32
Analisa Termal

Bab 7 Analisa Termal 2

Embed Size (px)

Citation preview

  • Analisa Termal

  • Teknik Analisa Termal

    Differential Thermal Analysis (DTA)

    Perbedaan suhu antara sampel dengan material standar yang inert, T = TS - TR,diukur saat keduanya diberi perlakuan panas tertentu.

    Differential Scanning Calorimetry (DSC)

    Sampel dan standar dijaga pada suhu yang sama, bahkan selama terjadi perubahan-perubahan termal tertentu pada sampel.

    Variabel yang diukur adalah besarnya energi yang diperlukan untuk menjagaperbedaan suhu sampel dan standar sama dengan nol, d q/dt.

    Thermogravimetric Analysis (TGA)

    Pengukuran dilakukan pada perubahan massa sampel akibat pemanasan.

    Sejumlah teknik pengukuran dimana sifat-sifat fisik diukur sebagai fungsi darisuhu, dimana sampel dikenakan proses pemanasan atau pendinginan tertentu.

  • Prinsip-prinsip dasar analisa termalInstrumentasi modern yang digunakan pada analisa termal biasanya terdiri dari empat bagian:

    1)Sample/sample holder

    2)Sensor untuk mendeteksi/mengukur sifat-sifat tertentu sampel dan suhu.

    3)Pengaturan yang memungkinkan paremeter-parameter eksperimen dapat dikontrol.

    4)Komputer yang memungkinkan pengumpulan dan pemrosesan data.

    DTA power compensated DSC heat flux DSC

  • Differential Thermal Analysis

    samplepan

    inert gasvacuum

    referencepan

    heatingcoil

    sample holder

    sample and reference cells (Al)

    sensors

    Pt/Rh atau chromel/alumel thermocouples Satu untuk sampel dan satu untuk reference Dihubungkan dengan pengontrol suhu

    diferensial

    furnace

    alumina block berisi sampel dan reference

    temperature controller

    Mengontrol program suhu dan atmosfer furnace

    alumina block

    Pt/Rh or chromel/alumelthermocouples

  • keuntungan:

    Instrumen dapat digunakan pada suhu yangsangat tinggi

    Instrumen sangat sensitif

    Volume dan bentuk crucible fleksibel

    Transisi atau suhu reaksi yang karakteristikdapat ditentukan dengan akurat,

    kelemahan:

    Ketidakpastian estimasi panas bagi reaksi,transisi dan fusi sekitar 20-50%

    DTA

    Differential Thermal Analysis

  • DSC differs fundamentally from DTA in that the sample and reference are bothmaintained at the temperature predetermined by the program.

    during a thermal event in the sample, the system will transfer heat to or from thesample pan to maintain the same temperature in reference and sample pans

    two basic types of DSC instruments: power compensation and heat-flux

    Differential Scanning Calorimetry

    power compensation DSC heat flux DSC

  • Power Compensation DSC

    sample holder

    Al or Pt pans

    sensors

    Pt resistance thermocouples separate sensors and heaters for the sample and reference

    furnace

    separate blocks for sample and reference cells

    temperature controller

    differential thermal power is supplied to the heaters to maintain the temperatureof the sample and reference at the program value

    samplepan

    T = 0

    inert gasvacuum

    inert gasvacuum

    individualheaters

    controller P

    referencepan

    thermocouple

  • Sample Preparation

    accurately-weigh samples (~3-20 mg)

    small sample pans (0.1 mL) of inert or treated metals (Al, Pt, Ni, etc.)

    several pan configurations, e.g., open , pinhole, or hermetically-sealed pans

    the same material and configuration should be used for the sample and thereference

    material should completely cover the bottom of the pan to ensure goodthermal contact

    avoid overfilling the pan to minimize thermal lag from the bulk of thematerial to the sensor

    * small sample masses andlow heating rates increaseresolution, but at theexpense of sensitivity

    Al Pt alumina Ni Cu quartz

  • sample holder

    sample and reference are connected bya low-resistance heat flow path

    Al or Pt pans placed on constantan disc

    sensors

    chromel-constantan area thermocouples (differential heat flow) chromel-alumel thermocouples (sample temperature)

    furnace

    one block for both sample and reference cells

    temperature controller

    the temperature difference between the sample and reference is converted todifferential thermal power, d q/dt, which is supplied to the heaters to maintain thetemperature of the sample and reference at the program value

    Heat Flux DSC

    samplepan

    inert gasvacuum

    heatingcoil

    referencepan

    thermocouples

    chromel wafer

    constantan

    chromel/alumelwires

  • Modulated DSC Heating Profile

    Modulated DSC (MDSC)

    introduced in 1993; heat flux design

    sinusoidal (or square-wave or sawtooth)modulation is superimposed on theunderlying heating ramp

    total heat flow signal contains all ofthe thermal transitions of standardDSC

    Fourier Transformation analysis is usedto separate the total heat flow into itstwo components:

    heat capacity (reversing heat flow) kinetic (non-reversing heat flow)

    glass transition crystallizationmelting decomposition

    evaporationenthalpic relaxation

    cure

  • Analysis of Heat-Flow in Heat Flux DSC

    temperature difference may be deduced by considering the heat flow paths in the DSC system

    thermal resistances of a heat-flux system change with temperature

    the measured temperature difference is not equal to the difference in temperature between the sample and the reference

    Texp TS TR

    tem

    pera

    ture

    Tfurnace

    TRP

    TRTS

    TSP

    heating block

    TR TS

    reference

    sample

    TLthermocouple is not in physical contact with sample

  • DSC Calibration

    baseline

    evaluation of the thermal resistance of thesample and reference sensors

    measurements over the temperature rangeof interest

    2-step process

    the temperature difference of twoempty crucibles is measured

    the thermal response is then acquiredfor a standard material, usuallysapphire, on both the sample andreference platforms

    amplified DSC signal is automatically varied with temperature to maintain a constantcalorimetric sensitivity with temperature

  • use of calibration standards of known heat capacity, such as sapphire, slow accurateheating rates (0.52.0 C/min), and similar sample and reference pan weights

    DSC Calibrationtemperature

    goal is to match the melting onset temperatures indicated by the furnacethermocouple readouts to the known melting points of standards analyzed by DSC

    should be calibrated as close to the desired temperature range as possible

    heat flow

    calibrants

    high purity accurately known enthalpies thermally stable light stable (h ) nonhygroscopic unreactive (pan, atmosphere)

    metals In 156.6 C; 28.45 J/g Sn 231.9 C Al 660.4 Cinorganics KNO3 128.7 C KClO4 299.4 Corganics polystyrene 105 C benzoic acid 122.3 C; 147.3 J/g anthracene 216 C; 161.9 J/g

  • Thermogravimetric Analysis (TGA)

    thermobalance allows for monitoringsample weight as a function oftemperature

    two most common instrument types

    reflection

    null

    weight calibration using calibratedweights

    temperature calibration based onferromagnetic transition of Curie pointstandards (e.g., Ni)

    larger sample masses, lower temperaturegradients, and higher purge ratesminimize undesirable buoyancy effects

    TG curve of calcium oxalate

    12.15%

    19.32%

    29.99%

    20

    40

    60

    80

    100

    120

    We

    igh

    t (%

    )

    0 20 40 60 80 100 120 140 160

    Time (min)

    Sample: Calcium OxalateSize: 7.9730 mg TGA

    File: Y:\Data\TGA\Calcium oxalate\032304.001Operator: SLTRun Date: 23-Mar-04 14:57Instrument: 2950 TGA HR V5.4A

    Universal V3.7A TA Instruments

  • Typical Features of a DSC Trace for a Polymorphic System

    sulphapyridine

    endothermic events

    meltingsublimation

    solid-solid transitionsdesolvation

    chemical reactions

    exothermic events

    crystallizationsolid-solid transitions

    decompositionchemical reactions

    baseline shifts

    glass transition

  • -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    He

    at

    Flo

    w (

    W/g

    )

    0 50 100 150 200 250 300 350

    Temperature (C)

    Form I Form II Variable Hydrate Dihydrate Acetic acid solvate

    Exo Up

    Form III

    Form IForm II

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    He

    at

    Flo

    w (

    W/g

    )

    0 50 100 150 200 250 300 350

    Temperature (C)

    Form I Form II Variable Hydrate Dihydrate Acetic acid solvate

    Exo Up

    Form III

    Form IForm II

    Thermal Methods in the Study of Polymorphs and Solvates

    polymorph screening/identification

    thermal stability melting crystallization solid-state transformations desolvation glass transition sublimation decomposition

    heat flow heat of fusion heat of transition heat capacity

    mixture analysis chemical purity physical purity (crystal forms, crystallinity)

    phase diagrams eutectic formation (interactions with other molecules)

  • Definition of Transition Temperature

    157.81C

    156.50C28.87J/g

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    He

    at

    Flo

    w (

    W/g

    )

    140 145 150 155 160 165 170 175

    Temperature (C)

    Sample: INDIUM CRIMPED PAN CHECKSize: 7.6300 mgMethod: indiumComment: P/N 56S-107

    DSCFile: C:...\10C per min crimped\DSC010920A.3Operator: Ron VansickleRun Date: 20-Sep-01 09:13Instrument: 2920 MDSC V2.6A

    Exo Up Universal V3.3B TA Instruments

    extrapolatedonset temperature

    peak meltingtemperature

  • Melting Processes by DSC

    pure substances

    linear melting curve

    melting point definedby onset temperature

    impure substances

    concave melting curve

    melting characterizedat peak maxima

    eutectic impuritiesmay produce a secondpeakmelting with decomposition

    exothermic

    endothermic

    eutectic melt

  • Glass Transitions

    second-order transition characterized bychange in heat capacity (no heat absorbedor evolved)

    transition from a disordered solid to aliquid

    appears as a step (endothermic direction)in the DSC curve

    a gradual volume or enthalpy change may occur, producing an endothermic peaksuperimposed on the glass transition

  • Enthalpy of Fusion

    157.81C

    156.50C28.87J/g

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    He

    at

    Flo

    w (

    W/g

    )

    140 145 150 155 160 165 170 175

    Temperature (C)

    Sample: INDIUM CRIMPED PAN CHECKSize: 7.6300 mgMethod: indiumComment: P/N 56S-107

    DSCFile: C:...\10C per min crimped\DSC010920A.3Operator: Ron VansickleRun Date: 20-Sep-01 09:13Instrument: 2920 MDSC V2.6A

    Exo Up Universal V3.3B TA Instruments

  • Burgers Rules for Polymorphic Transitions

    enantiotropy

    end

    otherm

    ic

    Heat of Transition Rule endo-/exothermic solid-solid transition

    Heat of Fusion Rule higher melting form; lower Hf

    exothermic solid-solid transition

    higher melting form; higher Hf

    monotropy

    end

    otherm

    ic

  • Enthalpy of Fusion by DSC

    single (well-defined) melting endotherm

    area under peak minimal decomposition/sublimation readily measured for high melting polymorph can be measured for low melting polymorph

    multiple thermal events leading to stable melt

    solid-solid transitions (A to B) from which the transition enthalpy ( HTR) can bemeasured*

    crystallization of stable form (B) from melt of (A)

    HfA = HfB - HTR

    * assumes negligible heat capacity difference between polymorphs over temperatures of interest

    HfA = area under all peaks from B to the stable melt

  • Purity by DSC

    eutectic impurities lower the meltingpoint of a eutectic system

    purity determination by DSC based onVant Hoff equation

    applies to dilute solutions, i.e., nearlypure substances (purity 98%)

    1-3 mg samples in hermetically-sealedpans are recommended

    polymorphism interferes with puritydetermination, especially when atransition occurs in the middle of themelting peak

    Tm = To -.

    Ho

    RTo2 1f

    melting endotherms as a function of purity.

    benzoic acid

    97%

    99%

    99.9%

    Plato, C.; Glasgow, Jr., A.R. Anal. Chem., 1969, 41(2), 330-336.

  • Effect of Heating Rate

    many transitions (evaporation, crystallization,decomposition, etc.) are kinetic events

    they will shift to higher temperature whenheated at a higher rate

    the total heat flow increases linearly withheating rate due to the heat capacity of thesample

    increasing the scanning rate increasessensitivity, while decreasing the scanningrate increases resolution

    to obtain thermal event temperatures closeto the true thermodynamic value, slowscanning rates (e.g., 15 K/min) should beused DSC traces of a low melting polymorph collected

    at four different heating rates. (Burger, 1975)

  • Effect of Phase Impurities

    Lot A: pure low melting polymorph melting observed

    Lot B: seeds of high melting polymorph induce solid-state transition below the melting temperature of the low melting polymorph

    2046742FILE# 022511DSC.1

    2046742FILE# 022458 DSC.1 Form II ?

    -5

    -4

    -3

    -2

    -1

    0

    He

    at

    Flo

    w (

    W/g

    )

    80 130 180 230 280

    Temperature (C)Exo Up Universal V3.3B TA Instruments

    Lot A - pure

    Lot B - seeds

    lots A and B of lower melting polymorph (identical by XRD) are different by DSC

  • Polymorph Characterization: Variable Melting Point

    lots A and B of lower melting polymorph (identical by XRD) appear to have a variablemelting point

    -1.1

    -0.9

    -0.7

    -0.5

    -0.3

    -0.1

    0.1

    He

    at

    Flo

    w (

    W/g

    )

    110 120 130 140 150 160 170 180

    Temperature (C)

    DSC010622b.1 483518 HCL (POLYMORPH 1)DSC010622d.1 483518 HCL

    Exo Up Universal V3.3B TA Instruments

    Lot A

    Lot B

    although melting usually happens at a fixed temperature, solid-solid transitiontemperatures can vary greatly owing to the sluggishness of solid-state processes

  • the low temperature endotherm was predominantly non-reversing, suggestive of asolid-solid transition

    small reversing component discernable on close inspection of endothermic conversionsoccurring at the higher temperatures, i.e., near the melting point

    Polymorph Characterization: Variable Melting Point

    Reversing (heat flow component)

    -0.50

    -0.45

    -0.40

    -0.35

    -0.30

    -0.25

    -0.20

    -0.15

    -0.10

    -0.05

    0.00

    Re

    v H

    ea

    t F

    low

    (W

    /g)

    110 120 130 140 150 160 170 180

    Temperature (C)

    DSC010622b.1 483518 HCL (POLYMORPH 1)DSC010622d.1 483518 HCL

    Exo Up Universal V3.3B TA Instruments

    Non-reversing (heat flow component)

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    No

    nre

    v H

    ea

    t F

    low

    (W

    /g)

    110 120 130 140 150 160 170 180

    Temperature (C)

    DSC010622b.1 483518 HCL (POLYMORPH 1)DSC010622d.1 483518 HCL

    Exo Up Universal V3.3B TA Instruments

    Lot A

    Lot B

    Lot A

    Lot B

    reversing heat flow non-reversing heat flow

    the variable melting point was related to the large stability difference between thetwo polymorphs; the system was driven to undergo both melting and solid-stateconversion to the higher melting form

  • T1

    x0 1

    TmA

    TmB

    xe

    Te

    x0 1

    Tm1

    xe1

    Te1

    Tm2

    xe2

    Te2

    TmRC

    A

    B RC

    P1

    P2

    (a) (b)

    Polymorph Stability from Melting and Eutectic Melting Data

    40 60 80 100 120

    DS

    C S

    ign

    al

    +thymol +azobenzene+benzil

    +acetanilidepure forms

    YYON

    YY

    ON

    ONY

    ONON

    meltingeutectic melting

    T, oC

    -0.4

    -0.2

    0

    0.2

    0.4

    sd

    f

    GON-GY, kJ/mole

    TtON

    Y

    polymorph stability predicted from pure melting data near the melting temperatures

    (G1-G2)(Te1) = Hme2(Te2-Te1)/(xe2Te2)

    (G1-G2)(Te2) = Hme1(Te2-Te1)/(xe1Te1)

    Yu, L. J. Am. Chem. Soc, 2000, 122, 585-591.

    Yu, L. J. Pharm. Sci., 1995, 84(8), 966-974.

    (G1-G2)(Tm1) = Hm2(Tm2-Tm1)/Tm2

    (G1-G2)(Tm2) = Hm1(Tm2-Tm1)/Tm1

    eutectic melting method developedto establish thermodynamic stabilityof polymorph pairs over largertemperature range

  • development of hyphenated techniques for simultaneous analysis

    TG-DTA

    TG-DSC

    TG-FTIR

    TG-MS

    15.55%(0.9513mg)

    24.80C100.0%

    179.95C84.45%

    -1.8

    -0.8

    0.2

    1.2

    2.2

    3.2

    4.2

    Te

    mp

    era

    ture

    Diffe

    ren

    ce

    (

    V/m

    g)

    -40

    0

    40

    80

    120

    We

    igh

    t (%

    )

    20 70 120 170 220 270

    Temperature (C)

    Sample: SODIUM TARTRATE (ALDRICH)Size: 6.1176 mgMethod: 25C TO 300Comment: LOT# 22411A0

    TGA-DTAFile: C:\TA\Data\Sdtcal\2004\TGA040105A.5Operator: Ron VansickleRun Date: 6-Jan-04 12:09Instrument: 2960 SDT V3.0F

    Exo Up Universal V3.3B TA Instruments

    Hyphenated Techniques

    thermal techniques alone are insufficient to prove the existence ofpolymorphs and solvates

    other techniques should be used, e.g., microscopy, diffraction, andspectroscopy

    evolved gas analysis(EGA)

    TG-DTA trace of sodium tartrate

  • Best Practices of Thermal Analysis

    small sample size

    good thermal contact between the sample and the temperature-sensingdevice

    proper sample encapsulation

    starting temperature well below expected transition temperature

    slow scanning speeds

    proper instrument calibration

    use purge gas (N2 or He) to remove corrosive off-gases

    avoid decomposition in the DSC

  • Reversing and Non-Reversing Contributionsto Total DSC Heat Flow

    * whereas solid-solid transitions are generally too sluggish to be reversing atthe time scale of the measurement, melting has a moderately strongreversing component

    dQ/dt = Cp . dT/dt + f(t,T)

    reversing signalheat flow resulting from

    sinusoidal temperature modulation(heat capacity component)

    non-reversing signal(kinetic component)

    total heat flow resulting from

    average heating rate

  • Recognizing Artifacts

    mechanical shock of

    measuring cellsample topples

    over in pan

    sample pan distortion shifting

    of Al pan

    cool air entry into cell

    electrical effects, power spikes, etc.

    RT changes

    burst of pan lid

    intermittant closing of hole

    in pan lid

    sensor contamination