AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

Embed Size (px)

Citation preview

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    1/15

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    2/15

    LAMINAR BOUNDARY LAYER OVER A SMOOTH FLAT

    PLATE

    At any x

    " #w =d

    dx0

    $

    %& u2 "Umu( )dz'(

    )

    *+

    ,

    -".u

    .z

    /

    01

    2

    34w

    =

    d

    dx&u2dz

    0

    $

    %/

    01

    2

    34"Um

    d

    dx&udz

    0

    $

    %/

    01

    2

    34

    For similar velocity profilesu

    Um= f

    z

    $

    /

    01

    2

    34= f 5( )

    -Um

    $

    df 5( )

    d5

    '(

    )

    *+

    ,5=0=&

    .

    .x

    Um2$ 1" f 5( )[ ]f 5( )d5

    0

    1

    %'(

    )

    *+

    ,

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    3/15

    LAMINAR BOUNDARY LAYER OVER A SMOOTH FLAT

    PLATE

    Let

    "= 1# f $( )[ ]f $( )d$0

    1

    %

    &=df $( )d$

    '()

    *+,$= 0

    -Um&

    .=/Um

    2"0.

    0x

    Integrating

    &x =1

    2

    /Um".2+ const

    With .= 0 atx = 0

    .=2&

    "

    x

    Rex

    '()

    *+,

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    4/15

    LAMINAR BOUNDARY LAYER OVER A

    SMOOTH FLAT PLATE

    "W

    =

    d

    dx#U

    m$u( )udz

    0

    1

    %&

    '(

    )

    *+

    =#Um

    2,d-

    dx

    =#Um

    2, 2.

    #Um,

    &

    '(

    )

    *+1

    2x

    $1/ 2

    =#Um

    2 ,.

    2Rex

    F = "Wdx

    0

    L

    #

    =$Um

    2%&0

    L

    = 2%'$Um

    3L[ ]

    The total friction force on one side of

    the smooth flat plate between x=0

    and x=L for a unit width of the plate

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    5/15

    EXAMPLE: LAMINAR BOUNDARY LAYER

    Ftotaldragforce

    ! = 22 sides

    ! 2"#$Um3

    L[ ] where "= 1% f&( )[ ]

    0

    1

    ' f&( )d& and #=

    df&( )d&

    (

    )*

    +

    ,-& =0

    " = 1 # 2$# $2( ){ }0

    1

    % 2$# $2( )d$ = 2$# 5$2 + 4$3 #$4{ }0

    1

    % d$

    = $2 #

    5

    3$

    3+$

    4 #1

    5$

    5&

    '(

    )

    *+0

    1

    =1 #5

    3+1 #

    1

    5=

    2

    15 ,

    " =df#( )

    d#

    $

    %

    &'

    (

    )

    # =0

    = 2 * 2#[ ]# =0

    = 2 +

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    6/15

    EXAMPLE : LAMINAR BOUNDARY LAYER

    F = 2 2"#$U3L

    [ ] = 2 2

    2

    15

    %

    &'

    (

    )*2( )$U3L

    +

    ,-

    .

    /0=1.46 $U

    3L

    By definition,

    F =CD

    1

    2$ 2L(

    )U

    2

    1CD =1.46 $U3L

    $LU2=

    1.46

    $UL

    =

    1.46

    ReL

    2

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    7/15

    TURBULENT BOUNDARY LAYER OVER A FLAT

    PLATE

    In the case of the turbulent boundary layer, the shearing stress atthe plate may be expressed by

    "w= +#

    t( ) $u

    $z

    %

    &'

    (

    )*z= 0

    "tthe eddy viscosity is a property of the flow; i.e. it depends onthe character of the flow. The eddy viscosity can be different

    all over the flow and it is not readily determined

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    8/15

    BLASIUS

    FORMULA FOR TURBULENT SHEAR

    STRESS OVER SMOOTH SURFACE (Re

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    9/15

    (b) Blasius formula for f for smooth pipes with diameter D and

    mean velocity U. This appears to fit the experimental results forReynolds number between 3000 and 105.

    f = 0.32UD

    "

    #

    $%

    &

    '(

    )1/ 4

    * f = 0.32 0.8UmD"

    #

    $% &

    '(

    )1/ 4

    = 0.32 1.6UmR"

    #

    $% &

    '(

    )1/ 4

    = 0.321.6Um+

    "

    #

    $%

    &

    '(

    )1/ 4

    ,w =

    -fU2

    8=

    -

    8 0.8Um( )

    2

    0.32( ) "

    1.6Um+

    #

    $%

    &

    '(

    1/ 4

    = 0.0227-Um2 "

    Um+

    #

    $%

    &

    '(

    1/ 4

    .

    BLASIUS

    FORMULA FOR TURBULENT SHEAR

    STRESS OVER SMOOTH SURFACE (Re

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    10/15

    TURBULENT BOUNDARY LAYER OVER A FLAT PLATE

    Use the momentum equation of von Karman for the mean timequantities, assume similarity in velocity profiles along the plate andaccount for the wall shear stress by using an experimentally derivedvalue.

    If thenand Umis constant along the direction of x outside the boundarylayer.

    "p*

    "x=0

    "Um

    "x=0

    Simple velocity profile suggested by Prandtl in the turbulent

    boundary layer

    u

    Um

    = z

    "

    #

    $%

    &

    '(

    n

    , n =1

    7

    (c) Assume a velocity profile

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    11/15

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    12/15

    TURBULENT BOUNDARY LAYER OVER A FLAT PLATE

    "

    Um

    #

    $%

    &

    '(

    1/ 4

    x = 3.45)5 / 4

    + constant

    *)

    x= 0.376

    Umx

    "

    #

    $%

    &

    '(

    +1/ 5

    ,

    Turbulent boundary layer starts at the transition location and has some

    thickness at this position. Location of the transition is difficult todetermine.

    The length of the laminar boundary layer is generally small and one canapproximately imagine that the turbulent boundary layer commences atthe leading edge x = 0.

    In the turbulent boundary layer, the thickness varies as

    In the laminar boundary layer, the thickness varies as

    The turbulent boundary layer grows faster along x than the laminar case.

    5/4x

    x1/ 2

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    13/15

    TURBULENT BOUNDARY LAYER DRAG OVER A FLAT PLATE

    The drag for unit width on both sides of the smooth plate

    Drag = 20

    L

    ! w! dx= 0.072"Um2L #

    UmL

    "#$ %

    &'

    1/5

    =0.072 "Um2LR

    eL

    (1/5

    The drag coefficient CDof an object immersed in a fluid stream ofvelocity U and mass density #is defined by

    CD =Drag force

    1

    2"Um

    2Area( )

    CD

    =

    0.072!Um

    2L.1( )ReL

    !1/5

    0.5!Um

    22L

    two sides

    !

    = 0.072ReL

    !1/5

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    14/15

    DRAG ON FLAT PLATE

  • 8/10/2019 AY2014 CE2134 Hydraulics 4P Boundary layer flow over a flat plate II

    15/15

    BLANK