AWST Using Me So Scale Model Data in MCP May20091

Embed Size (px)

Citation preview

  • 8/4/2019 AWST Using Me So Scale Model Data in MCP May20091

    1/10

    USINGSIMULATEDWINDDATAFROM

    AMESOSCALEMODELINMCP

    M.Taylor

    J.Freedman

    K.Waight

    M.Brower

    May2009

  • 8/4/2019 AWST Using Me So Scale Model Data in MCP May20091

    2/10

    Page|2 UsingSimulatedWindDatafromaMesoscaleModelinMCP

    May2009

    ABSTRACT

    Sincefieldmeasurementcampaignsforproposedwindprojectstypicallylastnomorethanafewyears,

    theobservedmeteorologicaldata collectedon siteoftendeviate from the longterm climatology.To

    reduce the uncertainty associated with climate variability, a statistical relationship is typically

    establishedbetweenamonitoringsiteandoneormorereferencestationsusingatechniqueknownas

    MeasureCorrelatePredict(MCP).

    ProperuseofMCPrequiresreferencestationswithlongdatarecordscollectedatthesamelocationand

    height, with the same equipment, and in relatively unchanging surroundings. Identifying reference

    stationsmeetingthesestringentcriteriaisbecomingincreasinglydifficult,especiallyconsideringthatthe

    NationalWeatherService(NWS)isreplacingcupanemometerswithicefreeultrasonicanemometersat

    itsAutomatedSurfaceObservingSystem(ASOS)stations.

    Oneapproach thatofferspromiseofmitigating theseproblems is todriveamesoscalemodelwitha

    consistent setofobservationaldata. Though the concept is similar to reanalysis, the combinationof

    highermodelresolutionandcareintheselectionofstationsusedinthesimulationsshouldimproveon

    thosedata.Towardsthisend,wehavecreatedwindTrends,amodeleddatasetcoveringNorthAmerica

    at 20km resolution from 1997 to the present, and have conducted a thorough evaluation of its

    suitabilityforMCPandotherapplications.Thisstudysummarizesourfindings.

    INTRODUCTION

    Predictingthefuturerequiresinsightintothepast.Untilrecently,mostresourceassessmentsforwind

    energyprojectshavereliedonstandardmeteorologicaltowerstoestablishhistoricalclimateconditions.

    But with intermittent changes in surroundings, locations, and equipment, the continuity and

    representativeness of these reference data is a growing concern. Other commonlyused reference

    sources include rawinsonde (instrumentedballoon) and reanalysisdata,but these sources alsohave

    potentiallysignificantshortcomingsaswell.The relatively few rawinsondestationsoftenexhibitpoor

    correlationswithwindprojectsites,whereasreanalysisdataarevulnerabletoinconsistenciescausedby

    changesintheobservationaldatausedtodrivethemodels.

    Oneapproachthatmayovercometheseproblemsistodriveamesoscalemodelwithaconsistentsetof

    observationaldata.Wehavecreatedsuchadataseries,knownaswindTrends.Thisreportdetailsour

    validationofwindTrendsagainstASOS,rawinsonde,NCEP/NCARGlobalReanalysis(NNGR)[1]andNorth

    AmericanRegionalReanalysis (NARR)[2]with respect to itsconsistencyover timeand itsviabilityasa

    longtermreferenceforwindresourceassessment.

    BACKGROUNDANDMETHODS

    InterannualVariabilityandMeasureCorrelatePredict(MCP)

    Mostwindresourceassessmentprogramsspanroughlyonetotwoyears. Whenexaminingtheannual

    meanwindspeedsfromreferencesiteswithlongperiodsofrecord,wefindthattheyvaryconsiderably

    from yeartoyear. Figure 1 shows a time series of the annualmeanwind speeds at the Chicago

    Midway(KMDW)AutomatedSurfaceObservingSystem(ASOS)[3]stationbetween1998and2007. The

    annualmeanspeedwaswithin1%ofthetenyearaverageinonlyfourofthetenyearsanddeviatedby

    asmuchas4.0%. Givensuchvariability,itisprudenttoadjustobserveddataatashorttermresource

    assessmentsitetolongtermconditions.

  • 8/4/2019 AWST Using Me So Scale Model Data in MCP May20091

    3/10

    Page|3 UsingSimulatedWindDatafromaMesoscaleModelinMCP

    May2009

    Figure1.AnnualMeanWindSpeedsatChicagoMidwayASOSStation

    TheMCPmethod of estimating longtermwind speeds correlates shortterm data from a sitewith

    concurrent data from a longterm reference station (Figure 2). A regression or other relationship

    between the two stations is derived, and the longtermmean speed or speed distribution at the

    reference station is applied to estimate the longterm speed or speed distribution at the site. The

    accuracyofthe longtermprojections isdirectlytiedtotheconsistencyof thereferencedataandthe

    qualityofthecorrelationbetweenthetargetmastandreferencesite. Problemssuchasalimitedperiod

    of referencedata,poor correlationwithonsitemeasurements,and changingobservationalmethods

    andplatformscancausesignificanterrorsinenergyproductionestimates.

    Figure2.ComparisonofTypicalMonitoringMastandReferenceSitePeriodsofRecord

    CommonReferenceDataSources

    Surface Stations The most widely used source of reference data is surface weather stations. They offer several

    advantages.Surfacestationsarerelativelynumerousandcollectfrequent(usuallyhourly)observations.

    3.0

    3.2

    3.4

    3.6

    3.8

    4.0

    4.2

    4.4

    4.6

    4.8

    5.0

    1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

    WindSpee

    d(m/s)

    Year

    AnnualMean

    OverallMean

    YearSpeed

    (m/s)

    Deviation

    From Normal

    1998 4.29 -4.0%1999 4.48 0.1%

    2000 4.54 1.5%

    2001 4.45 -0.5%

    2002 4.57 2.3%

    2003 4.49 0.5%

    2004 4.55 1.7%

    2005 4.41 -1.3%

    2006 4.38 -2.0%

    2007 4.48 0.2%

    Mean 4.47

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Jan98 Jan99 Jan00 Jan01 Jan02 Jan03 Jan04 Jan05 Jan06 Jan07 Jan08

    WindSpeed(m/s)

    Month

    MonitoringMast

    ReferenceSite

  • 8/4/2019 AWST Using Me So Scale Model Data in MCP May20091

    4/10

    Page|4 UsingSimulatedWindDatafromaMesoscaleModelinMCP

    May2009

    Additionally, insomecountries,suchastheUnitedStates,sitehistories,datacollectionprotocols,and

    equipment maintenance records are well documented. Unfortunately, weather stations are often

    locatedfarfromwindprojectsitesorindifferentwindregimes,andthereforecanexhibitunsatisfactory

    correlationswithonsitemeasurements.Thewindmonitoringheightsatsurfacereferencestationsare

    alsousuallylow(10mistheASOSandinternationalstandard);theresultisthatthemeasurementsare

    verysensitivetochangesinthesurroundings,suchastreegrowthorbuildingconstruction. Finally,as

    has been the case with the ASOS network, instrumentation and data collection protocols change

    occasionally,oftenintroducingshiftsintheobservedwindspeedsthatmayjeopardizethesitesviability

    asalongtermreference. OnesuchchangeoccurredintheUnitedStateswhentheASOSstandardwas

    implementedatweatherstationsstarting in themid1990sandrenderedpriormeasurementsuseless

    forMCP. Very recently, ASOS cup anemometerswere replacedwith ultrasonic icefreewind (IFW)

    sensors.Testdata indicateasmallbutmeasurabledifference inwindspeeds recordedby IFW,which

    addsuncertaintytotheMCPprocess.[4]

    Rawinsonde Stations Rawinsonde data are acquired using instrumented balloons to sample the vertical profile of the

    atmosphere.[5]Comparedtosurfacestations,thismeasurementtechniquehaschangedrelatively little

    in thepast twoor threedecades,resulting ina longdatarecord that is typicallyquiteconsistentand

    reliableaswellasforheightswellabovegroundfreeofimpactsfromchangingsurfaceconditions.

    However, rawinsondestationsare far lessnumerous thansurface stations,and theygenerally collect

    soundingsonlyonceevery12hours.1 Inaddition,thelowestusefulheightofmeasurement(definedby

    standardpressure levels) isoftenabove theplanetaryboundary layer.For thesereasons,rawinsonde

    dataoftendonotcorrelateaswellassurfaceweatherdatawithmeasurementstakenatwindproject

    sites.

    Reanalysis Data The term reanalysis data refers to a gridded data base ofweather observations that have been

    assimilated at a later time into a global or regionalweathermodel.NNGR andNARR, two publicly

    availablereanalysisdatasets,arethefocusofourdiscussion;othersincludeaglobaldatasetdeveloped

    bytheEuropeanCentreforMediumRangeWeatherForecasts[6].Observationaldatasourcesassimilated

    into the reanalysismodels include surface, rawinsonde, satelliteandaircraft. Themainadvantageof

    reanalysisdataisthattheyprovideaconvenientsourceofweatherdataextendingbackseveraldecades

    (to1948, in the caseofNNGR).However, thequantityand sourcesofweatherobservationsused to

    drivethereanalysismodelhavevariedgreatlyoverthepastseveraldecades,leadingtofalsetrendsand

    variationsinsomeregions.[7]Inaddition,duetothecoarsemodelresolution(210kmforNNGR),thereis

    oftenapoorcorrelationwithwindmonitoringsites.

    windTrends:ControlledRegionalReanalysis

    windTrends is a controlled regional reanalysis dataset developed by AWS Truewind. Though

    conceptuallysimilartoreanalysis,theprocessdiffersintwokeyways:thegridresolutionisfinerandthe

    sourceofobservationaldata rawinsondeonly hasbeenkeptfixedthroughoutthesimulationperiod.

    Thesemodifications should allow for amore consistent data set that correlates betterwith onsite

    observationsthanstandardreanalysisdata.

    1According to theNWSrawinsonde factsheetpostedathttp://www.ua.nws.noaa.gov/factsheet.htm,

    there are 69 operational rawinsonde stations in the conterminousUnited States. Observations are

    usuallycollectedtwicedaily.

  • 8/4/2019 AWST Using Me So Scale Model Data in MCP May20091

    5/10

    Page|5 UsingSimulatedWindDatafromaMesoscaleModelinMCP

    May2009

    ThewindTrendsdatawereproduced fromMesoscaleAtmosphericSimulationSystem(MASS)[8]

    model

    simulationsonagridcoveringtheconterminousUnitedStatesandsouthernCanadastartinginJanuary

    1997. The simulationsweremadeona60kmoutergridanda20kmnestedgrid,withNNGRdata

    supplying the initial and lateralboundary conditions. Rawinsonde data from the IntegratedGlobal

    RawinsondeArchive(IGRA)werealsousedintheobjectiveanalysesoftheinitialfields. Foreachmonth,

    twoseriesofrunsweremade,beginningwithacoldstart12hoursbeforethefirstofthemonthand12

    hoursbeforeeitherthe15thor16thofthemonth,followedbytwoweeksofsimulationswithrawinsonde

    observationsassimilatedat0000and1200UTC.Thissimulationstrategywasdesignedtominimizethe

    influenceoftheinitialconditionsfromNNGR.

    Validation

    TrendVerif ication The selectionof validation stations for thispartof the analysisbeganwith a listof371highquality

    stations used by the Goddard Institute of Space Studies in their analysis of longterm surface

    temperature trends.[9] Stations outside the conterminousUnited Stateswere eliminated. Next, the

    availability of surface data for each station was verified. Stations were retained if they had 95%

    availabilityforeachof10years(19972006),resulting ina listofabout185stations. Plottingthose

    stationsonamap,thereweresomeareaswithsparsestationcoverage:NewYork,Vermont,theUpper

    PeninsulaofMichigan, coastalNorthandSouthCarolina,coastalLouisiana,and centralandsouthern

    California. Fifteenstationsinthoseareaswithalmost95%coveragewereselectedandaddedtothelist,

    resulting in198 stations,ofwhich30were rawinsonde stations.Using these sites,we compared the

    longtermwind speed trendsandanomalies from theNNGR,NARR,andwindTrendswith concurrent

    observeddataateachoftheselectedstationsonhourly,monthly,andannualtemporalperiods.

    MCPVerif ication Inearlierwork,Tayloretal.[10]developedamethodwherebytheaccuracyofMCPwastestedforwind

    resourceassessmentsiteshavingperiodsofrecordspanningatleastfouryears.Theonsite(target)data

    were divided into a sequence of shorter periods typical of what would be available for MCP. A

    regressionwitha referencedatasetwasperformed foreachsubperiodand themeanspeed for the

    entireperiodwaspredicted.Theerrormarginoftheprocedurewasderivedfromthebiasesbetween

    thepredictedandactualmeanspeedsforallthesubperiods.

    Forthisassessment,weselectedtheentireASOSnetworkastargetsitesandrepeatedthesameMCP

    analysisusing,asreference,thenearestASOSsiteandnearestwindTrendsgridpointwiththestrongest

    correlations.TheASOSnetworkyielded629sitesthat,untiltheinstallationoftheIFWsensors,operated

    usingthesamewindmeasurementsystemforseveralyears.Wefocusedontheresultswitha12month

    subperiod.

    We also identified ten wind resource assessment sites that have high data recovery and fit the

    establishedcriteria,and repeated thesameanalysisusingdirectobservations (ASOSandrawinsonde)

    andmodeledwindTrendsandNNGRdataasreferences. Foranadditional12siteswith lessthanfour

    yearsofdata,wecomparedonlythecoefficientofdeterminationorsquareofthecorrelationcoefficient

    (r2)valuesoftheregressions.ForASOSreferencesitesthatwereconvertedtoIFWsensors,weuseda

    preliminarycorrectiontothedatadevelopedbyAWSTruewindfromsidebysidetestdataprovidedby

    theNWS.

  • 8/4/2019 AWST Using Me So Scale Model Data in MCP May20091

    6/10

    Page|6 UsingSimulatedWindDatafromaMesoscaleModelinMCP

    May2009

    RESULTS

    TrendVerification

    Figure3containsatimeseriescomparingtheannualmeanwindspeedanomalies(deviationsfromthe

    average) forNNGR,NARR,andwindTrendswith theobservedanomalies.windTrendsandNNGRdata

    both

    correlate

    well

    with

    the

    observations.

    However,

    the

    NNGR

    data

    exhibit

    a

    downward

    trend

    that

    deviates from windTrends and the observed data. The NARR data show a noticeable discontinuity

    startingin2002,whichmayberelatedtoachangeinproceduresforassimilatingrawinsondedata.

    Figure3.ComparisonofAnnualMeanWindSpeedAnomaliesfor198SurfaceBasedMonitoringStations

    TimeseriesoftheannualmeanwindspeedsfromwindTrendsinterpolatedtoseveralmastlocationsand

    comparedwith nearbyASOS or rawinsonde data suggest good agreement. Two examples of these

    comparisonsarecontainedinFigure4.

    Figure

    4.

    Annual

    Mean

    Wind

    Speeds

    from

    windTrends

    and

    Nearby

    Reference

    Stations

    foranEasternRidgetop(left)andCentralWashington(right)

    Figure5 containsa time series comparing themonthlymeanwind speedanomalies fromNNGRand

    windTrends with the observed anomalies at the 198 surface and rawinsonde stations. windTrends

    correlates very well with the observed data; the NNGR anomalies also correlate well, but are

    systematicallylarger,likelybecausetheywerecalculatedat25mheightaboveground. Ofimportance

    is that a close examination of both datasets reveals periods in the NNGR dataset that deviate

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

    WindS

    peedAnomaly(m/s)

    Year

    ASOS

    windTrends

    NNGR

    NARR

    0

    2

    4

    6

    8

    10

    12

    1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

    WindSpeed(m/s)

    Year

    windTrends10I

    windTrends50I

    Elkins,WV

    Dulles,VA

    Blacksburg,VA

    Pittsburgh,PA

    0

    1

    2

    3

    4

    5

    6

    1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

    WindSpeed(m/s)

    Year

    windTrends10I

    windTrends50I

    Ellensburg,WA

    Yakima,WA

  • 8/4/2019 AWST Using Me So Scale Model Data in MCP May20091

    7/10

    Page|7 UsingSimulatedWindDatafromaMesoscaleModelinMCP

    May2009

    substantiallyfromtheobservedvalues. ThosediscrepanciesdonotappearinwindTrends,oraremuch

    smaller.

    Figure5.ComparisonofMonthlyMeanWindSpeedAnomaliesfor198SurfaceBasedMonitoringStations

    MCPVerification

    Forthe629ASOSsites,theASOStoASOSregressionshadastrongercorrelationinabout80%ofcases;

    theaverager2valuewas0.71betweenASOSsites,whileitwas0.65betweentheASOStargetsiteand

    the best windTrends grid point. Figure 6 shows the geographic distribution of the differences in r2

    betweentheASOStoASOSandASOStowindTrendscorrelations.Greencontoursonthismapindicate

    thewindTrendsgridpointhasthesuperiorr2,whereasredindicatestheASOSstationdoes.windTrends

    generallydoesbetter inthecomplexterrainoftheAppalachianandRockyMountains. Conversely, in

    coastal regions and the southeastern United States, ASOS data provide the stronger correlation.

    ThroughoutmuchoftheGreatPlains,thetwoareroughlyequivalent.

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    Jan97 Ja n98 Ja n99 Ja n0 0 Ja n01 Ja n02 Ja n03 Ja n0 4 Ja n05 Ja n06

    WindSpeedAnomaly(m/s)

    Month

    ASOS

    NNGR

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    Jan97 Ja n98 Ja n99 Ja n0 0 Ja n01 Ja n02 Ja n03 Ja n0 4 Ja n05 Ja n06

    WindSpeedAnomaly(m/s)

    Month

    ASOS

    windTrends

  • 8/4/2019 AWST Using Me So Scale Model Data in MCP May20091

    8/10

    Page|8 UsingSimulatedWindDatafromaMesoscaleModelinMCP

    May2009

    Figure6.GeographicDistributionofRelativeASOStoASOSandASOStowindTrendsCorrelation

    In contrast to the ASOS target sites, the wind resource assessment sites generally have stronger

    correlationswiththewindTrendsdatathanwiththeASOSreferencedata.Figure7containsascatterplot

    ofther2valuesfor22targetsitesandtheircorrelationswithASOSandwindTrendsreferencedata.In16

    cases,thewindTrendscorrelationishigher.Thispatternmayreflectthefactthatmostwindprojectsites

    arebetter exposed to synopticscalewinds,which are capturedwellby thewindTrends simulations,

    whereasASOSstationsareofteninshelteredlocations,suchasvalleys.

    Figure7.ScatterplotofMasttoASOSandMasttowindTrendsr2valuesfor22Sites

    Asshown inFigure8, thedistributionsofMCPstandarderrors forASOSandwindTrendsarevirtually

    identical.ForASOStowindTrendsregressions,themeanstandarderroris0.096m/s;forASOStoASOS

    regressions,itis0.095m/s.

    ASOS-to-wT r2 > ASOS-to-ASOS r2

    ASOS-to-ASOS r2 > ASOS-to-wT r2

    MeanwT r2:0.65

    MeanASOSr2:0.71

    Higherr2

    wT:122Sites

    MeanASOSr2:506Sites

    Equal:1Site

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.2 0.4 0.6 0.8 1

    ASOSr

    squared

    windTrendsrsquared

  • 8/4/2019 AWST Using Me So Scale Model Data in MCP May20091

    9/10

    Page|9 UsingSimulatedWindDatafromaMesoscaleModelinMCP

    May2009

    Figure8.FrequencyDistributionsofASOStoASOSandASOStowindTrendsStandardErrors

    Forthetenwindresourceassessmentmastswithperiodsofrecordofat leastfouryears,windTrends

    performedslightlybetterthanASOSandsignificantlybetterthanNNGRforMCP.Therespectiveaverage

    r2 valueswere 0.75 (masttowindTrends), 0.72 (masttoASOS), and 0.55 (masttoNNGR),while the

    standarderrorswere0.12(windTrends),0.13(ASOS),and0.16(NNGR).Theresultsaresummarized in

    Figure9.

    Figure9.StandardErrorsofMCPAnalysesfor10MonitoringMastUsingwindTrends,ASOS,andNNGRDataasReferences

    Inmostindividualcases,thewindTrendsstandarderrorsarecomparabletoorlowerthanthosederived

    using theASOSorNNGR referencedata. Theonly locationwherewindTrendsperformssubstantially

    worsethanASOSisatMast6,whichislocatedinaCaliforniamountainpasswherethewindclimateis

    highlylocalizedandthereforenotresolvedbythe20kmwindTrendssimulations.

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    35%

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

    PercentofOc

    currence

    StandardError(m/s)

    ASOStowindTrends

    ASOStoASOS

    wTAvgDist:13.2km

    ASOSAvgDist:75.2kmwTStdErr:0.096

    ASOSStdErr:0.095

    LowerStdErr

    wT:315Sites

    ASOS:314Sites

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    1 2 3 4 5 6 7 8 9 10 Mean

    StandardError(m/s)

    MastNumber

    windTrends

    ASOS

    NNGR

    Meanr2

    windTrends:0.75

    ASOS:0.72

    NNGR:0.55

  • 8/4/2019 AWST Using Me So Scale Model Data in MCP May20091

    10/10

    Page|10 UsingSimulatedWindDatafromaMesoscaleModelinMCP

    May2009

    SUMMARYANDCONCLUSIONS

    AWS Truewind developed windTrends in hopes of providing a consistent set of reference data for

    performingMCPstudiesthatarewellcorrelatedtowindprojectsitesintheconterminousUnitedStates

    andsouthernCanada.ThevalidationworkreportedhereshowsthatwindTrendsisgenerallysuperiorto

    globalreanalysis(NNGR)andcomparabletoASOSstationsforthispurpose.

    WhetherASOSorwindTrendsshouldbeusedinaparticularMCPanalysiscanbedecidedonacaseby

    casebasis.Where the correlationsare similar and there areno evident consistencyproblems in the

    ASOSdata,eitherdataset(orboth)canbeused.Whereoneexhibitsamuchstrongercorrelationthan

    theother,thatdatasetislikelytobethebetterchoice.Theconsistencyproblemswehaveobservedin

    bothNNGRanditsregionalcounterpart,NARR,suggestthattheyarenotsuitableinmostsituationsfor

    MCP.

    ONGOINGANDFUTUREWORK

    Validationwork continues. One goal is to identify and assess additionalwind resource assessment

    mastswithsufficiently longperiodsofrecord toprovideamoreextensivetestofwindTrends inMCP.

    The

    present

    sample

    of

    10

    such

    masts

    is

    fairly

    small.

    Another

    goal

    is

    to

    gauge

    the

    impact

    of

    the

    IFW

    correctionontheaccuracyofMCPusingASOSstations.

    We are also working to improve the windTrends data set. Since the current 20km resolution is

    insufficient to resolve highly localized wind climates such asmountain passes, we are planning to

    increasethegridresolutionto5km.Thisshould increasethequalityofthecorrelationsanddecrease

    thestandarderrorsinthelongtermpredictions.

    ThewindTrendsapproachisalsobeingextendedtotherestofCanada,India,andothercountries.

    References:

    [1] Kistler,R.etal.,2001:TheNCEP/NCAR50YearReanalysis:MonthlyMeansCDROMandDocumentation.BulletinoftheAmericanMeteorologicalSociety,82,No.2,247268

    [2] Mesinger,F.etal.,2006:NorthAmericanRegionalReanalysis.BulletinoftheAmericanMeteorologicalSociety,87,No.3,343360

    [3] NOAA, 1998:ASOS users guide.NationalOceanographic andAtmosphericAdministration, 61 pp. [Available online athttp://www.nws.noaa.gov/asos]

    [4] Lewis,R.and J.Dover,2004:FieldandOperationalTestsofaSonicAnemometer fortheAutomatedSurfaceObservingSystem,EighthSymposiumon IntegratedObservingandAssimilationSystemsforAtmosphere,Ocean,andLandSurface,

    AmericanMeteorological.Society,Seattle,WA.

    [5] ImkeDurre,RussellS.VoseandDavidB.Wuertz.2006:OverviewoftheIntegratedGlobalRadiosondeArchive.JournalofClimate:Vol.19,No.1,pp.5368.Brower,M.C.,2006:TheUseofReanalysisDataforClimateAdjustments.AWSTruewind

    ResearchNote#1.

    [6] Uppala,etal.,2006:TheERA40reanalysis.QuarterlyJournaloftheRoyalMeteorologicalSociety.,131,29613012.[7] Brower,M.C.,2006:TheUseofReanalysisDataforClimateAdjustments.AWSTruewindResearchNote#1.[8] Manobianco,J.,J.W.ZackandG.E.Taylor,1996:WorkstationbasedRealtimeMesoscaleModelingDesignedforWeather

    Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station. Bulletin of the American

    Meteorological

    Society,

    77,

    No.

    4,

    653

    672

    [9] Hansen,J.,R.Ruedy,J.Glascoe,andM.Sato,1999:GISSanalysisofsurfacetemperaturechange.JournalofGeophysicalResearch.104,3099731022.

    [10] Taylor,Mark,etal.,2004:AnAnalysisofWindResourceUncertainty inEnergyProductionEstimates,ProceedingsoftheEuropeanWindEnergyConference.