th chn dy {pn} v {qn} sao cho pnqn < 1qn2 .

    1.1.15. Cho l s v t. Chng minh rng A =

    {m + n : m, n

    Z

    }l

    tr mt trong R, tc l trong bt k khong m no u c t nht mt phn tca A.

    1.1.16. Chng minh rng {cos n : n N} l tr mt trong on [1, 1].1.1.17. Cho x R \ Z v dy {xn} c xc nh bi

    x = [x] +1

    x1, x1 = [x1] +

    1

    x2, . . . , xn1 = [xn1] +

    1

    xn.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    17/364

    1.1. Cn tr n ng v cn di ng. Li n phn s 9

    khi

    x = [x] +1

    [x1] +1

    [x2] +1

    . . . +1

    [xn1] +1

    xn

    .

    Chng minh rng x l s hu t khi v ch khi tn ti n N sao cho xn l mts nguyn.Ch . Ta gi biu din trn ca x l mt lin phn s hu hn. Biu thc

    a0 + 1

    a1 +1

    a2 +1

    . . . +1

    an1 +1

    an

    c vit gn thnh

    a0 +1||a1 +

    1||a2 + . . . +

    1||an .

    1.1.18. Cho cc s thc dng a1, a2, . . . , an, tp0 = a0, q0 = 1,p1 = a0a1 + 1, q1 = a1,pk = pk1ak +pk2, qk = qk1ak + qk2, vi k = 2, 3, . . . , n,

    v nh ngha

    R0 = a0, Rk = a0 +1||a1 +

    1||a2 + . . . +

    1||ak , k = 1, 2, . . . , n.

    Rk c gi l phn t hi t thk n a0 +1||a1 +

    1||a2 + . . . +

    1||an

    .

    Chng minh rng

    Rk =pkqk

    vi k = 0, 1, . . . , n.

    1.1.19. Chng minh rng nu pk, qk c nh ngha nh trong bi ton trnv a0, a1, . . . , an l cc s nguyn th

    pk1qk qk1pk = (1)k vi k = 0, 1, . . . , n.S dng ng thc trn kt lun rng pk v qk l nguyn t cng nhau.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    18/364

    10 Chng 1. S thc

    1.1.20. Cho x l mt s v t, ta nh ngha dy

    {xn

    }nh sau:

    x1 =1

    x [x], x2 =1

    x1 [x1] , . . . , xn =1

    xn1 [xn1], . . . .

    Ngoi ra, chng ta cho t a0 = [x], an = [xn], n = 1, 2, . . ., v

    Rn = a0 +1||a1 +

    1||a2 + . . . +

    1||ak .

    Chng minh rng lch gia sx v phn t hi t thn ca n c cho bicng thc

    x Rn = (1)n

    (qnxn+1 + qn

    1)qn,

    trong pn, qn l c nh ngha trong 1.1.18. T hy suy ra rng x nmgia hai phn t hi t lin tip ca n.

    1.1.21. Chng minh rng tp {sin n : n N} l tr mt trong [1, 1].1.1.22. S dng kt qu trong bi 1.1.20 chng minh rng vi mi s v t x

    tn ti dy

    pnqn

    cc s hu t, vi qn l, sao cho

    x pn

    qn

    1, k = 1, . . . , n l cc s cng dnghoc cng m th

    (1 + a1) (1 + a2) . . . (1 + an) 1 + a1 + a2 + . . . + an.

    Ch . Nu a1 = a2 = . . . = an = a th ta c bt ng thc Bernoulli:(1 + a)n 1 + na, a > 1.

    1.2.2. S dng php qui np, hy chng minh kt qu sau: Nu a1, a2, . . . , an

    l cc s thc dng sao cho a1 a2 . . . an = 1 tha1 + a2 + . . . + an n.1.2.3. K hiu An, Gn v Hn ln lt l trung bnh cng, trung bnh nhn v

    trung bnh iu ho ca n s thc dng a1, a2, . . . , an, tc l

    An =a1 + a2 + . . . + an

    n,

    Gn = n

    a1 a2 . . . an ,Hn =

    n1a1

    + 1a2

    + . . . + 1an

    .

    Chng minh rng An Gn Hn.1.2.4. S dng kt qu Gn An trong bi ton trc kim tra bt ng thc

    Bernoulli

    (1 + x)n 1 + nx vi x > 0.

    1.2.5. Cho n N, hy kim tra cc khng nh sau:1

    n+

    1

    n + 1+

    1

    n + 1+ . . .

    1

    2n>

    2

    3,(a)

    1

    n + 1 +1

    n + 2 +1

    n + 3 + . . . +1

    3n + 1 > 1,(b)1

    2 0 v n

    N ta c

    xn

    1 + x + x2 + x3 + . . . + x2n 1

    2n + 1.

    1.2.7. Cho {an} l mt cp s cng vi cc s hng dng. Chng minh rng

    a1an n

    a1a2 . . . an a1 + an

    2.

    1.2.8. Chng minh rng

    n

    n

    n! n + 1

    2, n N.

    1.2.9. Cho ak, k = 1, 2, . . . , n, l cc s dng tho mn iu kinn

    k=1

    ak 1.

    Chng minh rngn

    k=1

    1

    ak n2.

    1.2.10. Cho ak > 0, k = 1, 2, . . . , n (n > 1) v t s =n

    k=1

    ak. Hy kim

    tra cc khng nh sau:

    n nk=1

    aks ak

    1 n 1 1

    n

    nk=1

    s akak

    ,(a)

    nk=1

    s

    s ak n2

    n 1 ,(b)

    n

    n

    k=1

    aks + ak

    1 n + 1.(c)

    1.2.11. Chng minh rng nu ak > 0, k = 1, . . . , n v a1 a2 . . . an = 1th

    (1 + a1) (1 + a2) . . . (1 + an) 2n.1.2.12. Chng minh bt ng thc Cauchy (1):

    nk=1

    akbk

    2

    nk=1

    a2k

    nk=1

    b2k.

    (1)Cn gi l bt ng thc Buniakovskii- Cauchy - Schwarz

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    21/364

    1.2. Mt s bt ng thc s cp 13

    1.2.13. Chng minh rng nk=1

    ak

    2+

    n

    k=1

    bk

    2 12 nk=1

    a2k + b

    2k

    12 .

    1.2.14. Chng minh rng nun

    k=1

    a2k =n

    k=1

    b2k = 1 th

    nk=1

    akbk

    1.

    1.2.15. Cho ak > 0, k = 1, 2, . . . , n, hy kim tra nhng khng nh sau

    nk=1

    ak

    nk=1

    1

    ak n2,(a)

    nk=1

    ak

    nk=1

    1 akak

    nn

    k=1

    (1 ak),(b)

    (loga a1)2 + (loga a2)

    2 + . . . + (loga an)2 1

    n,(c)

    vi iu kin a1

    a2

    . . .

    an = a

    = 1.

    1.2.16. Cho > 0, chng minh rngn

    k=1

    akbk

    1n

    k=1

    a2k +

    4

    nk=1

    b2k.

    1.2.17. Chng minh cc bt ng thc sau:

    nk=1

    |ak|

    n

    n

    k=1

    a2k

    12

    nn

    k=1

    |ak|.

    1.2.18. Chng minh rngn

    k=1

    akbk

    2

    nk=1

    ka2k

    nk=1

    b2kk

    ,(a) n

    k=1

    akk

    2

    nk=1

    k3a2k

    nk=1

    1

    k5.(b)

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    22/364

    14 Chng 1. S thc

    1.2.19. Chng minh rngn

    k=1

    apk

    2

    nk=1

    ap+qk

    nk=1

    apqk ,

    vi mi p, q v mi b s dng a1, a2, . . . , an.

    1.2.20. Tm gi tr nh nht ca tngn

    k=1

    a2k vi iu kinn

    k=1

    ak = 1.

    1.2.21. Cho p1, p2, . . . , pn l c c s dng. Tm gi tr nh nht ca tngn

    k=1pka2k vi iu kinn

    k=1 ak = 1.1.2.22. Chng minh rng

    nk=1

    ak

    2 (n 1)

    n

    k=1

    a2k + 2a1a2

    .

    1.2.23. Chng minh cc bt ng thc sau:

    n

    k=1 (ak + bk)2

    12

    n

    k=1 a2k

    12

    + n

    k=1 b2k

    12

    ,(a)

    nk=1

    a2k

    12

    nk=1

    b2k

    12

    n

    k=1

    |ak bk|.(b)

    1.2.24. Cho p1, p2, . . . , pn l cc s dng. Tm gi tr nh nht ca

    nk=1

    a2k +

    n

    k=1

    ak

    2

    vi iu kin

    nk=1

    pkak = 1.

    1.2.25. Chng minh bt ng thc Chebyshev.

    Nua1 a2 . . . an v b1 b2 . . . bn,

    hoca1 a2 . . . an v b1 b2 . . . bn,

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    23/364

    1.2. Mt s bt ng thc s cp 15

    thn

    k=1

    ak

    nk=1

    bk n

    nk=1

    akbk.

    1.2.26. Gi sak 0, k = 1, 2, . . . , n v p N, chng minh rng1

    n

    nk=1

    ak

    p

    1

    n

    nk=1

    apk.

    1.2.27. Chng minh bt ng thc

    (a + b)2

    (1 + c)a2

    + 1 + 1c b2vi s dng c v s thc a, b bt k.

    1.2.28. Chng minh rnga2 + b2 a2 + c2 |b c|.

    1.2.29. Cho cc s dng a, b, c, kim tra cc khng nh sau:

    bc

    a+

    ac

    b+

    ab

    c (a + b + c),(a)

    1

    a

    +1

    b

    +1

    c 1

    bc+

    1

    ca+

    1

    ab,(b)

    2

    b + c+

    2

    a + c+

    2

    a + b 9

    (a + b + c),(c)

    b2 a2c + a

    +c2 b2a + b

    +a2 c2

    b + c 0,(d)

    1

    8

    (a b)2a

    a + b

    2

    ab

    1

    8

    (a b)2b

    vi b a.(e)

    1.2.30. Cho ak R, bk > 0, k = 1, 2, . . . , n, t

    m = minakbk : k = 1, 2, . . . , nv

    M = max

    akbk

    : k = 1, 2, . . . , n

    .

    Chng minh rng

    m a1 + a2 + . . . + anb1 + b2 + . . . + bn

    M

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    24/364

    16 Chng 1. S thc

    1.2.31. Chng minh rng nu 0 < 1 < 2 < .. . < n 1 th

    tan 1 0, bk > 0, k = 1, 2, . . . , n, t

    M = max

    akbk

    : k = 1, 2, . . . , n

    .

    Chng minh rnga1 + a22 + . . . + a

    nn

    b1 + M b22 + . . . + Mn1bnn

    M.

    1.2.34. Chng minh rng nu x l mt s thc ln hn cc s a1, a2, . . . , an

    th 1x a1 +

    1x a2 + . . . +

    1x an

    n

    x a1+a2+...+ann

    .

    1.2.35. t ck =nk

    , k = 0, 1, 2, . . . , n. Chng minh bt ng thc

    c1 +

    c2 + . . . +

    cn

    n(2n 1).

    1.2.36. Cho n 2, chng minh rngn

    k=0 n

    k

    2n 2n

    1

    n1.

    1.2.37. Cho ak > 0, k = 1, 2, . . . , n v k hiu An l trung bnh cng cachng. Chng minh rng

    nk=1

    Apk p

    p 1n

    k=1

    Ap1k ak

    vi mi s nguyn p > 1.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    25/364

    1.2. Mt s bt ng thc s cp 17

    1.2.38. Cho ak > 0, k = 1, 2, . . . , n, t a = a1 +a2 + . . . +an. Hy chng

    minh rngn1k=1

    akak+1 a2

    4.

    1.2.39. Chng minh rng vi mi hon v b1, b2, . . . , bn ca cc s dnga1, a2, . . . , an ta u c

    a1b1

    +a2b2

    + . . . +anbn

    n.

    1.2.40. Chng minh bt ng thc Weierstrass.

    Nu 0 < ak < 1, k = 1, 2, . . . , n v a1 + a2 + . . . + an < 1 th

    1 +n

    k=1

    ak 0 (an < 0) vi mi n;

    - khng m (khng dng) nu an 0 (an 0) vi mi n;- n iu tng (gim) nu an+1 an (an+1 an) vi mi n;- tng (gim) ngt nu an+1 > an (an+1 < an) vi mi n;

    - hi t ti a R (hoc c gii hn hu hn l a), nu vi mi s > 0cho trc b ty , tn ti n N sao cho

    |an a| < , n n.

    Trong trng hp nh th, ta ni dy {an} hi t, v gi a l gii hn cady {an} v vit

    limn

    an = a;

    - phn k ra +, nu vi mi s > 0 cho trc ln ty , tn tin N sao cho

    an > , n n.

    19

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    28/364

    20 Chng 2. Dy s thc

    Trong trng hp nh th, ta vit

    limn

    an = +;

    - phn k ra , nu vi mi s > 0 cho trc ln ty , tn tin N sao cho

    an < , n n.Trong trng hp nh th, ta vit

    limn

    an = ;

    - dy Cauchy (hoc dy c bn), nu vi mi s > 0 cho trc b ty, tn ti n N sao cho

    |am an| < , m, n n.

    nh l hi t n iu ni rng dy s n iu (tng hoc gim)v b chn c gii hn hu hn.

    Tiu chun Cauchy ni rng dy s hi t khi v ch khi n l dyCauchy.

    Cc tnh cht c bn ca gii hn l

    - Mt dy hi t th b chn.

    - Bo ton cc php tnh s hc, tc l, nu

    limn

    an = a, limn

    bn = b,

    thlimn

    (an bn) = a b, , R;limn

    (anbn) = ab; limn

    (an/bn) = a/b vi b = 0.

    - Bo ton th t theo ngha sau: nu

    limn

    an = a, limn

    bn = b, an bn; vi n n0 no ,

    tha b.

    - nh l kp: Cho ba dy s thc {an}, {bn}, {cn}. Nulimn

    an = a, limn

    bn = a, an cn bn, vi n n0 no

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    29/364

    Tm tt l thuy t 21

    th limn

    cn = a.

    Cho {an} l dy s thc v {nk} l dy cac s t nhin tng ngt, tcl n1 < n2 < < ak < ak+1 < . Khi , ta gi {ank} l mt dycon ca dy {an}. S thc a c gi l gii hn ring hay limgii hn ca {an}, nu tn ti mt dy con {ank} hi t ti a, tc l,

    limk

    ank = a.

    nh l Bolzano - Weierstrass khng nh rng, mi dy s thcb chn c t nht mt im gii hn.

    Tp cc gii hn ring ca mt dy s thc b chn {an} c gi tr lnnht. Gi tr ny c gi l gii hn trn ca dy {an} v c k hiul

    limn

    an.

    Tp cc gii hn ring ca mt dy s thc b chn {an} c gi tr bnht. Gi tr ny c gi l gii hn di ca dy {an} v c k hiul

    limn

    an.

    Ni rng {an} l dy truy hi cp h nuan = f(an1,...,anh), n h,

    trong f l hm s thc no .

    Ni rng {an} l cp s cng nu n c dngan = a0 + nd,

    (a0 l s hng u, d l cng sai).

    Ni rng {an} l cp s nhn nu n c dngan = a0q

    n,

    (a0 l s hng u, q l cng bi).

    Cc k hiu ca Landau. Cho hai dy {an} v {bn}. Ta ni rng- Dy {bn} chn dy {an}, nu tn ti hng s C > 0 v tn ti s

    n0 N sao cho|an| C|bn|, n n0.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    30/364

    22 Chng 2. Dy s thc

    Trong trng hp ta vit

    an = O(bn).

    - Dy {an} khng ng k so vi {bn}, nu vi mi > 0 tn ti sn N sao cho

    |an| |bn|, n n,tc l

    limn

    anbn

    = 0.

    Trong trng hp ta vit

    an = (bn).

    - Dy {an} tng ng vi {bn}, nu

    an bn = (bn),

    tc llimn

    anbn

    = 1.

    Trong trng hp ta vitan bn.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    31/364

    2.1. Dy n i u 23

    2.1 Dy n iu

    2.1.1. Chng minh rng:

    (a) Nu {an} l dy n iu tng th limn

    an = sup {an : n N},

    (b) Nu {an} l dy n iu gim th limn

    an = inf{an : n N} .

    2.1.2. Gi sa1, a2,...,ap l nhng s dng c nh. Xt cc dy sau:

    sn =

    an1 + an2 + ... + a

    np

    pv

    xn =

    n

    sn, n N

    .

    Chng minh rng {xn} l dy n iu tng.Gi . Trc tin xt tnh n iu ca dy

    sn

    sn1

    , n 2.

    2.1.3. Chng minh rng dy {an}, vi an = n2n , n > 1, l dy gim ngt vtm gii hn ca dy.

    2.1.4. Cho {an} l dy b chn tho mn iu kin an+1 an 12n , n N.Chng minh rng dy {an} hi t.Gi . Xt dy an 12n1 .2.1.5. Chng minh s hi t ca cc dy sau:

    an = 2

    n +

    11

    +1

    2+ ... +

    1n

    ;(a)

    bn = 2

    n + 1 +

    1

    1+

    12

    + ... +1n

    .(b)

    Gi . Trc tin thit lp bt ng thc:

    2(n + 1 1) 2, xt dy

    {an

    }c xc nh theo cng thc truy hi

    a1 = c2, an+1 = (an c)2, n 1.

    Chng minh dy {an} tng ngt.2.1.8. Gi s dy {an} tho mn iu kin

    0 < an < 1, an(1 an+1) > 14

    vi n N.

    Thit lp s hi t ca dy v tm gii hn ca n.

    2.1.9. Thit lp s hi t v tm gii hn ca dy c xc nh theo biu thc

    a1 = 0, an+1 =6 + an vi n 1.

    2.1.10. Chng minh dy c cho bi

    a1 = 0, a2 =1

    2, an+1 =

    1

    3(1 + an + a

    3n1) vi n > 1

    hi t v xc nh gii hn ca n.

    2.1.11. Kho st tnh n iu ca dy

    an =n!

    (2n + 1)!!, n

    1,

    v xc nh gii hn ca n.

    2.1.12. Hy xc nh tnh hi t hay phn k ca dy

    an =(2n)!!

    (2n + 1)!!, n 1.

    2.1.13. Chng minh s hi t ca cc dy sau

    an = 1 +1

    22+

    1

    32+ ...

    1

    n2, n N.(a)

    an = 1 + 122

    + 133

    + ... 1nn

    , n N.(b)

    2.1.14. Cho dy {an} c s hng tng qut

    an =1

    n(n + 1)+

    1(n + 1)(n + 2)

    + ... +1

    (2n 1)2n , n N.

    Chng minh rng dy hi t.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    33/364

    2.1. Dy n i u 25

    2.1.15. Cho p

    N, a > 0 v a1 > 0, nh ngha dy

    {an

    }bi

    an+1 =1

    p

    (p 1)an + a

    ap1n

    , n N.

    Tm limn

    an.

    2.1.16. Dy {an} c cho theo cng thc truy hi

    a1 =

    2, an+1 =

    2 +

    an vi n 1.

    Chng minh dy {an} hi t v tm gii hn ca n.2.1.17. Dy {an} c xc nh theo cng thc truy hi

    a1 = 1, an+1 =2(2an + 1)

    an + 3vi n N.

    Thit lp s hi t v tm gii hn ca dy {an}.2.1.18. Tm cc hng sc > 0 sao cho dy {an} c nh ngha bi cng thctruy hi

    a1 = c2 , an+1 = 12 (c + a

    2n) vi n Nl hi t. Trong trng hp hi t hy tm lim

    nan.

    2.1.19. Cho a > 0 c nh, xt dy {an} c xc nh nh sau

    a1 > 0, an+1 = ana2n + 3a

    3a2n + avi n N.

    Tm tt c cc s a1 sao cho dy trn hi t v trong nhng trng hp hytm gii hn ca dy.

    2.1.20. Cho dy {an} nh ngha truy hi bi

    an+1 =1

    4 3an vi n 1.

    Tm cc gi tr ca a1 dy trn hi t v trong cc trng hp hy tmgii hn ca dy.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    34/364

    26 Chng 2. Dy s thc

    2.1.21. Cho a l mt s c nh bt k v ta nh ngha

    {an

    }nh sau:

    a1 R v an+1 = a2n + (1 2a)an + a2 vi n N.Xc nh a1 sao cho dy trn hi t v trong trng hp nh th tm gii hnca n.

    2.1.22. Cho c > 0 v b > a > 0, ta nh ngha dy {an} nh sau:

    a1 = c, an+1 =a2n + ab

    a + bvi n N.

    Vi nhng gi tr ca a, b v c dy trn s hi t ? Trong cc trng hp hy

    xc nh gii hn ca dy.

    2.1.23. Chng minh rng dy {an} c nh ngha bi cng thc

    a1 > 0, an+1 = 61 + an7 + an

    , n N

    hi t v tm gii hn ca n.

    2.1.24. Cho c 0 xt {an} c cho hi cng thca1 = 0, an+1 =

    c + an, n N.

    Chng minh rng dy hi t v tm gii hn ca n.

    2.1.25. Kho st s hi t ca dy c cho bi cng thc

    a1 =

    2, an+1 =

    2an, n N.2.1.26. Cho k N, kho st s hi t ca dy {an} c cho bi cng thctruy hi sau

    a1 =k

    5, an+1 =k

    5an, n N.2.1.27. Kho st s hi t ca dy {an} sau

    1 a1 2, a2n+1 = 3an 2, n N.2.1.28. Vi c > 1, nh ngha dy {an} v {bn} nh sau:

    a1 =

    c(c 1), an+1 =

    c(c 1) + an, n 1,(a)b1 =

    c, bn+1 =

    cbn, n 1.(b)

    Chng minh rng c hai dy u c gii hn l c.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    35/364

    2.1. Dy n i u 27

    2.1.29. Cho a > 0 v b > 0, nh ngha dy

    {an

    }bi

    0 < a1 < b, an+1 =

    ab2 + a2n

    a + 1vi n 1.

    Tm limn

    an.

    2.1.30. Chng minh s hi t ca dy {an} c cho bi cng thc truy hi

    a1 = 2, an+1 = 2 +1

    3 + 1an

    vi n 1

    v tm gii hn ca n.

    2.1.31. Dy {an} c cho bia1 = 1, a2 = 2, an+1 =

    an1 +

    an, vi n 2.

    Chng minh dy trn b chn v tng ngt. Hy tm gii hn ca dy ny.

    2.1.32. Dy {an} c xc nh theo cng thc truy hia1 = 9, a2 = 6, an+1 =

    an1 +

    an, vi n 2.

    Chng minh rng dy trn b chn v gim ngt. Tm gii hn ca dy ny.

    2.1.33. Dy {an} v {bn} c cho bi cng thc0 < b1 < a1, an+1 =

    an + bn2

    v bn+1 =

    anbn vi n N.

    Chng minh rng {an} v {bn} cng tin ti mt gii hn. (Gii hn ny cgi l trung bnh cng - nhn ca a1 v b1).

    2.1.34. Chng minh rng c hai dy {an} v {bn} xc nh theo cng thc

    0 < b1 < a1, an+1 =a2n + b

    2n

    an + bnv bn+1 =

    an + bn2

    vi n N

    u n iu v c cng gii hn.

    2.1.35. Hai dy truy hi {an} v {bn} c cho bi cng thc

    0 < b1 < a1, an+1 =an + bn

    2v bn+1 =

    2anbnan + bn

    vi n N.

    Chng minh tnh n iu ca hai dy trn v ch ra rng c hai dy u tinti trung bnh cng - nhn ca a1 v b1. (Xem bi ton 2.1.33).

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    36/364

    28 Chng 2. Dy s thc

    2.1.36. Chng minh s hi t v tm gii hn ca dy

    {an

    }vi

    an =n + 1

    2n+1

    2

    1+

    22

    2+ ... +

    2n

    n

    vi n N.

    2.1.37. Gi s c mt dy b chn {an} tho mn

    an+2 1

    3an+1 +

    2

    3an vi n 1.

    Chng minh rng dy trn hi t.

    2.1.38. Cho

    {an

    }v

    {bn

    }nh ngha bi:

    an =

    1 +

    1

    n

    n, bn =

    1 +

    1

    n

    n+1vi n N.

    S dng bt ng thc lin h gia trung bnh cng, nhn v iu ho chngminh rng

    (a) an < bn vi n N.(b) dy {an} tng ngt,

    (c) dy {bn} gim ngt,Chng minh rng {an} v {bn} c cng gii hn, c gi l se ca Euler.2.1.39. Cho

    an =

    1 +x

    n

    nvi n N.

    (a) Chng t rng nu x > 0 th dy {an} b chn v tng ngt.(b) Gi sx l mt s thc tu . Chng minh rng dy {an} b chn v tng

    ngt vi n >

    x.

    ex c nh ngha l gii hn ca dy ny.

    2.1.40. Gi s c x > 0, l N v l > x. Chng minh rng dy {bn} vi

    bn =

    1 +x

    n

    l+nvi n N,

    l dy gim ngt.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    37/364

    2.1. Dy n i u 29

    2.1.41. Thit lp tnh n iu ca cc dy

    {an

    }v

    {bn

    }, vi

    an = 1 +1

    2+ ... +

    1

    n 1 ln n vi n N,

    bn = 1 +1

    2+ ... +

    1

    n 1 +1

    n ln n vi n N.

    Chng minh rng c hai dy trn cng tin n cng mt gii hn , gi lhng s Euler.Gi . S dng bt ng thc (1 + 1

    n)n < e < (1 + 1

    n)n+1, (suy ra t 2.1.38).

    2.1.42. Cho x > 0 v t an = 2n

    x, n

    N. Chng t rng dy

    {an

    }b

    chn. ng thi chng minh rng dy ny tng ngt nu x < 1 v gim ngtnu x > 1. Tnh lim

    nan.

    Hn na, t

    cn = 2n(an 1) v dn = 2n

    1 1

    an

    vi n N.

    Chng minh rng {cn} l dy gim, cn {dn} l dy tng v c hai dy cngc chung gii hn.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    38/364

    30 Chng 2. Dy s thc

    2.2 G ii hn. T nh cht ca dy hi t

    2.2.1. Tnh:

    limn

    n

    12 + 22 + ... + n2,(a)

    limn

    n + sin n2

    n + cos n,(b)

    limn

    1 2 + 3 4 + ... + (2n)n2 + 1

    ,(c)

    limn

    (

    2

    3

    2)(

    2

    5

    2)...(

    2

    2n+1

    2),(d)

    limn

    n

    2n

    ,(e)

    limn

    n!

    2n2,(f)

    limn

    1n

    1

    1 +

    3+

    13 +

    5

    + ... +1

    2n 1 + 2n + 1

    ,(g)

    limn

    1

    n2 + 1+

    2

    n2 + 2+ ... +

    n

    n2 + n

    ,(h)

    limn

    n

    n3 + 1

    +2n

    n3 + 2

    + ... +nn

    n3 + n .(i)2.2.2. Cho s > 0 v p > 0. Chng minh rng

    limn

    ns

    (1 +p)n= 0.

    2.2.3. Cho (0, 1), tnh

    limn

    ((n + 1) n).

    2.2.4. Cho Q, hy tnhlimn

    sin(n!).

    2.2.5. Chng minh rng khng tn ti limn

    sin n.

    2.2.6. Chng minh rng vi mi s v t , limn

    sin n khng tn ti.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    39/364

    2.2. Gii hn. Tnh cht ca dy hi t 31

    2.2.7. Vi

    R, hy tnh

    limn

    1

    n

    a +

    1

    n

    2+

    a +

    2

    n

    2+ ... +

    a +

    n 1n

    2.

    2.2.8. Gi s an = 1 vi mi n v limn

    an = 1. Cho k nguyn dng, hy

    tnh

    limn

    an + a2n + ... + a

    kn k

    an 1 .

    2.2.9. Tnh

    limn 11.2.3 + 12.3.4 + ... + 1n.(n + 1)(n + 2) .2.2.10. Tnh

    limn

    nk=2

    k3 1k3 + 1

    .

    2.2.11. Tnh

    limn

    ni=1

    ij=1

    j

    n3.

    2.2.12. Tnh

    limn

    1 2

    2.3

    1 2

    3.4

    ...

    1 2

    (n + 1).(n + 2)

    .

    2.2.13. Tnh

    limn

    nk=1

    k3 + 6k2 + 11k + 5

    (k + 3)!.

    2.2.14. Cho x = 1 v x = 1, hy tnh

    limn

    n

    k=1 x2k1

    1 x2k.

    2.2.15. Vi gi tr x R no th gii hn

    limn

    nk=0

    (1 + x2k

    ).

    tn ti v tm gi tr ca gii hn ny.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    40/364

    32 Chng 2. Dy s thc

    2.2.16. Tm tt c x

    R sao cho gii hn

    limn

    nk=0

    1 +

    2

    x2k + x2k

    .

    tn ti v tm gi tr ca gii hn ny.

    2.2.17. Vi gi tr x R no thi gii hn

    limn

    nk=1

    (1 + x3k

    + x2.3k

    ).

    tn ti v tm gi tr ca gii hn ny.2.2.18. Tnh

    limn

    1.1! + 2.2! + ... + n.n!

    (n + 1)!.

    2.2.19. Vi x R no sao cho ng thc sau

    limn

    n1999

    nx (n 1)x =1

    2000

    c thc hin

    2.2.20. Cho a v b sao cho a b > 0, nh ngha dy {an} nh sau:a1 = a + b, an = a1 ab

    an1, n 2.

    Hy xc nh s hng thn ca dy v tnh limn

    an.

    2.2.21. nh ngha dy {an} bia1 = 0, a2 = 1 v an+1 2an + an1 = 2 vi n 2.

    Hy xc nh s hng thn ca dy v tnh limn

    an.

    2.2.22. Cho a > 0, b > 0, xt dy {an} cho bi

    a1 =ab

    a2 + b2v

    an =aan1

    a2 + a2n1, n 2.

    Tm s hng th n ca dy v tnh limn

    an.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    41/364

    2.2. Gii hn. Tnh cht ca dy hi t 33

    2.2.23. Cho dy truy hi

    {an

    }nh ngha bi

    a1 = 0, an =an1 + 3

    4, n 2.

    Tm s hng th n v gii hn ca dy.

    2.2.24. Hy xt tnh hi t ca dy cho bi

    a1 = a, an = 1 + ban1, n 2.2.2.25. Ta inh ngha dy Fibonacci {an} nh sau:

    a1 = a2 = 1, an+2 = an + an+1, n 1.Chng minh rng

    an =n n

    ,

    trong v l nghim ca phng trnh x2 = x + 1. Tnh limn

    n

    an.

    2.2.26. Cho hai dy {an} v {bn} theo cng thc sau:a1 = a, b1 = b,

    an+1 =an + bn

    2 , bn+1 =

    an+1 + bn2 .

    Chng minh rng limn

    an = limn

    bn.

    2.2.27. Cho a {1, 2,..., 9}, hy tnh

    limn

    a + aa + ... +

    n s hngaa...a

    10n.

    2.2.28. Tnh

    limn nn 1n .2.2.29. Gi s rng dy {an} hi t ti 0. Hy tm lim

    nann.

    2.2.30. Cho p1, p2,...,pk v a1, a2,...,ak l cc s dng, tnh

    limn

    p1an+11 +p2a

    n+12 + ... +pka

    n+1k

    p1an1 +p2a

    n2 + ... +pka

    nk

    .

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    42/364

    34 Chng 2. Dy s thc

    2.2.31. Gi s rng limn an+1an = q. Chng minh rng:

    (a) Nu q < 1 th limn

    an = 0,

    (b) Nu q > 1 th limn

    |an| = .

    2.2.32. Gi s c limn

    n|an| = q. Chng minh rng:

    (a) Nu q < 1 th limn

    an = 0,

    (b) Nu q > 1 th limn

    |an| = .

    2.2.33. Cho l mt s thc v x (0, 1), hy tnh

    limn

    nxn.

    2.2.34. Tnh

    limn

    m(m 1) ... (m n + 1)n!

    xn, vi m N v |x| < 1.

    2.2.35. Gi s limn

    an = 0 v {bn} mt dy b chn. Chng minh rng

    limn

    anbn = 0.

    2.2.36. Chng minh rng nu limn

    an = a v limn

    bn = b th

    limn

    max {an, bn} = max {a, b} .

    2.2.37. Cho an

    1 vi n

    N v lim

    nan = 0. Cho p

    N, hy tm

    limn

    p

    1 + an.

    2.2.38. Gi s c dy dng {an} hi t ti 0. Cho s t nhin p 2, hy xcnh

    limn

    p

    1 + an 1an

    .

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    43/364

    2.2. Gii hn. Tnh cht ca dy hi t 35

    2.2.39. Cho cc s dng a1, a2,...,ap, hy tnh

    limn

    p

    (n + a1)(n + a2)...(n + ap) n

    .

    2.2.40. Tnh

    limn

    1

    n2 + 1+

    1n2 + 2

    + ... +1

    n2 + n + 1

    .

    2.2.41. Cho a1, a2,...,ap l cc s dng, hy tm

    limn

    nan1 + an2 + ... + anpp

    .

    2.2.42. Tnh

    limn

    n

    2sin2

    n1999

    n + 1+ cos2

    n1999

    n + 1.

    2.2.43. Tnhlimn

    (n + 1 + n cos n)1

    2n+n sinn .

    2.2.44. Tnh

    limn

    nk=1

    1 +

    kn2

    1 .2.2.45. Hy xc nh

    limn

    nk=1

    3

    1 +

    k2

    n3 1

    .

    2.2.46. Cho cc s dng ak, k = 1, 2,...,p, hy tnh

    limn

    1p

    pk=1

    nakp .2.2.47. Cho (0, 1). Hy tnh

    limn

    n1k=0

    +

    1

    n

    k.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    44/364

    36 Chng 2. Dy s thc

    2.2.48. Cho s thc x

    1, hy chng t rng

    limn

    (2 n

    x 1)n = x2.

    2.2.49. Chng minh rng

    limn

    (2 n

    n 1)nn2

    = 1.

    2.2.50. Trong nhng dy di y, dy no l dy Cauchy ?

    an =tan1

    2

    +tan2

    22

    + ... +tan n

    2n

    ,(a)

    an = 1 +1

    4+

    22

    42+ ... +

    n2

    4n,(b)

    an = 1 +1

    2+

    1

    3+ ... +

    1

    n,(c)

    an =1

    1.2 1

    2.3+ ... + (1)n1 1

    n(n + 1),(d)

    an = 1q1 + 2q

    2 + ... + nqn,(e)

    vi |q| < 1, |k| M, k = 1, 2,...,an =

    1

    22+

    2

    32+ ... +

    n

    (n + 1)2.(f)

    2.2.51. Cho dy {an} tho mn iu kin|an+1 an+2| < |an an+1|.

    vi (0, 1). Chng minh rng {an} hi t .2.2.52. Cho dy {an} cc s nguyn dng, nh ngha

    Sn =1

    a1+

    1

    a2+ ... +

    1

    an

    v

    n =

    1 +

    1

    a1

    1 +

    1

    a2

    ...

    1 +

    1

    an

    .

    Chng minh rng nu {Sn} hi t th{ln n} cng hi t.2.2.53. Chng minh rng nu dy {Rn} hi t n mt s v t x (nh nghatrong bi ton 1.1.20) th n l dy Cauchy.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    45/364

    2.3. nh l Toe plitz, nh l Stolz 37

    2.2.54. Cho mt dy cp s cng

    {an

    }vi cc s hng khc 0, hy tnh

    limn

    1

    a1a2+

    1

    a2a3+ ... +

    1

    anan+1

    .

    2.2.55. Cho mt dy cp s cng {an} vi cc s hng dng, hy tnh

    limn

    1n

    1

    a1 +

    a2+

    1a2 +

    a3

    + ... +1

    an +

    an+1

    .

    2.2.56. Tnh

    (a) limn

    n( n

    e 1), (b) limn

    e1n + e

    2n + ... + e

    nn

    n.

    2.2.57. Cho dy {an} nh ngha nh sau:

    a1 = a, a2 = b, an+1 = pan1 + (1 p)an, n = 2, 3,...

    Xc nh xem vi gi tr a, b v p no th dy trn hi t.

    2.2.58. Cho

    {an

    }v

    {bn

    }nh ngha bi

    a1 = 3, b1 = 2, an+1 = an + 2bn v bn+1 = an + bn.

    Hn na cho

    cn =anbn

    , n N.

    Chng t rng |cn+1

    2| < 12|cn

    2|, n N.(a)

    Tnh limn

    cn.(b)

    2.3 nh l T oeplitz, nh l Stolz v ng dng

    2.3.1. Chng minh nh l Toeplitz sau v php bin i chnh qui t dy sangdy.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    46/364

    38 Chng 2. Dy s thc

    Cho

    {cn,k : 1

    k

    n, n

    1

    }l mt bng cc s thc tho mn:

    cn,k n

    0 vi mi k N,(i)n

    k=1

    cn,k n

    1,(ii)

    tn ti hng sC > 0 sao cho vi mi s nguyn dng n th(iii)n

    k=1

    |cn,k| C.

    Khi vi mi dy hi t{

    an}

    th dy bin i{

    bn}

    c cho bi cng thc

    bn =n

    k=1

    cn,kak, n 1, cng hi t v limn

    bn = limn

    an.

    2.3.2. Chng minh rng nu limn

    an = a th

    limn

    a1 + a2 + ... + ann

    = a.

    2.3.3.

    (a) Chng minh rng gi thit (iii) trong nh l Toeplitz (bi ton 2.3.1) c

    th b qua nu tt c cn,k l khng m.

    (b) Cho {bn} l dy c nh ngha trong nh l Toeplitz (xem bi 2.3.1) vicn,k > 0, 1 k n, n 1. Chng minh rng nu lim

    nan = + th

    limn

    bn = +.

    2.3.4. Chng minh rng nu limn

    an = + th

    limn

    a1 + a2 + ... + ann

    = +.

    2.3.5. Chng minh rng nu limn an = a th

    limn

    na1 + (n 1)a2 + ... + 1.ann2

    =a

    2.

    2.3.6. Chng minh rng nu dy dng {an} hi t ti a thlimn

    n

    a1...an = a.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    47/364

    2.3. nh l Toe plitz, nh l Stolz 39

    2.3.7. Cho dy dng

    {an

    }, chng minh rng nu lim

    n

    an+1an

    = a th

    limn

    n

    an = a.

    2.3.8. Cho limn

    an = a v limn

    bn = b. Chng minh rng

    limn

    a1bn + a2bn1 + ... + anb1n

    = ab.

    2.3.9. Cho {an} v {bn} l hai dy tho mn

    bn > 0, n N, v limn (b1 + b2 + ... + bn) = +,(i)

    limn

    anbn

    = g.(ii)

    Chng minh rng

    limn

    a1 + a2 + ... + anb1 + b2 + ... + bn

    = g.

    2.3.10. Cho {an} v {bn} l hai dy tho mn

    bn > 0, n N, v limn (b1 + b2 + ... + bn) = +,(i)limn

    an = a.(ii)

    Chng minh rng

    limn

    a1b1 + a2b2 + ... + anbnb1 + b2 + ... + bn

    = a.

    2.3.11. S dng cc kt qu ca bi trc, hy chng minh nh l Stolz.

    Cho

    {xn

    },

    {yn

    }l hai dy tho mn:

    {yn} tng thc s ti + ,(i)limn

    xn xn1yn yn1 = g.(ii)

    Khi

    limn

    xnyn

    = g.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    48/364

    40 Chng 2. Dy s thc

    2.3.12. Tnh

    limn

    1n

    1 +

    12

    + ... +1n

    ,(a)

    limn

    n

    an+1

    a +

    a2

    2+ ... +

    an

    n

    , a > 1,(b)

    limn

    1

    nk+1

    k! +

    (k + 1)!

    1!+ ... +

    (k + n)!

    n!

    , k N,(c)

    limn

    1n

    1n

    +1

    n + 1... +

    12n

    ,(d)

    limn1k + 2k + ... + nk

    nk+1 , k N,(e)limn

    1 + 1.a + 2.a2...nan

    nan+1, a > 1,(f)

    limn

    1

    nk(1k + 2k + ... + nk) n

    k + 1

    , k N.(g)

    2.3.13. Gi s rng limn

    an = a. Tm

    limn

    1n

    a1 +a2

    2+

    a33

    + ... +an

    n.

    2.3.14. Chng minh rng nu dy{an} tho mnlimn

    (an+1 an) = a,

    thlimn

    ann

    = a.

    2.3.15. Cho limn

    an = a. Hy tnh

    limnan1 + an12 + ... + a12n1 .2.3.16. Gi s rng lim

    nan = a. Hy tnh

    limn

    an1.2

    +an12.3

    + ... +a1

    n.(n + 1)

    ,(a)

    limn

    an1

    an121

    + ... + (1)n1 a12n1

    .(b)

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    49/364

    2.3. nh l Toe plitz, nh l Stolz 41

    2.3.17. Cho k l mt s t nhin c nh bt k ln hn 1. Hy tnh

    limn

    n

    nk

    n

    .

    2.3.18. Cho mt cp s cng dng {an}, tnh

    limn

    n(a1...an)1n

    a1 + a2 + ... + an.

    2.3.19. Cho dy

    {an

    }sao cho dy

    {bn

    }vi bn = 2an + an

    1, n

    2, hi t

    ti b. Hy xt tnh hi t ca {an} .2.3.20. Cho dy {an} tho mn lim

    nnxan = a vi s thc x no . Chng

    minh rng

    limn

    nx(a1.a2...an)1n = aex.

    2.3.21. Tnh

    limn

    1 + 12

    + ... + 1n1 +

    1n

    ln n,(a)

    limn

    1 + 13 + 15 + ... + 12n1ln n

    .(b)

    2.3.22. Gi s{an} tin ti a. Chng minh rng

    limn

    1

    ln n

    a11

    +a22

    + ... +ann

    = a.

    2.3.23. Tnh

    (a) limn

    n!nnen

    1n, (b) lim

    n

    (n!)3n3nen

    1n,

    (c) limn

    (n!)2

    n2n

    1n

    , (d) limn

    n3n

    (n!)3

    1n

    ,

    (e) limn

    k

    nn

    n!, k N.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    50/364

    42 Chng 2. Dy s thc

    2.3.24. Chng minh rng nu limn

    an = a th

    limn

    1

    ln n

    nk=1

    akk

    = a.

    2.3.25. Cho dy {an}, xt dy {An} cc trung bnh cng An = a1+a2+...+ann .Chng minh rng nu lim

    nAn = A th

    limn

    1

    ln n

    nk=1

    akk

    = A.

    2.3.26. Chng minh iu ngc li ca nh l Toeplitz trong 2.3.1.

    Cho {cn,k : 1 k n, n 1} l mt bng s thc bt k. Nu vi midy {an} hi t bt k, dy bin i {bn} cho bi cng thc

    bn =n

    k=1

    cn,kak, n 1

    cng hi t n cng mt gii hn th

    cn,k n

    0 vi mi k N,(i)n

    k=1

    cn,k n

    1,(ii)

    tn ti hng sC > 0 sao cho vi mi s nguyn dng n, ta c(iii)n

    k=1

    |cn,k| C.

    2.4 im gii hn. G ii hn trn v gii hn

    d-i2.4.1. Cho {an} l dy tho mn {a2k} , {a2k+1} v {a3k} hi t.

    (a) Chng minh rng dy {an} cng hi t.(b) Liu t s hi t ca hai trong ba dy con trn c suy ra c s hi t ca

    {an}?

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    51/364

    2.4. i m gi i hn. Gi i hn tr n v gii hn di 43

    2.4.2. T s hi t ca tt c cc dy con ca dy

    {an

    }di dng

    {as.n

    }, s >

    1, c suy ra c s hi t ca {an}?2.4.3. Cho {apn} , {aqn} , . . . , {asn} l cc dy con ca dy {an} sao cho{pn} , {qn} , . . . , {sn} ri nhau tng cp v hp thnh dy {n}. Chng minhrng nu S, Sp, Sq, . . . , S s tng ng l cc tp cc im gii hn (1) ca ccdy {an} , {apn} , {aqn} , . . . , {asn} th

    S = Sp Sq ... Ss.Chng minh rng nu mi dy con {apn} , {aqn} ,..., {asn} hi t ti a th dy

    {an

    }cng hi t ti a.

    2.4.4. nh l trn (bi ton 2.4.3) c ng trong trng hp s lng cc dycon l v hn khng ?

    2.4.5. Chng minh rng, nu mi dy con {ank} ca dy {an} u cha mtdy con

    ankl

    hi t ti a th dy {an} cng hi t ti a.

    2.4.6. Xc nh tp cc im gii hn ca dy {an}, vi

    an =

    4(1)n + 2,(a)

    an =

    1

    2 n 2 3 n 13 n 3 3 n 13 ,(b)an =

    (1 (1)n)2n + 12n + 3

    ,(c)

    an =(1 + cos n) l n 3n + ln n

    ln 2n,(d)

    an =

    cosn

    3

    n,(e)

    an =2n2

    7

    2n2

    7

    .(f)

    2.4.7. Tm tp hp cc im gii hn ca dy {an} cho bi cng thcan = n [n], Q,(a)an = n [n], Q,(b)an = sin n, Q,(c)an = sin n, Q.(d)

    (1)Cn gi l cc gii hn ring hay cc im t ca dy.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    52/364

    44 Chng 2. Dy s thc

    2.4.8. Cho

    {ak

    }l mt dy sinh ra t cch nh s mt-mt bt k cc phn

    t ca ma trn { 3n 3m} , n, m N. Chng minh rng mi s thc ul im gii hn ca dy ny.

    2.4.9. Gi s{an} l dy b chn. Chng minh rng tp cc im gii hnca n l ng v b chn.

    2.4.10. Xc nh limn

    an v limn

    an vi:

    an =2n2

    7

    2n2

    7

    ,(a)

    an = n 1n + 1

    cos n3

    ,(b)

    an = (1)nn,(c)an = n

    (1)nn,(d)

    an = 1 + n sinn

    2,(e)

    an =

    1 +

    1

    n

    n(1)n + sin n

    4,(f)

    an =n

    1 + 2n(1)n ,(g)

    an = 2cos 2n3

    n ,(h)an =

    ln n (1 + cos n)nln 2n

    .(i)

    2.4.11. Tm gii hn trn v gii hn di ca cc dy sau:

    an = n [n], Q,(a)an = n [n], Q,(b)an = sin n, Q,(c)

    an = sin n, Q.(d)2.4.12. Vi dy {an} bt k chng minh rng:

    (a) nu tn ti k N sao cho vi mi n > k, bt ng thc an A lun ngth lim

    nan A,

    (b) nu vi mi k N tn ti nk > k ank A th limn

    an A,

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    53/364

    2.4. i m gi i hn. Gi i hn tr n v gii hn di 45

    (c) nu tn ti k

    N sao cho bt ng thc an

    a ng vi mi n > k th

    limn

    an a,

    (d) nu vi mi k N tn ti nk > k sao cho ank a th limn

    an a.2.4.13. Gi s dy {an} tn ti gii hn trn v gii hn di hu hn. Chngminh rng

    (a) L = limn

    an khi v ch khi

    (i) Vi mi > 0 tn ti k N sao cho an < L + nu n > k v

    (ii) Vi mi > 0 v k N tn ti nk > k sao cho L < ank(b) l = lim

    nan khi v ch khi

    (i) Vi mi > 0 tn ti k N sao cho an > l nu n > k v(ii) Vi mi > 0 v k N tn ti nk > k sao cho ank < l +

    Hy pht biu nhng khng ng tng ng cho gii hn trn v gii hn trongtrng hp v hn.

    2.4.14. Gi s tn ti mt s nguyn n0 sao cho vi n n0, an bn. Chngminh rng

    limn

    an limn

    bn,(a)

    limn

    an limn

    bn.(b)

    2.4.15. Chng minh cc bt ng thc sau (tr trng hp bt nh +v + ):

    limn

    an + limn

    bn limn

    (an + bn) limn

    an + limn

    bn

    limn

    (an + bn) limn

    an + limn

    bn.

    Hy a ra mt s v d sao cho du trong cc bt ng thc trn cthay bng du < .

    2.4.16. Cc bt ng thc sau

    limn

    an + limn

    bn limn

    (an + bn),

    limn

    (an + bn) limn

    an + limn

    bn.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    54/364

    46 Chng 2. Dy s thc

    c ng trong trng hp c v hn dy khng ?

    2.4.17. Ly {an} v {bn} l c c dy s khng m. Chng minh rng (trtrng hp 0.(+) v (+).0) cc bt ng thc sau:

    limn

    an limn

    bn limn

    (an bn) limn

    an limn

    bn

    limn

    (an bn) limn

    an limn

    bn.

    Hy a ra mt s v d sao cho du trong cc bt ng thc trn cthay bng du < .

    2.4.18. Chng minh rng iu kin cn v mt dy {an} hi t l cgii hn trn v gii hn di hu hn vlimn

    an = limn

    an.

    Chng minh rng bi ton vn ng cho trng hp cc dy phn k ti v +.2.4.19. Chng minh rng nu lim

    nan = a, a R th

    limn

    (an + bn) = a + limn

    bn,

    limn

    (an + bn) = a + limn

    bn,

    2.4.20. Chng minh rng nu limn

    an = a, a R, a > 0, v tn ti mt snguyn dng n0 sao cho bn 0 vi n n0, khi

    limn

    (an.bn) = a. limn

    bn,

    limn

    (an.bn) = a. limn

    bn,

    2.4.21. Chng minh rng

    limn

    (an) = limn

    an, limn

    (an) = limn

    an.

    2.4.22. Chng minh rng vi dy s dng {an} ta c

    limn

    1

    an

    =

    1

    limn

    an,

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    55/364

    2.4. i m gi i hn. Gi i hn tr n v gii hn di 47

    limn 1an = 1limn(a

    n) .

    ( y 1+ = 0,

    10+

    = +.)2.4.23. Chng minh rng nu dy {an} l dy s dng tho mn

    limn

    (an) limn

    1

    an

    = 1,

    th dy {an} hi t.

    2.4.24. Chng minh rng nu {an} l dy tho mn vi bt k dy {bn} ,limn

    (an + bn) = limn

    an + limn

    bn,

    vlimn

    (an + bn) = limn

    an + limn

    bn.

    th dy {an} hi t.2.4.25. Chng minh rng, nu {an} l mt dy dng tho mn vi bt k dydng {bn},

    limn(an bn) = limnan limnbn.hoc

    limn

    (an.bn) = limn

    an limn

    bn,

    v vy {an} hi t.2.4.26. Chng minh rng vi bt k dy dng {an},

    limn

    an+1an

    limn

    n

    an limn

    n

    an limn

    an+1an

    .

    2.4.27. Cho dy {an} , ly dy {bn} xc nh nh saubn =

    1

    n(a1 + a2 + ... + an), n N.

    Chng minh rng

    limn

    an limn

    bn limn

    bn limn

    an.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    56/364

    48 Chng 2. Dy s thc

    2.4.28. Chng minh rng

    limn

    (max {an, bn}) = max

    limn

    an, limn

    bn

    ,(a)

    limn

    (min{an, bn}) = min

    limn

    an, limn

    bn

    ,(b)

    Kim tra cc bt ng thc sau:

    limn

    (min {an, bn}) = min

    limn

    an, limn

    bn

    ,(a)

    limn(max {an, bn}) = max limnan, limnbn(d)c ng khng?

    2.4.29. Chng minh rng mi dy s thc u cha mt dy con n iu.

    2.4.30. S dng kt qu bi trc chng minh nh l Bolzano-Weierstrass:

    Mi dy s thc b chn u cha mt dy con hi t.

    2.4.31. Chng minh rng vi mi dy s dng {an},

    limn

    a1 + a2 + ... + an + an+1an

    4.

    Chng minh rng 4 l nh gi tt nht.

    2.5 Cc bi ton hn hp

    2.5.1. Chng minh rng nu limn

    an = + hay limn

    an = th

    limn

    1 +

    1

    an

    an= e.

    2.5.2. Vi x R chng minh rng

    limn

    1 +

    x

    n

    n= ex.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    57/364

    2.5. Cc bi ton hn hp 49

    2.5.3. Vi x > 0 hy kim chng bt ng thc

    x

    x + 2< ln(x + 1) < x.

    (S dng o hm ) chng minh rng bt ng thc tri c th mnh hn nhsau

    x

    x + 2 0.

    2.5.4. Chng minh rng

    limn

    n( n

    a

    1) = ln a, a > 0,(a)

    limn

    n( nn 1) = +.(b)

    2.5.5. Ly {an} l dy s dng vi cc s hng khc 1, chng minh rng nulimn

    an = 1 th

    limn

    ln anan 1 = 1.

    2.5.6. Ly

    an = 1 +1

    1!+

    1

    2!+ ... +

    1

    n!, n N.

    Chng minh rng

    limn

    an = e v 0 < e an < 1nn!

    .

    2.5.7. Chng minh rng

    limn

    1 +

    x

    1!+

    x2

    2!+ ... +

    xn

    n!

    = ex.

    2.5.8. Chng minh rng

    limn

    1

    n+

    1

    n + 1+ ... +

    1

    2n

    = ln 2,

    (a)

    limn

    1

    n(n + 1)+

    1(n + 1)(n + 2)

    + ... +1

    2n(2n + 1)

    = ln2.

    (b)

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    58/364

    50 Chng 2. Dy s thc

    2.5.9. Tm gii hn ca dy

    {an

    },trong

    an =

    1 +

    1

    n2

    1 +

    2

    n2

    ...

    1 +

    n

    n2

    , n N.

    2.5.10. Ly {an} l dy c xc nh qui np nh sau

    a1 = 1, an = n(an1 + 1) vi n = 2, 3,...

    Tnh

    limn

    n

    k=1 1 +1

    ak .2.5.11. Chng minh rng lim

    n(n!e [n!e]) = 0.

    2.5.12. Cho cc s dng a v b, chng minh rng

    limn

    n

    a + n

    b

    2

    n=

    ab.

    2.5.13. Cho {an} v {bn} l cc dy dng tha mn

    limn

    ann = a, limn

    bnn = b, trong a, b > 0,

    v gi s cc s dng p, q tha mn p + q = 1. Chng minh rng

    limn

    (pan + qbn)n = apbq.

    2.5.14. Cho hai s thc a v b, xc nh dy {an} nh sau

    a1 = a, a2 = b, an+1 =n 1

    nan +

    1

    nan1, n 2.

    Tm limn

    an.

    2.5.15. Cho {an} l mt dy c xc nh nh sau

    a1 = 1, a2 = 2, an+1 = n(an + an1), n 2.

    Tm cng thc hin ca cc s hng tng qut ca dy.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    59/364

    2.5. Cc bi ton hn hp 51

    2.5.16. Cho a v b xc nh

    {an

    }nh sau

    a1 = a, a2 = b, an+1 =1

    2nan1 +

    2n 12n

    an, n 2.

    Tm limn

    an.

    2.5.17. Cho

    an = 3 n

    k=1

    1

    k(k + 1)(k + 1)!, n N.

    (a) Chng minh rng limn

    an

    = e.

    (b) Chng minh rng 0 < an e < 1(n+1)(n+1)! .2.5.18. Tnh lim

    nn sin(2n!e).

    2.5.19. Gi s{an} l dy tho mn an < n, n = 1, 2,..., v limn

    an = +.Hy xt tnh hi t ca dy

    1 ann

    n, n = 1, 2,....

    2.5.20. Gi s dy {bn} dng hi t ti +. Xt tnh hi t ca dy1 +

    bnn

    n, n = 1, 2, ....

    2.5.21. Cho dy truy hi {an} nh ngha nh sau0 < a1 < 1, an+1 = an(1 an), n 1,

    chng minh rng

    limn

    nan = 1,(a)

    limn

    n(1 an)ln n

    = 1,(b)

    2.5.22. Xt dy truy hi {an} nh sau0 < a1 < , , an+1 = sin an, n 1.

    Chng minh rng limn

    nan =

    3.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    60/364

    52 Chng 2. Dy s thc

    2.5.23. Cho

    a1 = 1, an+1 = an + 1nk=1

    ak

    , n 1.

    Chng minh rng

    limn

    an2 ln n

    = 1.

    2.5.24. Cho {an} nh saua1 > 0, an+1 = arctan an, n 1,

    tnh limn

    an.

    2.5.25. Chng minh rng dy qui

    0 < a1 < 1, an+1 = cos an, n 1,hi t ti nghim duy nht ca phng trnh x = cos x.

    2.5.26. nh ngha dy {an} nh saua1 = 0, an+1 = 1 sin(an 1), n 1

    Tnh

    limn

    1n

    nk=1

    ak.

    2.5.27. Cho {an} l dy cc nghim lin tip ca phng trnh tan x =x, x > 0. Tm lim

    n(an+1 an).

    2.5.28. Cho |a| 2

    v a1 R. Nghin cu tnh hi t ca dy {an} cho bicng thc sau:

    an+1 = a sin an, n 1.2.5.29. Cho a1 > 0, xt dy

    {an

    }cho bi

    an+1 = ln(1 + an), n 1.Chng minh rng

    limn

    nan = 2,(a)

    limn

    n(nan 2)ln n

    =2

    3.(b)

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    61/364

    2.5. Cc bi ton hn hp 53

    2.5.30. Cho dy

    {an

    }nh sau

    a1 = 0 v an+1 =

    1

    4

    an, n 1.

    Hy nghin cu tnh hi t ca dy.

    2.5.31. Cho a1 > 0, nh ngha dy {an} nh sau:an+1 = 2

    1an , n 1.Kho st tnh hi t ca dy.

    2.5.32. Tm gii hn ca dy cho bi

    a1 =

    2, an+1 = 2an2 , n 1.

    2.5.33. Chng minh rng nu limn

    (an an2) = 0 th

    limn

    an an1n

    = 0.

    2.5.34. Chng minh rng nu vi dy dng {an} bt k tho mn

    limn

    n1 an+1an tn ti (hu hn hoc v hn) th

    limn

    ln 1an

    ln n

    cng tn ti v c hai gii hn bng nhau.

    2.5.35. Cho a1, b1 (0, 1), Chng minh rng dy {an} v {bn} cho bi cngthc

    an+1 = a1(1 an bn) + an, bn+1 = b1(1 an bn) + bn, n 1hi t v tm gii hn ca chng.

    2.5.36. Cho a v a1 dng, xt dy {an} nh sauan+1 = an(2 nan), n = 1, 2,...

    Kho st s hi t ca dy.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    62/364

    54 Chng 2. Dy s thc

    2.5.37. Chng minh rng nu a1 v a2 l hai s dng v

    an+2 =an + an+1, n = 1, 2,...

    th dy {an} hi t. Tm gii hn ca dy.2.5.38. Gi sf : Rk+ R l mt hm tng vi mi bin v tn ti a > 0sao cho

    f(x,x,...,x) > x vi 0 < x < a,

    f(x,x,...,x) < x vi x > a.

    Cho cc s dng a1, a2, . . . , ak, nh ngha dy truy hi {an} nh sau:an = f(an1, an2,...,ank), vi n > k.

    Chng minh rng limn

    an = a.

    2.5.39. Cho a1 v a2 l hai s dng. Xt tnh hi t ca dy {an} c nhngha truy hi nh sau

    an+1 = aneanan1 vi n 1.

    2.5.40. Cho a > 1 v x > 0 , nh ngha {an} bi a1 = ax, an+1 =aan , n N. Hy xt tnh hi t ca dy.2.5.41. Chng minh rng

    2 +

    2 + ... +

    2

    n - cn

    = 2 cos

    2n+1.

    S dng kt qu trn tnh gii hn ca dy truy hi cho bi

    a1 =

    2, an+1 =

    2 + an, n 1.2.5.42. Cho {n} l dy sao cho cc s hng ch nhn mt trong ba gi tr1, 0, 1. Thit lp cng thc

    12 + 22 + + n2 = 2sin

    4

    nk=1

    12...k2k1

    , n N.v chng t rng dy

    an = 1

    2 + 2

    2 + + n

    2

    hi t.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    63/364

    2.5. Cc bi ton hn hp 55

    2.5.43. Tnh

    limn

    arctan

    1

    2+ arctan

    1

    2.22+ ... + arctan

    1

    2n2

    .

    2.5.44. Tnh limn

    sin(

    n2 + n).

    2.5.45. Xt tnh hi t ca dy truy hi di y

    a1 =

    2, a2 =

    2 +

    3, an+2 =

    2 +

    3 + an vi n 1.

    2.5.46. Chng minh rng

    limn

    1 + 2

    1 + 3

    1 + ...

    1 + (n 1)1 + n = 3.

    2.5.47. Cho a > 0, cho dy {an} bi

    a1 < 0, an+1 =a

    an 1 vi n N.

    Chng minh rng dy trn hi t ti nghim m ca phng trnh x2 + x = a.

    2.5.48. Cho a > 0, xt dy {an} :

    a1 > 0, an+1 =a

    an + 1vi n N.

    Chng minh rng dy hi t ti nghim dng ca phng trnh x2 + x = a.

    2.5.49. Cho {an} l dy truy hi cho bi cng thc sau

    a1 = 1, an+1 =2 + an1 + an

    vi n N.

    Chng minh rng {an} l dy Cauchy v tm gii hn ca n.2.5.50. Chng minh rng dy nh ngha bi

    a1 > 0, an+1 = 2 +1

    an, n N,

    l dy Cauchy v tm gii hn ca dy.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    64/364

    56 Chng 2. Dy s thc

    2.5.51. Cho a > 0, nh ngha

    {an

    }nh sau:

    a1 = 0 an+1 =a

    2 + anvi n N.

    Hy xt tnh hi t ca dy {an} .2.5.52. Gi s rng a1 R v an+1 = |an 21n| vi n N. Hy xt tnhhi t ca dy v trong trng hp hi t hy tm gii hn .

    2.5.53. Chng minh rng

    (a) Nu 0 < a < 1 th

    limn

    n1j=1

    jaj

    n j = 0,

    (b) Nu 0 < a < 1 th

    limn

    nann

    j=1

    1

    jaj=

    1

    1 a,

    (c) Nu b > 1 th

    limnn

    bn

    n

    j=1

    bj1

    j =

    1

    b 1 .

    2.5.54. Tnh

    limn

    sin

    n + 1+ sin

    n + 2+ ... + sin

    2n

    .

    2.5.55. Tnh

    limn

    n

    k=1 1 +k2

    cn3 , vi c > 0,(a)limn

    nk=1

    1 k

    2

    cn3

    , vi c > 1.(b)

    2.5.56. Xc nh

    limn

    n3n

    n!

    nk=1

    sink

    n

    n.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    65/364

    2.5. Cc bi ton hn hp 57

    2.5.57. Cho dy

    {an

    }nh ngha theo cng thc sau:

    an =n

    k=0

    n

    k

    1, n 1,

    Chng minh rng limn

    an = 2.

    2.5.58. Tm gi tr sao cho dy

    an =

    1

    1

    n

    1

    2

    n

    ...

    1

    n 1

    n

    , n 2,

    hi t.

    2.5.59. Vi x R, nh ngha {x} = x [x]. Tnh limn

    (2 +

    3)n

    .

    2.5.60. Cho {an} l mt dy dng v t Sn = a1 + a2 + ... + an, n 1.Gi s ta c

    an+1 1Sn+1

    ((Sn 1)an + an1), n > 1.

    Hy tnh limn

    an.

    2.5.61. Cho {an} l dy dng tho mnlimn

    ann

    = 0, limn

    a1 + a2 + ... + ann

    < .

    Tnh

    limn

    a21 + a22 + ... + a

    2n

    n2.

    2.5.62. Xt hai dy dng {an} v {bn} tho mn

    limn

    an

    a1 + a2 + ... + an

    = 0 limn

    bn

    b1 + b2 + ... + bn

    = 0.

    nh ngha dy {cn} nh sau:

    cn = a1bn + a2bn1 + ... + anb1, n N.

    Chng minh rng

    limn

    cnc1 + c2 + ... + cn

    = 0.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    66/364

    58 Chng 2. Dy s thc

    2.5.63. Tnh

    limn

    1 + 1nn2 en.

    2.5.64. Gi s dy {an} b chn trn v tho mn iu kin

    an+1 an > 1n2

    , n N.

    Hy thit lp s hi t ca dy {an} .2.5.65. Gi s dy {an} b chn tho mn iu kin

    an+12n

    2 an, n N.Hy thit lp s hi t ca dy {an} .2.5.66. K hiu l v L tng ng l gii hn di v gii hn trn ca dy{an} . Chng minh rng nu lim

    n(an+1 an) = 0 th mi im trong khong

    m(l, L) l im gii hn ca {an} .2.5.67. K hiu l v L tng ng l gii hn di v gii hn trn ca dy{an} . Gi s rng vi mi n, an+1 an > n, vi n > 0 v lim

    nn = 0.

    Chng minh rng mi im trong khong m(l, L) l im gii hn ca

    {an

    }.

    2.5.68. Cho {an} l dy dng v n iu tng. Chng minh rng tp ccim gii hn ca dy

    ann + an

    , n N,l mt khong, khong ny suy bin thnh mt im trong trng hp hi t.

    2.5.69. Cho a1 R, xt dy {an} nh sau:

    an+1 =

    an2

    nu n chn,1+an

    2nu n l.

    Tm cc im gii hn ca dy trn.

    2.5.70. Liu 0 c phi l mt im gii hn ca dy {n sin n} ?2.5.71. Chng minh rng vi dy dng {an} ta c

    limn

    a1 + an+1

    an

    n e.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    67/364

    2.5. Cc bi ton hn hp 59

    2.5.72. Chng minh kt qu tng qut ca bi ton trn: Cho s nguyn dng

    p v dy dng {an}, Chng minh rng

    limn

    a1 + an+p

    an

    n ep.

    2.5.73. Chng minh vi dy dng {an} ta c

    limn

    n

    1 + an+1

    an 1

    1.

    Chng minh 1 l hng s tt nht c th c ca bt ng thc trn.

    2.5.74. Cho

    an =

    1 +

    1 + ... +

    1

    n - cn

    Tm limn

    an.

    2.5.75. Cho {an} l dy vi cc phn t ln hn 1 . Gi s ta c

    limn

    lnln ann

    = ,

    Xt dy {bn} nh sau:

    bn =

    a1 +

    a2 + ... +

    an, n N.

    Chng minh rng nu < ln 2 th{bn} hi t, ngc li nu < ln 2 th dyphn k ti .2.5.76. Gi s cc s hng ca dy ca dy {an} tho mn iu kin

    0

    an+m

    an + am vi n, mR.

    Chng minh rng gii hn limn

    ann

    tn ti.

    2.5.77. Gi s cc s hng ca dy ca dy {an} tho mn iu kin0 an+m an am vi n, m R.

    Chng minh rng gii hn limn

    n

    an tn ti.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    68/364

    60 Chng 2. Dy s thc

    2.5.78. Gi s cc s hng ca dy ca dy

    {an

    }tho mn iu kin

    |an| 1,an + am 1 an+m an + am + 1

    vi n, m N.

    (a) Chng minh rng gii hn limn

    ann

    tn ti.

    (b) Chng minh rng nu gii hn limn

    ann

    = g th

    ng

    1

    an

    ng + 1 vi n

    N.

    2.5.79. Cho {an} l dy dng v n iu tng tho mn iu kinan.m nam vi n, m N.

    Chng minh rng nu sup

    ann

    : n N < + th dy ann

    hi t.

    2.5.80. Cho hai s dng a1 v a2, chng minh dy truy hi {an} cho bi

    an+2 =2

    an+1 + anvi n N

    hi t.

    2.5.81. Cho b1 a1 > 0, xt hai dy {an} v {bn} cho bi cng thc truyhi:

    an+1 =an + bn

    2, bn+1 =

    an+1bn vi n N.

    Chng minh rng c hai dy u hi t ti cng mt gii hn.

    2.5.82. Cho ak,n, bk,n, n N, k = 1, 2,...,n, l hai bng tam gic cc s thcvi bk,n = 0. Gi s rng ak,nbk,n n 1 u i vi k, c ngha l vi mi > 0,lun tn ti mt s dng n0 sao cho

    ak,nbk,n 1 < vi mi n > n0 v k = 1, 2,...,n. Chng minh rng nu lim

    n

    nk=1

    bk,n tn ti

    th

    limn

    nk=1

    ak,n = limn

    nk=1

    bk,n.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    69/364

    2.5. Cc bi ton hn hp 61

    2.5.83. Cho a

    = 0, tm

    limn

    nk=1

    sin(2k 1)a

    n2.

    2.5.84. Vi a > 0, tnh

    limn

    nk=1

    a

    k

    n2 1

    .

    2.5.85. Tnh

    limn

    nk=1

    1 + kn2 .2.5.86. Vi p = 0 v q > 0, hy tnh

    limn

    nk=1

    1 +

    kq1

    nq

    1p

    1

    .

    2.5.87. Cho cc s dng a, b v d vi b > a, tnh

    limna(a + d)...(a + nd)

    b(b + d)...(b + nd) .

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    70/364

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    71/364

    Ch-ng 3

    Chui s thc

    Tm tt l thuyt

    Cho chui hnh thc

    n=1

    an.(A )

    an c gi l s hng thn hay s hng tng qut ca chui (A).Dy cc tng ring ca chui (A) c nh ngha l

    sn =n

    k=1

    ak, n N.

    sn c gi l tng ring th n ca chui (A).

    Ni rng chui (A) hi t v c tng bng s, nu

    limn

    sn = s.

    Trong trng hp ny, phn d ca chui (A) c nh ngha l

    rn = s sn =

    k=n+1

    ak, n N.

    Ni rng chui (A) phn k, nu gii hn ni trn khng tn ti

    63

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    72/364

    64 Chng 3. Chui s thc

    iu kin cn chui (A) hi t l

    limn

    an = 0.

    iu kin cn v chui (A) hi t l: vi > cho trc, tnti n N sao cho

    n+pk=n

    ak

    < , n > n, p N.

    (A) c gi l chui dng nu an 0 vi mi n. Tiu chun so snh. Cho hai chui dng (A) v (B)

    n=1

    bn.(B)

    Gi san bn n N.

    Khi ,nu chui (B) hi t, th chui (A) cng hi t;

    nu chui (A) phn k, th chui (B) cng phn k.

    c bit, nu

    limn

    anbn

    = k = 0,

    th hai chui (A), (B) cng hi t hoc cng phn k.

    Tiu chun t s (D'Alembert). Cho chui dng (A).Nu

    limn

    an+1an

    < 1,

    th chui (A) hi t.

    Nulimn

    an+1an

    > 1,

    th chui (A) phn k.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    73/364

    Tm tt l thuy t 65

    c bit, gi s tn ti gii hn

    a = limn

    an+1an

    ,

    khi , nu a < 1 th chui (A) hi t; nu a > 1 th chui (A) phn k.

    Tiu chun cn (Cachy). Cho chui dng (A). Gi s tn ti giihn

    c = limn

    n

    an,

    khi , nu c < 1 th chui (A) hi t; nu c > 1 th chui (A) phn k.

    Tiu chun Raabe. Cho chui dng (A).Nulimn

    n

    an

    an+1 1

    > 1,

    th chui (A) hi t.

    Nu

    limn

    n

    an

    an+1 1

    < 1,

    th chui (A) phn k.

    c bit, gi s tn ti gii hn

    r = limn

    n(an

    an+1 1)

    khi , nu r > 1 th chui (A) hi t; nu r < 1 th chui (A) phn k.

    Ni rng chui (A) hi t tuyt i, nu chui (gm cc tr stuyt i)

    n=1

    |an|

    hi tu.Chui hi t tuyt i th hi t. iu ngc li, ni chung, khng ng.

    Ni rng chui (A) hi t c iu kin hay bn hi t, nuchui n hi t nhng khng hi t tuyt i.

    Chui an du l chui c dng

    b1 b2 + b3 + (1)n1 + , bn 0.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    74/364

    66 Chng 3. Chui s thc

    Tiu chun Leibniz ni rng, nu dy s

    {bn

    }n iu gim v hi

    t v0 th chui an du hi t. Php bin i Abel Cho hai chui bt k (A) v (B). t

    An =n

    k=1

    ak, Bn =n

    k=1

    bk, Cn =n

    k=1

    akbk.

    Khi ta c

    Cn = anBn n1k=1

    (ak+1 ak)Bk.

    Tiu chun Abel. Cho hai chui bt k (A) v (B). X t chui (C)nh sau

    n=1

    anbn.(C)

    Nu chui (B) hi t v dy {an} n iu v b chn th chui (C) hi t. Tiu chun Dirichlet. Nu dy {An} b chn, dy {bn} n iu

    v c gii hn bng 0 th chui (C) hi t.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    75/364

    3.1. Tng ca chui 67

    3.1 T ng ca chui

    3.1.1. Tm cc chui v tng ca chng nu dy {Sn} cc tng ring ca chngc cho nh sau:

    (a) Sn =n + 1

    n, n N, (b) Sn = 2

    n 12n

    , n N,

    (c) Sn = arctan n, n N, (d) Sn = (1)n

    n, n N,

    3.1.2. Tm tng ca cc chui

    (a)

    n=1

    2n + 1

    n2(n + 1)2 , (b)

    n=1

    n

    (2n 1)2(2n + 1)2 ,

    (c)

    n=1

    n n2 1n(n + 1)

    , (d)

    n=1

    1

    4n2 1 ,

    (e)

    n=1

    1

    (

    n +

    n + 1)

    n(n + 1).

    3.1.3. Tnh cc tng sau

    ln1

    4+

    n=1 ln (n + 1)(3n + 1)n(3n + 4) ,(a)n=1

    ln(2n + 1)n

    (n + 1)(2n 1) .(b)

    3.1.4. Tm tng ca cc chui

    n=1

    1

    n(n + 1) . . . (n + m), m N,(a)

    n=11

    n(n + m), m N,(b)

    n=1

    n2

    (n + 1)(n + 2)(n + 3)(n + 4).(c)

    3.1.5. Tnh

    (a)

    n=1

    sinn!

    720, (b)

    n=1

    1

    n

    ln n

    n ln n

    .

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    76/364

    68 Chng 3. Chui s thc

    3.1.6. Tnhn=1

    sin 12n+1

    cos 32n+1

    .

    3.1.7. Tm n=0

    1

    n!(n4 + n2 + 1).

    3.1.8. Chng minh rng

    n=1n

    3

    5

    . . .

    (2n + 1)

    =1

    2.

    3.1.9. Gi s{an} l mt dy tho mnlimn

    ((a1 + 1)(a2 + 1) . . . (an + 1)) = g, 0 < g +.

    Chng minh rng

    n=1

    an(a1 + 1)(a2 + 1) . . . (an + 1)

    = 1 1g

    .

    ( qui c: 1

    = 0).

    3.1.10. Dng kt qu trong bi ton trc, tm tng ca cc chui

    n=1

    n 1n!

    ,(a)

    n=1

    2n 12 4 6 . . . 2n ,(b)

    n=2

    1n2

    1 1

    22

    1 1

    32

    ...

    1 1

    n2

    .(c)

    3.1.11. Gi {an} l dy cho bia1 > 2, an+1 = a

    2n 2 vi n N.

    Chng minh rng

    n=1

    1

    a1 a2 . . . an =a1

    a12 4

    2.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    77/364

    3.1. Tng ca chui 69

    3.1.12. Vi b > 2, kim tra rng

    n=1

    n!

    b(b + 1) . . . (b + n 1) =1

    b 2 .

    3.1.13. Cho a > 0 v b > a + 1, chng minh ng thc

    n=1

    a(a + 1) . . . (a + n 1)b(b + 1) . . . (b + n 1) =

    a

    b a 1 .

    3.1.14. Cho a > 0 v b > a + 2, kim tra ng thc sau

    n=1

    a(a + 1) . . . (a + n 1)b(b + 1) . . . (b + n 1) =

    a(b 1)(b a 1)(b a 2) .

    3.1.15. Cho

    n=1

    1an

    l chui phn k vi cc s hng dng. Cho trc b > 0,

    tm tng

    n=1

    a1 a2 . . . an(a2 + b)(a3 + b) . . . (an+1 + b)

    .

    3.1.16. Tnh n=0

    (1)n cos3 3nx

    3n.

    3.1.17. Cho cc hng s khc khng a, b v c, gi s cc hm f v g tho mniu kin f(x) = af(bx) + cg(x).

    (a) Chng minh rng nu limn

    anf(bnx) = L(x) tn ti th

    n=0

    an

    g(bn

    x) =

    f(x)

    L(x)

    c .

    (b) Chng minh rng nu limn

    anf(bnx) = M(x) tn ti th

    n=0

    ang(bnx) =M(x) af(bx)

    c.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    78/364

    70 Chng 3. Chui s thc

    3.1.18. Dng ng nht thc sin x = 3 sin x3

    4sin3 x

    3, chng minh rng

    n=0

    3n sin3x

    3n+1=

    x sin x4

    ,(a)

    n=0

    1

    3nsin3

    x

    3n+1=

    3

    4sin

    x

    3.(b)

    3.1.19. Dng ng nht thc cot x = 2 cot(2x) + tan x vi x = k 2

    , k Z,chng minh rng

    n=01

    2n

    tanx

    2n

    =1

    x 2cot(2x).

    3.1.20. Dng ng nht thc arctan x = arctan(bx) + arctan (1b)x1+bx2

    , thitlp cc cng thc sau:

    n=0

    arctan(1 b)bnx

    1 + b2n+1x2= arctan x vi 0 < b < 1,(a)

    n=0

    arctan(b 1)bnx

    1 + b2n+1x2= arccot x vi x = 0 v b > 1.(b)

    3.1.21. Cho {an} l dy Fibonacci c xc nh bia0 = a1 = 1, an+1 = an + an1, n 1

    v t Sn =n

    k=0

    a2k . Tm

    n=0

    (1)nSn

    .

    3.1.22. Vi dy Fibonacci {an} trong bi trn, tnh

    n=0

    (1)nanan+2

    .

    3.1.23. Vi dy Fibonacci {an} trong bi trn, xc nh tng

    n=1

    arctan1

    a2n.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    79/364

    3.1. Tng ca chui 71

    3.1.24. Tm tng

    (a)

    n=1

    arctan2

    n2, (b)

    n=1

    arctan1

    n2 + n + 1,

    (c)

    n=1

    arctan8n

    n4 2n2 + 5 .

    3.1.25. Cho {an} l dy dng phn k ti v cng. Chng minh rng

    n=1arctan

    an+1 an1 + anan+1

    = arctan1

    a1.

    3.1.26. Chng minh rng vi bt k hon v no ca cc s hng ca chuidng, tng ca chui nhn c khng thay i.

    3.1.27. Chng minh ng nht thc

    n=1

    1

    (2n 1)2 =3

    4

    n=1

    1

    n2.

    3.1.28. Chng minh rng

    n=11

    n2

    =2

    6

    ,(a)

    n=1

    1

    n4=

    4

    90,(b)

    n=0

    (1)n 12n + 1

    =

    4(c)

    3.1.29. Cho dy {an} c xc nh bia1 = 2, an+1 = a

    2n an + 1 vi n 1.

    Tm n=1

    1an .

    3.1.30. Cho dy {an} c xc nh nh sau

    a1 > 0, an+1 = lnean 1

    anvi n 1,

    v t bn = a1 a2 . . . an. Tmn=1

    bn.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    80/364

    72 Chng 3. Chui s thc

    3.1.31. Cho dy

    {an

    }c xc nh bi

    a1 = 1, an+1 =1

    a1 + a2 + . . . + an

    2 vi n 1.

    Tm tng ca chui

    n=1

    an.

    3.1.32. Tm tng ca cc chui sau

    n=1(1)n1 1

    n,(a)

    n=1

    (1)n1 2n + 1n(n + 1)

    ,(b)

    n=1

    1

    x + 2n 1 +1

    x + 2n 1

    x + n

    , x = 1, 2, . . . .(c)

    3.1.33. Tnh n=1

    (1)n1 ln

    1 +1

    n

    .

    3.1.34. Tnh n=1

    (1)n1 ln

    1 1(n + 1)2

    .

    3.1.35. Xc nh tng ca cc chui

    n=1

    1

    n ln

    1 +

    1

    n

    .

    3.1.36. Gi s hm f kh vi trn (0, +), sao cho o hm f ca n niu trn mt khong con (a, +), v limx f(x) = 0. Chng minh rng giihn

    limn+

    1

    2f(1) + f(2) + f(3) + . . . + f(n 1) + 1

    2f(n)

    n1

    f(x)dx

    tn ti. Xt c c trng hp c bit ca khi hm f(x) c dng f(x) = 1

    xv

    f(x) = ln x.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    81/364

    3.1. Tng ca chui 73

    3.1.37. Xc nh tng ca chui

    n=1

    (1)n ln nn

    .

    3.1.38. Tm n=1

    n ln

    2n + 1

    2n 1 1

    .

    3.1.39. Cho trc s nguyn k 2, chng minh rng chui

    n=1 1(n 1)k + 1 + 1(n 1)k + 2 + . . . + 1nk 1 xnk

    hi t i vi duy nht mt gi tr ca x. Tm gi tr ny v tng ca chui.

    3.1.40. Cho dy {an} c xc nh bi

    a0 = 2, an+1 = an +3 + (1)n

    2,

    tnh

    n=0(1)[n+12 ]

    1

    a2n 1 .3.1.41. Chng minh rng tng ca cc chui

    (a)

    n=1

    1

    n!, (b)

    n=1

    1

    (n!)2

    l v t.

    3.1.42. Cho {n} l dy vi n nhn hai gi tr 1 hoc 1. Chng minh rng

    tng ca chui

    n=1 nn! l s v t.3.1.43. Chng minh rng vi mi s nguyn dng k , tng ca chui

    n=1

    (1)n(n!)k

    l v t.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    82/364

    74 Chng 3. Chui s thc

    3.1.44. Gi s rng

    {nk

    }l dy n iu tng cc s nguyn dng sao cho

    limk

    nkn1n2 . . . nk1 = +.

    Chng minh rngi=1

    1ni

    l v t.

    3.1.45. Chng minh rng nu {nk} l dy cc s nguyn dng tho mn

    limk

    nkn1n2 . . . nk1 = + v limk

    nknk1

    > 1,

    thi=1

    1ni

    l v t.

    3.1.46. Gi s rng {nk} l dy n iu tng cc s nguyn dng sao cho

    limk2k

    nk = . Chng minh rngk=1 1nk l v t.

    3.1.47. Gi s chui

    n=1

    pnqn

    , pn, qn N l chui hi t v gi s

    pnqn 1

    pn+1qn+1 1

    pnqn

    .

    K hiu A l tp tt c cc s n sao cho bt ng thc trn c du > . Chngminh rng

    n=1

    pnqn

    v t khi v ch khi A l v hn.

    3.1.48. Chng minh rng vi mi dy tng ngt cc s nguyn dng {nk},tng ca chui

    k=1

    2nknk!

    l v t.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    83/364

    3.2. Chui dng 75

    3.2 Chui d-ng

    3.2.1. Cc chui sau hi t hay phn k

    (a)

    n=1

    (

    n2 + 1 3

    n3 + 1), (b)

    n=1

    (n2 + 1

    n2 + n + 1)n

    2

    ,

    (c)

    n=2

    (2n 3)!!(2n 2)!! , (d)

    n=1

    (n

    n + 1)n(n+1),

    (e)

    n=1 1 cos1

    n , (f)

    n=1(n

    n

    1)n,

    (g)n=1

    ( n

    a 1), a > 1.

    3.2.2. Kim tra s hi t ca cc chui sau y

    (a)

    n=1

    1

    nln

    1 +

    1

    n

    , (b)

    n=2

    1n

    lnn + 1

    n 1 ,

    (c)

    n=1 1n2 ln n, (d)

    n=2 1(ln n)ln n ,(e)

    n=2

    1

    (ln n)lnlnn.

    3.2.3. Chon=1

    an,n=1

    bn l cc chui dng tho mn

    an+1an

    bn+1bn

    vi n n0.

    Chng minh rng nu

    n=1

    bn hi t, th

    n=1

    an cng hi t.

    3.2.4. Kim tra s hi t ca cc chui sau y

    (a)

    n=1

    nn2

    enn!, (b)

    n=1

    nn

    enn!.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    84/364

    76 Chng 3. Chui s thc

    3.2.5. Tm gi tr ca cc chui sau hi t

    (a)

    n=1

    n

    a 1 , a > 1, (b) n=1

    n

    n 1 ,(c)

    n=1

    1 +

    1

    n

    n+1 e

    , (d)

    n=1

    1 n sin 1

    n

    .

    3.2.6. Chng minh rng nu chui dng

    n=1

    an hi t th

    n=1

    (aan 1) , a > 1

    cng hi t.

    3.2.7. Kho st s hi t ca cc chui sau

    (a)n=1

    ln

    cos1

    n

    , (b)

    n=1

    ea lnn+bc lnn+d ,a,b,c,d R

    (c) n=1

    n2n

    (n + a)(n+b)(n + b)(n+a), a, b > 0.

    3.2.8. Gi s chui

    n=1

    an vi cc s hng khng m hi t. Chng minh rng

    n=1

    anan+1 cng hi t. Chng minh rng iu ngc li l khng ng, tuy

    nhin nu dy {an} n iu gim th iu ngc li ng.

    3.2.9. Gi s rng chui dng

    n=1 an phn k. Nghin cu s hi t cc chuisau y(a)

    n=1

    an1 + an

    , (b)

    n=1

    an1 + nan

    ,

    (c)

    n=1

    an1 + n2an

    , (d)n=1

    an1 + a2n

    .

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    85/364

    3.2. Chui dng 77

    3.2.10. Gi s chui dng

    n=1 an phn k, k hiu dy cc tng ring ca nl {Sn} . Chng minh rng

    n=1

    anSn

    phn k,

    v n=1

    anS2n

    hi t.

    3.2.11. Chng minh rng vi cc gi thit nh ca bi trc, chui

    n=2

    an

    SnSn1

    hi t vi mi > 0.

    3.2.12. Chng minh rng cc gi thit cho bi tp 3.2.10 , chui

    n=2anSn

    hi t nu > 1 v phn k nu 1.

    3.2.13. Cho chuin=1

    an hi t, k hiu rn =

    k=n+1

    ak, n N l dy ccphn d ca n. Chng minh rng

    n=2

    anrn1

    phn k,(a)

    n=2an

    rn1hi t.(b)

    3.2.14. Chng minh rng vi cc gi thit c cho bi trc , chui

    n=2

    anrn1

    hi t nu < 1 v phn k nu 1.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    86/364

    78 Chng 3. Chui s thc

    3.2.15. Chng minh rng vi gi thit nh bi 3.2.13, chui

    n=1 an+1 ln2 rnhi t.

    3.2.16. Cho chui dng

    n=1

    an. Gi s rng

    limn

    n lnan

    an+1= g.

    Chng minh rng

    n=1

    an hi t nu g > 1 v phn k nu g < 1 (k c trng

    hp g = + v g = ). Hy a v d chng t rng khi g = 1 th takhng th a ra kt lun c.

    3.2.17. Nghin cu s hi t ca cc chui sau y

    (a)

    n=1

    1

    2n

    , (b)

    n=1

    1

    2lnn,

    (c)

    n=1

    1

    3ln n, (d)

    n=1

    1

    alnn, a > 0,

    (e)

    n=2

    1

    alnlnn, a > 0.

    3.2.18. Kho st s hi t ca chui

    n=1

    a1+12+...+

    1n , a > 0.

    3.2.19. Dng kt qu ca bi ton 3.2.16, chng minh dng gii hn ca Tiuchun Raabe.Cho an > 0, n N, t

    limn

    n

    an

    an+1 1

    = r.

    Chng minh rng n=1

    an hi t nu r > 1 v phn k nu r < 1.

    3.2.20. Cho dy {an} c xc nh bi

    a1 = a2 = 1, an+1 = an +1

    n2an1 vi n 2.

    Nghin cu s hi t ca chui

    n=1

    1an

    .

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    87/364

    3.2. Chui dng 79

    3.2.21. Cho a1 v l cc s dng. Dy

    {an

    }c xc nh nh sau

    an+1 = anean , vi n = 1, 2, . . . .

    Hy xc nh v chuin=1

    an hi t.

    3.2.22. Xc nh a chui

    n=1

    n!

    (a + 1)(a + 2) . . . (a + n)

    hi t.3.2.23. Cho a l s dng tu v {bn} l dy s dng hi t ti b. Nghincu s hi t ca chui

    n=1

    n!an

    (a + b1)(2a + b2) . . . (na + bn) .

    3.2.24. Chng minh rng nu dy cc s dng {an} tho mnan+1

    an= 1

    1

    n n

    n ln n

    ,

    trong n > 1, thn=1

    an hi t. Mt khc, nu

    an+1an

    = 1 1n

    nn ln n

    ,

    trong n < 1, thn=1

    an phn k. (Tiu chun Bertrand.)

    3.2.25. Dng tiu chun Bertrand v Raabe chng minh tiu chun Gauss.

    Nu dy cc s dng {an} tho mnan+1

    an= 1

    n n

    n,

    trong > 1, v {n} l dy b chn, thn=1

    an hi t khi > 1 v phn

    k nu 1.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    88/364

    80 Chng 3. Chui s thc

    3.2.26. Kho st s hi t ca chui

    n=1

    ( + 1) . . . ( + n 1)n!

    (+ 1) . . . (+ n 1)(+ 1) . . . (+ n 1)

    y , v l cc hng s dng.

    3.2.27. Tm gi tr ca p chui

    n=1

    (2n 1)!!

    (2n)!!

    phi t.

    3.2.28. Chng minh tiu chun c c ca Cauchy.

    Cho {an} l dy n iu gim cc s khng m. Chng minh rng chui

    n=1

    an hi t khi v ch khi chui

    n=1

    2na2n hi t.

    3.2.29. Kim tra s hi t ca cc chui sau y

    (a)

    n=21

    n(ln n), (b)

    n=31

    n

    ln n

    lnln n.

    3.2.30. Chng minh nh l Schlomilch (suy rng ca nh l Cauchy, xembi tp 3.2.28).

    Nu {gk} l dy tng ngt cc s nguyn dng sao cho vi c > 0 no vvi mi k N, gk+1 gk c(gk gk1) v vi dy dng {an} gim ngt,ta c

    n=1

    an < khi v ch khi

    n=1

    (gk+1 gk)agk < .

    3.2.31. Cho {an} l dy n iu gim cc s dng. Chng minh chuin=1 an

    hi t khi v ch khi cc chui sau hi t

    (a)

    n=1

    3na3n, (b)

    n=1

    nan2, (c)

    n=1

    n2an3,

    (d) S dng tiu chun trn hy nghin cu s hi t ca cc chui trong bitp 3.2.17.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    89/364

    3.2. Chui dng 81

    3.2.32. Gi s{

    an}

    l dy dng. Chng minh rng chui

    n=1 an hi t nulimn

    (an)1

    lnn 1 th chui hi t, cn nu g < 1 th chui phn k( y g c th bng ).

    Cho v d chng t rng trong trng hp g = 1 th cha th c kt lun g.

    3.2.58. Chng t rng tiu chun Raabe (xem 3.2.19) v tiu chun cho trongbi tp 3.2.16 l tng ng. Hn na, chng t rng khng nh trong bitp trn l mnh hn cc tiu chun .

    3.2.59. Nghin cu s hi t ca chui

    n=1

    an vi cc s hng c cho bi :

    a1 =

    2, an =

    2

    2 +

    2 + . . . +

    2

    (n 1) - cn, n 2.

    3.2.60. Cho {an} l mt dy n iu gim ti 0. Chng t rng nu dy sc s hng tng qut l

    (a1 an) + (a2 an) + . . . + (an1 an)

    b chn th chui

    n=1

    an phi hi t.

  • 8/9/2019 Bai_tap_giai_tich_Tap1-DoanChi-Goc

    93/364

    3.2.