59
Eletromagnetismo Newton Mansur

Aula 2-1 -Eletroeletro1-0219/lib/exe/fetch.php?...1 𝜃 𝜕 𝜃 𝜑 𝜕𝜃 − 𝜕 𝜃 𝜕𝜑 + 1 1 𝜃 𝜕 𝜕𝜑 − 𝜕 𝜑 𝜃+ 1 𝜕 𝜃 𝜕𝜃 𝜑 𝜇0

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • EletromagnetismoNewton Mansur

  • Cargas em movimento

  • 𝐶𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑖 =Δ𝑞

    Δ𝑡

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑐𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑗 =𝑖

    𝑆

    𝑅𝑒𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎 𝑜ℎ𝑚𝑖𝑐𝑎 𝑅 =Δ𝑉

    𝑖

    Δ𝑙

    𝑆

    𝑣𝑜𝑙 = 𝑆Δ𝑙

    Δ𝑞 = 𝜌𝑣𝑆Δ𝑙

    Δ𝑙

    𝑢

    𝑢 =Δ𝑙

    Δ𝑡

    𝑖 =Δ𝑞

    Δ𝑡=𝜌𝑣𝑆Δ𝑙

    Δ𝑡= 𝜌𝑣𝑆u = jS

    𝑗 = 𝜌𝑣u

    𝜌𝑣 = 𝑛𝑒

    𝑗 = 𝑛𝑒u

    𝐸𝑓𝑒𝑖𝑡𝑜 𝐽𝑜𝑢𝑙𝑒 𝑃 = 𝑉𝑖

    𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑎𝑟𝑟𝑎𝑠𝑡𝑜 𝑑𝑒𝑟𝑖𝑣𝑎 𝑢

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐶𝑎𝑟𝑔𝑎 𝜌𝑣

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 Á𝑡𝑜𝑚𝑜𝑠 𝑒𝑙é𝑡𝑟𝑜𝑛𝑠 𝑛

  • 𝐶𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑖 =Δ𝑞

    Δ𝑡

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑐𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑗 =𝑖

    𝑆

    𝑅𝑒𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎 ôℎ𝑚𝑖𝑐𝑎 𝑅 =Δ𝑉

    𝑖

    𝐸𝑓𝑒𝑖𝑡𝑜 𝐽𝑜𝑢𝑙𝑒 𝑃 = 𝑉𝑖

    𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑎𝑟𝑟𝑎𝑠𝑡𝑜 𝑑𝑒𝑟𝑖𝑣𝑎 𝑢

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐶𝑎𝑟𝑔𝑎 𝜌𝑣

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 Á𝑡𝑜𝑚𝑜𝑠 𝑒𝑙é𝑡𝑟𝑜𝑛𝑠 𝑛

    𝑗 = 𝑛𝑒u

    𝑚𝑢

    τ= 𝐹 = 𝑒𝐸

    𝑢 =𝑒τ

    𝑚𝐸 =

    𝑗

    𝑛𝑒

    𝑗 =𝑛𝑒2τ

    𝑚𝐸

    𝑗 = 𝜎𝐸

    𝜎 =𝑛𝑒2τ

    𝑚

    𝐶𝑜𝑛𝑑𝑢𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑒𝑙é𝑡𝑟𝑖𝑐𝑎 𝜎

    𝑖 =Δ𝑉

    𝑅

    𝑖

    𝑆= 𝑗 =

    Δ𝑉

    𝑆𝑅

    𝑖

    𝑆= 𝑗 =

    𝑙

    𝑆𝑅

    Δ𝑉

    𝑙=

    𝑙

    𝑆𝑅𝐸

    𝑗 =𝑙

    𝑆𝑅𝐸 = 𝜎𝐸

    𝜌 =𝑆𝑅

    𝑙

    𝜌 =1

    𝜎

    𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑒𝑙é𝑡𝑟𝑖𝑐𝑎 𝜌

  • 𝐶𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑖 =Δ𝑞

    Δ𝑡

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑐𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑗 =𝑖

    𝑆

    𝑅𝑒𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎 ôℎ𝑚𝑖𝑐𝑎 𝑅 =Δ𝑉

    𝑖

    𝐸𝑓𝑒𝑖𝑡𝑜 𝐽𝑜𝑢𝑙𝑒 𝑃 = 𝑉𝑖

    𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑎𝑟𝑟𝑎𝑠𝑡𝑜 𝑑𝑒𝑟𝑖𝑣𝑎 𝑢

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐶𝑎𝑟𝑔𝑎 𝜌𝑣

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 Á𝑡𝑜𝑚𝑜𝑠 𝑒𝑙é𝑡𝑟𝑜𝑛𝑠 𝑛

    𝑗 = 𝑛𝑒u

    𝑗 = 𝜎𝐸

    𝐶𝑜𝑛𝑑𝑢𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑒𝑙é𝑡𝑟𝑖𝑐𝑎 𝜎

    𝜌 =1

    𝜎

    𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑒𝑙é𝑡𝑟𝑖𝑐𝑎 𝜌

    𝐶𝑜𝑏𝑟𝑒

    𝑑𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑚𝑎𝑠𝑠𝑎 8920 𝑘𝑔/𝑚3

    𝑀𝑎𝑠𝑠𝑎 𝑎𝑡ô𝑚𝑖𝑐𝑎 64

    𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 6,022𝑥1023

    64 𝑘𝑔 𝑑𝑒 𝑐𝑜𝑏𝑟𝑒 − 6,022𝑥1026 á𝑡𝑜𝑚𝑜𝑠

    𝑑𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑚𝑜𝑙𝑒𝑠 =8920

    64= 139 𝑚𝑜𝑙𝑒𝑠/

    𝑑𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 á𝑡𝑜𝑚𝑜𝑠 = 139𝑥6,022𝑥1026

    𝑛 = 8,37𝑥1029 á𝑡𝑜𝑚𝑜𝑠/𝑚3

    𝑢 =𝑗

    𝑛𝑒

    𝑖 = 1𝐴 𝑆 = 1𝑚𝑚2 𝑗 = 1𝑥106𝐴/𝑚2

    =1𝑥106

    8,37𝑥1029𝑥1,602𝑥10−19= 7,5𝑥10−6𝑚/𝑠

    𝑢 = 2,7𝑐𝑚/ℎ

  • Ԧ𝑣𝐵

    Ԧ𝐹

    Ԧ𝐹 ∝ 𝑞 Ԧ𝑣 𝐵

    Ԧ𝐹 ⊥ 𝐵

    Ԧ𝐹 ⊥ Ԧ𝑣

    Ԧ𝐹 = 𝑚 Ԧ𝑔

    Ԧ𝐹 = 𝑞𝐸

    Ԧ𝐹 = 𝑞 Ԧ𝑣 × 𝐵

  • Ԧ𝑣𝐵

    Ԧ𝑣 × 𝐵

    Ԧ𝑣

    Ԧ𝐹

    Ԧ𝐹+ Ԧ𝐹−

    Ԧ𝐹 = 𝑞 Ԧ𝑣 × 𝐵

    𝐹𝑀 = 𝑞𝑣𝐵 = 𝑚𝑣2

    𝑅

    𝑅 =𝑚𝑣

    𝑞𝐵𝑅

  • 𝐵

    𝐼

    𝒅𝒒

    𝒗

    𝑑 Ԧ𝐹 = 𝑑𝑞 Ԧ𝑣 × 𝐵

    𝑑 Ԧ𝐹

    𝒅Ԧ𝒍

    Ԧ𝑣 =𝑑Ԧ𝑙

    𝑑𝑡𝑑 Ԧ𝐹 = 𝑑𝑞

    𝑑Ԧ𝑙

    𝑑𝑡× 𝐵 𝑑 Ԧ𝐹 =

    𝑑𝑞

    𝑑𝑡𝑑Ԧ𝑙 × 𝐵

    𝑑 Ԧ𝐹 = 𝐼𝑑Ԧ𝑙 × 𝐵 𝑑𝑞 Ԧ𝑣 ≡ 𝐼𝑑Ԧ𝑙

  • 𝐵𝐼

    𝑑 Ԧ𝐹

    𝒅Ԧ𝒍

    𝑑 Ԧ𝐹 = 𝐼𝑑Ԧ𝑙 × 𝐵

    𝑑 Ԧ𝐹

    𝒅Ԧ𝒍𝑑 Ԧ𝐹

    𝒅Ԧ𝒍𝑑 Ԧ𝐹

    𝒅Ԧ𝒍𝐿

    Ԧ𝐹 = 𝐼𝐿 × 𝐵

  • 𝐵

    𝐼

    𝑑 Ԧ𝐹

    𝒅Ԧ𝒍

    𝑑 Ԧ𝐹 = 𝐼𝑑Ԧ𝑙 × 𝐵

    𝑑 Ԧ𝐹𝐻

    𝑑 Ԧ𝐹𝑉 𝑑Ԧ𝐹

    𝒅Ԧ𝒍𝑑 Ԧ𝐹𝐻

    𝑑 Ԧ𝐹𝑉

    𝑑𝐹 = 𝐼𝑑𝑙𝐵 𝑑𝐹𝐻 = 𝐼𝑑𝑙𝐵𝑐𝑜𝑠𝜃

    𝜃

    𝜃

    𝑑𝐹𝑉 = 𝐼𝑑𝑙𝐵𝑠𝑒𝑛𝜃

    𝑑𝜃

    𝑑𝑙 = 𝑅𝑑𝜃

    𝑑𝐹𝑉 = 𝐼𝑅𝐵𝑠𝑒𝑛𝜃𝑑𝜃

    𝐹𝑉 = 𝐼𝑅𝐵න0

    𝜋

    𝑠𝑒𝑛𝜃𝑑𝜃 𝐹𝑉 = 2𝐼𝑅𝐵

    𝑅

  • 𝐵

    𝐼

    𝑑 Ԧ𝐹

    𝒅Ԧ𝒍

    𝑑 Ԧ𝐹 = 𝐼𝑑Ԧ𝑙 × 𝐵

    𝑑 Ԧ𝐹𝐻

    𝑑 Ԧ𝐹𝑉

    𝑑𝐹 = 𝐼𝑑𝑙𝐵 𝑑𝐹𝐻 = 𝐼𝑑𝑙𝐵𝑐𝑜𝑠𝜃

    𝜃

    𝜃

    𝑑𝐹𝑉 = 𝐼𝑑𝑙𝐵𝑠𝑒𝑛𝜃

    𝑑𝜃

    𝑑𝑙 = 𝑅𝑑𝜃

    𝑑𝐹𝑉 = 𝐼𝑅𝐵𝑠𝑒𝑛𝜃𝑑𝜃

    𝐹𝑉 = 𝐼𝑅𝐵න0

    𝛼

    𝑠𝑒𝑛𝜃𝑑𝜃 𝐹𝑉 = 𝐼𝑅𝐵(1 − 𝑐𝑜𝑠𝛼)

    𝛼

    𝐹𝐻 = 𝐼𝑅𝐵𝑠𝑒𝑛𝛼

  • 𝐼

    𝐼

    𝐼

    𝐼

    𝐵

    Ԧ𝐹1

    − Ԧ𝐹1

    Ԧ𝐹2− Ԧ𝐹2

    𝑎

    𝑏

    Ԧ𝐹 = 𝐼𝐿 × 𝐵 𝐹1 = 𝐼𝑎𝐵

    𝐹2 = 𝐼𝑏𝐵

    𝐹𝑇 = 0

  • 𝐼

    𝐼𝐵

    Ԧ𝐹1

    − Ԧ𝐹1

    Ԧ𝐹2

    Ԧ𝐹 = 𝐼𝐿 × 𝐵 𝐹1 = 𝐼𝑎𝐵

    𝐹2 = 𝐼𝑏𝐵𝑠𝑒𝑛𝜃

    𝐹𝑇 = 0

    𝜃

    Ԧ𝑟

    Ԧ𝜏 = Ԧ𝑟 × Ԧ𝐹

    𝛼

    𝜏 = 𝑟𝐹𝑠𝑒𝑛𝛼 =𝑏

    2𝐹1𝑠𝑒𝑛𝛼 =

    1

    2𝐼𝑎𝑏𝐵𝑠𝑒𝑛𝛼

    𝜏𝑇 = 𝐼𝑎𝑏𝐵𝑠𝑒𝑛𝛼 = 𝐼𝑆𝐵𝑠𝑒𝑛𝛼

    Ԧ𝑆

    𝛼

    Ԧ𝜏𝑇 = 𝐼 Ԧ𝑆 × 𝐵 Ԧ𝜇 = 𝐼 Ԧ𝑆 Ԧ𝜏𝑇 = Ԧ𝜇 × 𝐵

    Ԧ𝜇 − 𝑀𝑜𝑚𝑒𝑛𝑡𝑜 𝑑𝑒 𝑑𝑖𝑝𝑜𝑙𝑜 𝑚𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    Ԧ𝜇

    𝑃𝑎𝑟𝑎 𝑜 𝑑𝑖𝑝𝑜𝑙𝑜 𝑒𝑙é𝑡𝑟𝑖𝑐𝑜 ර𝐸𝑑 Ԧ𝑆 = 0 𝛻. 𝐸 = 0

    𝑃𝑎𝑟𝑎 𝑜 𝑑𝑖𝑝𝑜𝑙𝑜 𝑚𝑎𝑔𝑛é𝑡𝑖𝑐𝑜 ර𝐵𝑑 Ԧ𝑆 = 0 𝛻. 𝐵 = 0

  • 𝐼

    𝐼

    𝐼

    𝐼

    𝐵

  • 𝐼

    𝐼𝐵

    Ԧ𝐹1

    − Ԧ𝐹1

    Ԧ𝐹2

    𝜃

    Ԧ𝑟

    𝛼

    𝐵

    𝛼

    Ԧ𝜏𝑇 = Ԧ𝜇 × 𝐵

  • 𝐵

  • 𝐵

    𝐵

  • 𝑵

    𝑺

    𝑵

    𝑺

    𝑵

    𝑺

    𝑺

    𝑵

    𝑵

    𝑺

    𝑵

    𝑺

    𝑭

    𝑭

  • 𝐼

    𝑰

    𝐼

    𝑵

    𝑺

    𝑵

    𝑵

    𝑵

    𝑺

    𝑺

    𝑺

  • 𝐵

    𝐼

    𝐵

    𝐵

    𝐵

    𝐵

    𝐵

    𝑰

  • 𝑑𝐵𝐼

    𝒅𝒒

    𝒗

    𝑑𝐵𝛼 𝑑𝑞 Ԧ𝑣 × Ԧ𝑟

    𝒅Ԧ𝒍

    Ԧ𝑟

    𝑰

    X

    𝐵 ⊥ Ԧ𝑣

    𝐵 ⊥ Ԧ𝑟

    Ƹ𝑟

    𝑑𝐵𝛼 𝑑𝑞 Ԧ𝑣 × Ƹ𝑟

    𝑑𝐵𝛼𝑑𝑞 Ԧ𝑣 × Ƹ𝑟

    𝑟2

    𝑑𝐵 =𝜇04𝜋

    𝑑𝑞 Ԧ𝑣 × Ƹ𝑟

    𝑟2

    𝑑𝑞 Ԧ𝑣 ≡ 𝐼𝑑Ԧ𝑙

    𝑑𝐵 =𝜇0𝐼

    4𝜋

    𝑑Ԧ𝑙 × Ƹ𝑟

    𝑟2𝑑𝐵 =

    𝜇0𝐼

    4𝜋

    𝑑Ԧ𝑙 × Ԧ𝑟

    𝑟3

    𝐿𝑒𝑖 𝑑𝑒 𝐵𝑖𝑜𝑡 − 𝑆𝑎𝑣𝑎𝑟𝑡

  • 𝐵

    𝐼𝒅Ԧ𝒍

    𝛼

    𝑑𝐵 =𝜇0𝐼

    4𝜋

    𝑑Ԧ𝑙 × Ƹ𝑟

    𝑟2𝑑Ԧ𝑙 ⊥ Ԧ𝑟

    Ԧ𝑟𝑅

    𝑑𝐵 =𝜇0𝐼

    4𝜋

    𝑑𝑙

    𝑅2𝐵 =

    𝜇0𝐼

    4𝜋

    1

    𝑅2න𝑑𝑙

    𝐵 =𝜇0𝐼

    4𝜋

    𝑅𝛼

    𝑅2𝐵 =

    𝜇0𝐼

    4𝜋𝑅𝛼

  • 𝐼𝒅𝒙

    Ԧ𝑟

    𝑑𝐵 =𝜇0𝐼

    4𝜋

    𝑑 Ԧ𝑥 × Ƹ𝑟

    𝑟2

    𝒚

    𝒙𝑥

    𝑦

    𝑑𝐵

    𝜃

    𝑑𝐵 =𝜇0𝐼

    4𝜋

    𝑑𝑥 Ƹ𝑟 𝑠𝑒𝑛𝜃

    𝑟2𝑑𝐵 =

    𝜇0𝐼

    4𝜋

    𝑑𝑥

    𝑟2𝑦

    𝑟𝑑𝐵 =

    𝜇0𝐼𝑦

    4𝜋

    𝑑𝑥

    𝑥2 + 𝑦2 ൗ32

    𝐵 =𝜇0𝐼𝑦

    4𝜋න−𝑎

    𝑏 𝑑𝑥

    𝑥2 + 𝑦2 ൗ32

    0

    𝑎 𝑏

    𝐵 =𝜇0𝐼

    2𝜋𝑦

    𝐵 =𝜇0𝐼𝑦

    4𝜋

    𝑥

    𝑦2 𝑥2 + 𝑦2𝑏−𝑎

    𝑃𝑎𝑟𝑎 𝑜 𝑓𝑖𝑜 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑜𝑎 → ∞

    𝑏 → ∞

  • 𝐼

    𝑟

    𝐵

    𝐵 =𝜇0𝐼

    2𝜋𝑟

    𝐼

    𝑟

    𝐵

    𝐵 =𝜇0𝐼

    2𝜋𝑟𝐵2𝜋𝑟 = 𝜇0𝐼

  • 𝐼

    𝐵1 𝐵2𝜋𝑟 = 𝜇0𝐼

    𝑠1

    𝑠2𝐵2

    𝐵1𝑠1 = 𝐵2𝑠2 =𝜇0𝐼

    𝑁

    𝐵1𝑠1 + 𝐵2𝑠2 +⋯+ 𝐵𝑁𝑠𝑁 = 𝜇0𝐼

    𝑑 Ԧ𝑠

    න𝑠1

    𝐵. 𝑑Ԧ𝑠 + න𝑠2

    𝐵. 𝑑 Ԧ𝑠 + ⋯+න𝑠𝑁

    𝐵. 𝑑 Ԧ𝑠 = 𝜇0𝐼

    𝑑Ԧ𝑠

    𝑑 Ԧ𝑠

    𝑑Ԧ𝑠

    𝐵

    𝑁𝑜𝑠 𝑎𝑟𝑐𝑜𝑠

    𝑁𝑎 𝑝𝑎𝑟𝑡𝑒 𝑟𝑎𝑑𝑖𝑎𝑙 න 𝐵. 𝑑 Ԧ𝑠 = 0𝐵 ⊥ 𝑑Ԧ𝑠

    𝐵 ∥ 𝑑Ԧ𝑠

    ර𝐵. 𝑑 Ԧ𝑠 = 𝜇0𝐼

    𝑑Ԧ𝑠

    𝐵. 𝑑 Ԧ𝑠

  • 𝐼

    ර𝐵. 𝑑 Ԧ𝑠 = 𝜇0𝐼

    𝐵

    𝐵

  • 𝐼

    න𝐴

    𝐵. 𝑑 Ԧ𝑠 + න𝐵

    𝐵. 𝑑 Ԧ𝑠 = 𝜇0𝐼

    𝑑 Ԧ𝑠

    ර𝐵. 𝑑 Ԧ𝑠 = 0

    𝐴

    𝐵

    𝐶

    න𝐴

    𝐵. 𝑑 Ԧ𝑠 + න𝐶

    𝐵. 𝑑 Ԧ𝑠 = 𝜇0𝐼

    න𝐵

    𝐵. 𝑑 Ԧ𝑠 = න𝐶

    𝐵. 𝑑 Ԧ𝑠

    𝐵

    𝐵

    𝑑 Ԧ𝑠𝑑 Ԧ𝑠න𝐶

    𝐵. 𝑑 Ԧ𝑠 > 0

    න𝐵

    𝐵. 𝑑 Ԧ𝑠 < 0

    න𝐵

    𝐵. 𝑑 Ԧ𝑠 + න𝐶

    𝐵. 𝑑 Ԧ𝑠 = 0

  • 𝐼

    ර𝐵. 𝑑Ԧ𝑠 = 𝜇0𝐼𝐼𝑛𝑡

    𝐵

    𝐵

    𝐼𝐼𝑛𝑡

    𝐼𝐸𝑥𝑡

    𝐿𝑒𝑖 𝑑𝑒 𝐴𝑚𝑝è𝑟𝑒

  • ර𝐵. 𝑑Ԧ𝑙 = 𝜇0𝐼𝐼𝑛𝑡

    𝐼

    𝑟

    ර𝐸. 𝑑Ԧ𝑙 = 0

  • 𝐼

    𝑟

    𝐵

    𝐼

    𝑟

    𝐵

    𝐵2𝜋𝑟 = 𝜇0𝐼𝐼𝑛𝑡

    ර𝐵. 𝑑Ԧ𝑙 = 𝜇0𝐼𝐼𝑛𝑡

    𝑑Ԧ𝑙

    𝐵 ∥ 𝑑Ԧ𝑙

    𝐵 =𝜇0𝐼𝐼𝑛𝑡2𝜋𝑟

    𝐵 =𝜇0𝐼

    2𝜋𝑟

  • 𝐼

    𝑟

    𝐵

    𝐼

    𝑟𝐵

    𝐵2𝜋𝑟 = 𝜇0𝐼𝐼𝑛𝑡

    ර𝐵. 𝑑Ԧ𝑙 = 𝜇0𝐼𝐼𝑛𝑡

    𝑑Ԧ𝑙

    𝐵 ∥ 𝑑Ԧ𝑙

    𝐵 =𝜇0𝐼𝐼𝑛𝑡2𝜋𝑟

    𝐵 =𝜇0𝐼

    2𝜋𝑟

    𝑑𝐵

    𝑑𝐵

  • 𝐼𝑟

    𝐵

    𝐼

    𝑟𝐵

    𝐵2𝜋𝑟 = 𝜇0𝐼𝐼𝑛𝑡

    ර𝐵. 𝑑Ԧ𝑙 = 𝜇0𝐼𝐼𝑛𝑡

    𝑑Ԧ𝑙

    𝐵 ∥ 𝑑Ԧ𝑙

    𝐵 =𝜇0𝐼𝐼𝑛𝑡2𝜋𝑟

    𝑑𝐵

    𝑑𝐵

    𝐼𝐼𝑛𝑡𝐼

    =𝐴𝐼𝑛𝑡𝐴

    𝐼𝐼𝑛𝑡 = 𝑗𝐴𝐼𝑛𝑡

    𝐼𝐼𝑛𝑡 = 𝐼𝜋𝑟2

    𝜋𝑅2

    𝐵 =𝜇0𝐼

    2𝜋

    𝑟

    𝑅2

  • 𝐷 = 𝜀𝐸 𝐷 =𝑞

    4𝜋𝑟2ො𝑎𝑟

    𝐻 =𝑞 Ԧ𝑣 × Ƹ𝑟

    4𝜋𝑟2𝐻 =𝐵

    𝜇𝑑𝐻 =

    𝐼𝑑Ԧ𝑙 × Ƹ𝑟

    4𝜋𝑟2

    ර𝐻. 𝑑Ԧ𝑙 = 𝐼𝐼𝑛𝑡

    𝐻 − 𝐶𝑎𝑚𝑝𝑜 𝑀𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    𝐵 − 𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐹𝑙𝑢𝑥𝑜 𝑜𝑢 𝐼𝑛𝑑𝑢çã𝑜 𝑀𝑎𝑔𝑛é𝑡𝑖𝑐𝑎

    𝜇 − 𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒 𝑀𝑎𝑔𝑛é𝑡𝑖𝑐𝑎

  • 𝑥

    𝑦

    𝑧

    1 2

    34

    ර𝐻. 𝑑Ԧ𝑙

    𝐻0𝑦

    𝐻0𝑥

    𝐻0

    𝐻0 = 𝐻0𝑥 Ԧ𝑎𝑥 + 𝐻0𝑦 Ԧ𝑎𝑦 + 𝐻0𝑧 Ԧ𝑎𝑧

    𝐻0𝑧

    1 → 2 𝐻. ∆Ԧ𝑙 = 𝐻𝑦1→2∆𝑦

    𝐻𝑦

    = (𝐻0𝑦 +𝜕𝐻𝑦

    𝜕𝑥

    ∆𝑥

    2)∆𝑦

    3 → 4 𝐻. ∆Ԧ𝑙 = 𝐻𝑦3→4(−∆𝑦) = (𝐻0𝑦 −𝜕𝐻𝑦

    𝜕𝑥

    ∆𝑥

    2)(−∆𝑦)

    4 → 1 𝐻. ∆Ԧ𝑙 = 𝐻𝑥4→1∆x = (𝐻0𝑥 −𝜕𝐻𝑥𝜕𝑦

    ∆𝑦

    2)∆𝑥

    2 → 3 𝐻. ∆Ԧ𝑙 = 𝐻𝑦2→3(−∆𝑥) = (𝐻0𝑥 +𝜕𝐻𝑥𝜕𝑦

    ∆𝑦

    2)(−∆𝑥)

    1 → 2 → 3 → 4 𝐻. ∆Ԧ𝑙 =𝜕𝐻𝑦

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑦

    ∆𝑥∆𝑦

  • 𝑥

    𝑦

    𝑧

    1 2

    34

    ර𝐻. 𝑑Ԧ𝑙

    𝐻0𝑦

    𝐻0𝑥

    𝐻0𝐻0𝑧

    𝐻𝑦

    𝐻.∆Ԧ𝑙 =𝜕𝐻𝑦

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑦

    𝑆𝑧

    ∆𝑥 → 0 ∆𝑦 → 0

    𝐻.𝑑Ԧ𝑙 =𝜕𝐻𝑦

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑦

    𝑑𝑆𝑧

    ර𝐻. 𝑑Ԧ𝑙 = න𝜕𝐻𝑦

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑦

    𝑑𝑆𝑧

    ර𝐻. 𝑑Ԧ𝑙 = න𝜕𝐻𝑦

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑦

    Ԧ𝑎𝑧. 𝑑𝑆𝑧 Ԧ𝑎𝑧

    ර𝐻. 𝑑Ԧ𝑙 = න𝜕𝐻𝑧𝜕𝑦

    −𝜕𝐻𝑦

    𝜕𝑧Ԧ𝑎𝑥 . 𝑑𝑆𝑥 Ԧ𝑎𝑥

    ර𝐻. 𝑑Ԧ𝑙 = න𝜕𝐻𝑥𝜕𝑧

    −𝜕𝐻𝑧𝜕𝑥

    Ԧ𝑎𝑦 . 𝑑𝑆𝑦 Ԧ𝑎𝑦

  • 𝑥

    𝑦

    𝑧

    𝑑 Ԧ𝑆

    𝐻

    ර𝐻. 𝑑Ԧ𝑙 = න𝜕𝐻𝑧𝜕𝑦

    −𝜕𝐻𝑦

    𝜕𝑧Ԧ𝑎𝑥 +

    𝜕𝐻𝑥𝜕𝑧

    −𝜕𝐻𝑧𝜕𝑥

    Ԧ𝑎𝑦 +𝜕𝐻𝑦

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑦

    Ԧ𝑎𝑧 . 𝑑 Ԧ𝑆

    𝑉

    𝑉 =𝜕𝐻𝑧𝜕𝑦

    −𝜕𝐻𝑦

    𝜕𝑧Ԧ𝑎𝑥 +

    𝜕𝐻𝑥𝜕𝑧

    −𝜕𝐻𝑧𝜕𝑥

    Ԧ𝑎𝑦 +𝜕𝐻𝑦

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑦

    Ԧ𝑎𝑧

    𝑉 = 𝛻 × 𝐻

    ර𝐻. 𝑑Ԧ𝑙 = න 𝛻 × 𝐻 . 𝑑 Ԧ𝑆

    ර𝐻. 𝑑Ԧ𝑙 = න𝑉. 𝑑 Ԧ𝑆

    ර𝐻. 𝑑Ԧ𝑙 = 𝐼𝐼𝑛𝑡 න 𝛻 × 𝐻 . 𝑑Ԧ𝑆 = 𝐼𝐼𝑛𝑡 = න Ԧ𝑗. 𝑑 Ԧ𝑆

    Ԧ𝑗

    𝛻 × 𝐻 = Ԧ𝑗

  • ර𝐵. 𝑑Ԧ𝑙 = 𝜇0𝐼𝐼𝑛𝑡

    ර𝐸. 𝑑Ԧ𝑙 = 0

    ර𝐸. 𝑑 Ԧ𝑆 =𝑞

    𝜀0

    ර𝐵. 𝑑 Ԧ𝑆 = 0

    𝛻. 𝐸 =𝜌

    𝜀0

    𝛻. 𝐵 = 0

    𝛻 × 𝐵 = 𝜇0Ԧ𝑗

    𝛻 × 𝐸 = 0

    𝛻.𝐷 = 𝜌

    𝛻.𝐻 = 0

    𝛻 × 𝐻 = Ԧ𝑗

    𝛻 × 𝐷 = 0

    𝛻 × 𝐸 = 0 𝛻 × 𝐷 = 0

  • 𝛻. 𝐵 = 0

    𝛻 × 𝐸 = 0 𝛻 × 𝛻𝜑 = 0 𝐸 = −𝛻𝜑

    𝜑 Ԧ𝑟 = 𝜑𝑃 Ԧ𝑟 + 𝜑0 𝛻𝜑 Ԧ𝑟 = 𝛻𝜑𝑃 Ԧ𝑟

    𝛻. (𝛻 × Ԧ𝐴) = 0 𝐵 = 𝛻 × Ԧ𝐴

    𝛻 × 𝛻𝛿 = 0 Ԧ𝐴 Ԧ𝑟 = Ԧ𝐴𝑃 Ԧ𝑟 + 𝛻𝛿 𝛻 × Ԧ𝐴 Ԧ𝑟 = 𝛻 × Ԧ𝐴𝑃 Ԧ𝑟

    Ԧ𝐴 Ԧ𝑟 − 𝑃𝑜𝑡𝑒𝑛𝑐𝑖𝑎𝑙 𝑉𝑒𝑡𝑜𝑟

  • 𝛻. 𝐸 =𝜌

    𝜀0𝐸 = −𝛻𝜑 𝛻. (−𝛻𝜑) =

    𝜌

    𝜀0𝛻2𝜑 = −

    𝜌

    𝜀0

    𝛻 × 𝐵 = 𝜇0Ԧ𝑗 𝐵 = 𝛻 × Ԧ𝐴

    𝛻 × 𝛻 × Ԧ𝐴 = 𝛻. 𝛻. Ԧ𝐴 − 𝛻2 Ԧ𝐴 Ԧ𝐴 Ԧ𝑟 = Ԧ𝐴𝑃 Ԧ𝑟 + 𝛻𝛿

    𝛻. Ԧ𝐴 Ԧ𝑟 = 𝛻. Ԧ𝐴𝑃 Ԧ𝑟 + 𝛻. 𝛻𝛿 𝛻. Ԧ𝐴 Ԧ𝑟 = 𝛻. Ԧ𝐴𝑃 Ԧ𝑟 + 𝛻2𝛿

    𝛻. Ԧ𝐴𝑃 Ԧ𝑟 = −𝛻2𝛿 𝛻. Ԧ𝐴 Ԧ𝑟 = 0

    𝛻 × 𝛻 × Ԧ𝐴 = −𝛻2 Ԧ𝐴 = 𝛻 × 𝐵 = 𝜇0Ԧ𝑗 𝛻2 Ԧ𝐴 = −𝜇0Ԧ𝑗

  • Teorema de Helmholtz

    1

    4𝜋𝛻2න

    Ԧ𝐺(Ԧ𝑟′)

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ =

    1

    4𝜋න Ԧ𝐺(Ԧ𝑟′)𝛻2

    1

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ = න Ԧ𝐺(Ԧ𝑟′)𝛿(Ԧ𝑟 − Ԧ𝑟′)𝑑𝑣′ = Ԧ𝐺(Ԧ𝑟)

    𝑈 𝑟 =1

    4𝜋න

    Ԧ𝐺(Ԧ𝑟′)

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ 𝛻2𝑈 𝑟 =

    1

    4𝜋𝛻2න

    Ԧ𝐺(Ԧ𝑟′)

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′

    𝛻2𝑈 𝑟 = Ԧ𝐺 𝑟 𝑈 Ԧ𝑟 =1

    4𝜋න𝛻′2𝑈 Ԧ𝑟′

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ 𝑊 Ԧ𝑟 =

    1

    4𝜋න𝛻′2𝑊 Ԧ𝑟′

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′

    Ԧ𝐹 = −𝛻𝑊 + 𝛻 × 𝑈 𝛻 ∙ Ԧ𝐹 = −𝛻2𝑊

    𝛻 × Ԧ𝐹 = 𝛻 × 𝛻 × 𝑈 = 𝛻 ∙ 𝛻 ∙ 𝑈 − 𝛻2𝑈 𝛻 ∙ 𝑈 = 0 𝛻 × Ԧ𝐹 = −𝛻2𝑈

    𝛻 ∙ Ԧ𝐹 = −𝛻2𝑊 = 𝐷

    𝛻 × Ԧ𝐹 = −𝛻2𝑈 = Ԧ𝐺

    𝐸 Ԧ𝑟 =1

    4𝜋න𝛻′2𝐸 Ԧ𝑟′

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ 𝐸 = −𝛻𝑉 + 𝛻 × 𝑈

    𝐵 Ԧ𝑟 =1

    4𝜋න𝛻′2𝐵 Ԧ𝑟′

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ 𝐵 = −𝛻𝑊 + 𝛻 × Ԧ𝐴

  • 𝐸 =1

    4𝜋න𝛻′2𝐸 Ԧ𝑟′

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′

    𝐸 = −𝛻. 𝑉 𝑉 = −1

    4𝜋න

    𝛻. 𝐸

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ + 𝑉0 = −

    1

    4𝜋𝜀0න

    𝜌

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ + 𝑉0

    Ԧ𝐴 = −1

    4𝜋න

    𝛻 × 𝐵

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ + Ԧ𝐴0 = −

    𝜇04𝜋

    නԦ𝑗

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ + Ԧ𝐴0

    𝐵 =1

    4𝜋න𝛻′2𝐵 Ԧ𝑟′

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ =

    1

    4𝜋න𝛻. 𝛻. 𝐵 − 𝛻 × 𝛻 × 𝐵

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′

    𝐵 = 𝛻 × Ԧ𝐴

    𝑉 = −1

    4𝜋𝜀0න𝜌

    𝑟𝑑𝑣 + 𝑉0 Ԧ𝐴 = −

    𝜇04𝜋

    නԦ𝑗

    𝑟𝑑𝑣 + Ԧ𝐴0

  • 𝐻

    1

    2

    𝐻1

    ∆𝑙

    ∆𝑙

    ∆ℎ∆ℎ

    𝐻1𝑛

    𝐻1𝑡

    𝐻2𝐻2𝑛

    𝐻2𝑡

    𝐴

    𝐵𝐶

    𝐷

    න𝐴−𝐵

    𝐻. 𝑑Ԧ𝑙 = −𝐻2𝑛∆ℎ

    2− 𝐻1𝑛

    ∆ℎ

    2

    න𝐵−𝐶

    𝐻. 𝑑Ԧ𝑙 = − −𝐻2𝑡∆𝑙

    න𝐶−𝐷

    𝐻. 𝑑Ԧ𝑙 = − −𝐻1𝑛∆ℎ

    2− −𝐻2𝑛

    ∆ℎ

    2

    න𝐷−𝐴

    𝐻. 𝑑Ԧ𝑙 = −𝐻1𝑡∆𝑙

    −𝐻2𝑛∆ℎ

    2− 𝐻1𝑛

    ∆ℎ

    2+ 𝐻2𝑡∆𝑙 + 𝐻2𝑛

    ∆ℎ

    2+ 𝐻1𝑛

    ∆ℎ

    2− 𝐻1𝑡∆𝑙 =

    𝐼

    𝐴

    ∆ℎ → 0 𝐻2𝑡 − 𝐻1𝑡 = 𝐾

    ර𝐻. 𝑑Ԧ𝑙 = Ԧ𝑗

    𝐻2𝑡 − 𝐻1𝑡 =𝐼

    ∆𝑙

    𝐵2𝑡𝜇0

    −𝐵1𝑡𝜇0

    = 𝐾

  • 𝐻

    1

    2

    𝐵1𝐵1𝑛

    𝐵1𝑡

    𝐵2𝐵2𝑛

    𝐵2𝑡

    𝐵1𝑛

    𝐵2𝑛

    ර𝐵. 𝑑 Ԧ𝑆 = 0

    𝐵2𝑛𝐴 − 𝐵1𝑛𝐴 = 0

    𝐵2𝑛 − 𝐵1𝑛 = 0

    𝐻2𝑛 − 𝐻1𝑛 = 0

    𝐻2𝑡 − 𝐻1𝑡 = 𝐾

    𝐵2𝑡 − 𝐵1𝑡 = 𝜇0𝐾

    ℎ → 0

  • Ԧ𝒋 Ԧ𝒋

    Plano espesso infinito

    d

  • Ԧ𝒋 Ԧ𝒋

    Plano espesso infinito

    d

    𝒅𝑩

    𝒅𝑩

    𝑩

    𝒅𝑩

    𝒅𝑩

    𝑩

    𝑩

    𝑩𝑩

    𝑩

    𝑩

    𝒅Ԧ𝒍

    𝒅Ԧ𝒍

    𝒅Ԧ𝒍

    𝒅Ԧ𝒍

    𝒅Ԧ𝒍

    𝒅Ԧ𝒍

    d

    L

    ර𝐵. 𝑑Ԧ𝑙 = 𝜇0𝐼𝐼𝑛𝑡 2𝐵𝐿 = 𝜇0𝑗𝐿𝑑 𝐵 =1

    2𝜇0𝑗𝑑

    𝑩

  • Ԧ𝒋 Ԧ𝒋

    Plano espesso infinito

    d

    𝒅𝑩

    𝒅𝑩

    𝑩

    𝒅𝑩

    𝒅𝑩

    𝑩

    𝑩𝑩

    𝑩

    𝒅Ԧ𝒍

    𝒅Ԧ𝒍

    𝒅Ԧ𝒍

    𝒅Ԧ𝒍2y

    L

    y

    x

    ර𝐵. 𝑑Ԧ𝑙 = 𝜇0𝐼𝐼𝑛𝑡 2𝐵𝐿 = 𝜇0𝑗2𝑦𝐿 𝐵 = 𝜇0𝑗𝑦

    𝐵 = −𝜇0𝑗𝑦 ො𝑥

  • Ԧ𝒋 Ԧ𝒋

    Plano espesso infinito

    d

    y

    𝛻2 Ԧ𝐴 = −𝜇0Ԧ𝑗Dentro

    𝜕2𝐴𝑥𝜕𝑥2

    +𝜕2𝐴𝑥𝜕𝑦2

    +𝜕2𝐴𝑥𝜕𝑧2

    ො𝑎𝑥 +𝜕2𝐴𝑦

    𝜕𝑥2+𝜕2𝐴𝑦

    𝜕𝑦2+𝜕2𝐴𝑦

    𝜕𝑧2ො𝑎𝑦 +

    𝜕2𝐴𝑧𝜕𝑥2

    +𝜕2𝐴𝑧𝜕𝑦2

    +𝜕2𝐴𝑧𝜕𝑧2

    ො𝑎𝑧 = −𝜇0𝐽 ො𝑎𝑧

    𝜕2𝐴𝑧𝜕𝑦2

    = −𝜇0𝐽 𝐴𝑧 𝑦 = −𝜇0𝐽𝑦2

    2+ 𝐶𝑦 + 𝐷 𝐵 = 𝛻 × Ԧ𝐴

    𝛻 × Ԧ𝐴 =𝜕𝐴𝑧𝜕𝑦

    ො𝑎𝑥 = −𝜇0𝐽𝑦 + 𝐶 ො𝑎𝑥Para y=0 B=0 => C=0

    D=0 Referência

    Ԧ𝐴 = −𝜇0𝐽𝑦2

    2ො𝑎𝑧

    𝑨

  • Ԧ𝒋 Ԧ𝒋

    Plano espesso infinito

    d

    y

    𝛻2 Ԧ𝐴 = 0Fora 𝜕2𝐴𝑧

    𝜕𝑦2= 0 𝐴𝑧 𝑦 = 𝐸𝑦 + 𝐹

    𝑨

    𝐸𝑑

    2+ 𝐹 = −𝜇0𝐽

    𝑑2

    8

    No contorno

    𝐴𝑧 𝐷𝑒𝑛𝑡𝑟𝑜 𝑦 →𝑑

    2= 𝐴𝑧 𝐹𝑜𝑟𝑎 𝑦 →

    𝑑

    2

    Ԧ𝐴 = −𝜇0𝐽𝑑

    2𝑦 −

    𝑑

    4ො𝑎𝑧

    𝑨

    𝑨

    𝜕𝐴𝑧 𝐷𝑒𝑛𝑡𝑟𝑜𝜕𝑦

    𝑦 →𝑑

    2=𝜕𝐴𝑧 𝐹𝑜𝑟𝑎

    𝜕𝑦𝑦 →

    𝑑

    2𝐸 = −𝜇0𝐽

    𝑑

    2𝐹 =

    1

    8𝜇0𝐽𝑑

    2

  • 𝐼𝑟

    𝐵

    𝐼

    𝑟

    𝛻2 Ԧ𝐴 = −𝜇0Ԧ𝑗Dentro

    1

    𝜌

    𝜕

    𝜕𝜌𝜌𝜕𝐴𝑧𝜕𝑟

    = −𝜇0𝑗 𝜌𝜕𝐴𝑧𝜕𝜌

    = −𝜇0𝑗𝜌2

    2+ 𝐶

    𝐴𝑧 = −𝜇0𝑗𝜌2

    4+ 𝐶𝑙𝑛𝜌 + 𝐷

    𝑂 𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑎𝑙 𝑛ã𝑜 𝑑𝑖𝑣𝑒𝑟𝑔𝑒 𝑒𝑚 𝜌 = 0 𝑒𝑛𝑡ã𝑜 𝐶 = 0

    𝑅𝑒𝑓𝑒𝑟ê𝑛𝑐𝑖𝑎 𝐷 = 0

  • 𝐼𝑟

    𝛻2 Ԧ𝐴 = 0Fora1

    𝜌

    𝜕

    𝜕𝜌𝜌𝜕𝐴𝑧𝜕𝜌

    = 0 𝜌𝜕𝐴𝑧𝜕𝜌

    = 𝐸

    𝐴𝑧 = 𝐸𝑙𝑛𝜌 + 𝐹

    𝑁𝑜 𝑐𝑜𝑛𝑡𝑜𝑟𝑛𝑜 𝐴𝐷𝑒𝑛𝑡𝑟𝑜 𝑅 = 𝐴𝐹𝑜𝑟𝑎 𝑅 −𝜇0𝑗𝑅2

    4= 𝐸𝑙𝑛𝑅 + 𝐹

    𝑁𝑜 𝑐𝑜𝑛𝑡𝑜𝑟𝑛𝑜𝜕

    𝜕𝜌𝐴𝐷𝑒𝑛𝑡𝑟𝑜 𝑅 =

    𝜕

    𝜕𝜌𝐴𝐹𝑜𝑟𝑎 𝑅 −𝜇0

    𝑗𝑅

    2=𝐸

    𝑅

    𝐸 = −𝜇0𝑗𝑅2

    2𝐹 = 𝜇0

    𝑗𝑅2

    2(𝑙𝑛𝑅 −

    1

    2)

  • 𝐼

    𝑟

    Fora Ԧ𝐴 = −𝜇0𝑗𝑅2

    2𝑙𝑛

    𝜌

    𝑅+1

    2Ƹ𝑧

    Dentro Ԧ𝐴 = −𝜇0𝑗𝜌2

    4Ƹ𝑧 𝐵 = 𝛻 × Ԧ𝐴 = −

    𝜕𝐴𝑧𝜕𝜌

    ො𝜑 = 𝜇0𝑗𝜌

    2ො𝜑

    𝐵 = 𝛻 × Ԧ𝐴 = −𝜕𝐴𝑧𝜕𝜌

    ො𝜑 = 𝜇0𝑗𝑅2

    2𝜌ො𝜑

  • xy

    z

    Ԧ𝑟

    𝑥

    𝑦

    𝑧

    xy

    z

    Ԧ𝑟′𝑥

    𝑦

    𝑧

    Ԧ𝑟

    𝑅

    𝑉 =1

    4𝜋𝜀0

    𝑞

    𝑟 𝑉 =1

    4𝜋𝜀0න

    𝜌(Ԧ𝑟′)

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ + 𝑉0𝛻2𝑉 = −

    𝜌

    𝜀0

    𝛻2 Ԧ𝐴 = −𝜇0Ԧ𝑗 Ԧ𝐴 =𝜇04𝜋

    නԦ𝐽( Ԧ𝑟′)

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′ + Ԧ𝐴0

  • Ԧ𝑗

    Ԧ𝐴 =𝜇04𝜋

    නԦ𝐽(Ԧ𝑟′)

    Ԧ𝑟 − Ԧ𝑟′𝑑𝑣′

    𝒅𝒛′

    Ԧ𝑟

    𝝆

    𝒛𝑧’

    𝜌

    𝜃

    0

    𝑎

    Ԧ𝐽 Ԧ𝑟′ =1

    2𝜋𝜌′𝐼𝛿(𝜌′) Ƹ𝑧

    න Ԧ𝐽 Ԧ𝑟′ 𝜌′𝑑𝜑′𝑑𝜌′ = 𝐼

    Ԧ𝑟 − Ԧ𝑟′ = 𝜌2 + 𝑧′2 Ԧ𝐴 =𝜇04𝜋

    නԦ𝐽(Ԧ𝑟′)

    𝜌2 + 𝑧′2𝑑𝑣′Ԧ𝐽 Ԧ𝑟′ 𝑑𝑣′ =

    1

    2𝜋𝜌′𝐼𝛿(𝜌′)𝜌′𝑑𝜑′𝑑𝜌′dz′

    Ԧ𝐴 =𝜇04𝜋

    න−𝑎

    𝑏 1

    𝜌2 + 𝑧′2

    1

    2𝜋𝜌′𝐼𝛿(𝜌′)𝜌′𝑑𝜑′𝑑𝜌′dz′ Ƹ𝑧 =

    𝜇04𝜋

    𝐼 න−𝑎

    𝑏 1

    𝜌2 + 𝑧′2dz′ Ƹ𝑧

    𝑏

    Ԧ𝐴 =𝜇04𝜋

    𝐼 𝑙𝑛 𝑧′ + 𝜌2 + 𝑧′2𝑏−𝑎

    =𝜇04𝜋

    𝐼 𝑙𝑛𝑏 + 𝜌2 + 𝑏2

    −𝑎 + 𝜌2 + 𝑎2

    𝑁𝑜𝑡𝑒 𝑞𝑢𝑒 𝑝𝑎𝑟𝑎 𝑢𝑚 𝑓𝑖𝑜 𝑠𝑒𝑚𝑖 − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑜 𝑜𝑢 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑜 𝑛ã𝑜 𝑝𝑜𝑑𝑒𝑚𝑜𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑟𝑜 𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑎𝑙 𝑣𝑒𝑡𝑜𝑟 𝑑𝑒𝑠𝑡𝑎 𝑓𝑜𝑟𝑚𝑎

  • qz

    R

    x

    y

    z

    𝑑𝐵 =𝜇0𝐼

    4𝜋

    𝑑Ԧ𝑙 × Ƹ𝑟

    𝑟2

    i

    𝑃𝑜𝑟 𝑠𝑖𝑚𝑒𝑡𝑟𝑖𝑎 𝑠ó 𝑠𝑜𝑏𝑟𝑎 𝑑𝐵𝑧

    Ԧ𝑟

    𝑑Ԧ𝑙

    𝑑𝐵𝑑𝐵𝑧

    𝑪𝒂𝒎𝒑𝒐𝑴𝒂𝒈𝒏é𝒕𝒊𝒄𝒐 𝒅𝒆 𝒖𝒎𝒂 𝒆𝒔𝒑𝒊𝒓𝒂

    𝑑𝐵 =𝜇0𝐼

    4𝜋

    𝑑𝑙

    𝑟2𝑑Ԧ𝑙 ⊥ Ƹ𝑟 𝑑𝐵𝑧 =

    𝜇0𝐼

    4𝜋

    𝑑𝑙

    𝑟2𝑠𝑒𝑛𝜃

    𝑑𝐵𝑧 =𝜇0𝐼

    4𝜋

    𝑑𝑙

    𝑟2𝑅

    𝑟=𝜇0𝐼

    4𝜋

    𝑅𝑑𝑙

    𝑟3=𝜇0𝐼

    4𝜋

    𝑅𝑑𝑙

    𝑅2 + 𝑧2 ൗ32

    𝐵𝑧 = න𝜇0𝐼

    4𝜋

    𝑅𝑑𝑙

    𝑅2 + 𝑧2 ൗ32

    𝐵𝑧 =𝜇0𝐼

    4𝜋

    𝑅2𝜋𝑅

    𝑅2 + 𝑧2 ൗ32=𝜇0𝐼

    2

    𝑅2

    𝑅2 + 𝑧2 ൗ32

  • 𝑑𝐵 =𝜇0𝐼

    4𝜋

    𝑑Ԧ𝑙 × Ԧ𝑟′

    𝑟′3

    𝑪𝒂𝒎𝒑𝒐𝑴𝒂𝒈𝒏é𝒕𝒊𝒄𝒐 𝒅𝒆 𝒖𝒎𝒂 𝒆𝒔𝒑𝒊𝒓𝒂

    Ԧ𝑟′ = Ԧ𝑟 − 𝑅

    Ԧ𝑟 = 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 + 𝑧𝑘

    𝑅 = 𝑅𝑐𝑜𝑠𝜑 Ƹ𝑖 + 𝑅𝑠𝑒𝑛𝜑 Ƹ𝑗

    x

    y

    z

    i

    Ԧ𝑟’

    𝑑Ԧ𝑙

    Ԧ𝑟

    𝑅𝜑

    Ԧ𝑟′ = (𝑥 − 𝑅𝑐𝑜𝑠𝜑) Ƹ𝑖 + (𝑦 − 𝑅𝑠𝑒𝑛𝜑) Ƹ𝑗 + 𝑧𝑘

    𝑑Ԧ𝑙 = −𝑅𝑑𝜑𝑠𝑒𝑛𝜑 Ƹ𝑖 + 𝑅𝑑𝜑𝑐𝑜𝑠𝜑 Ƹ𝑗

    𝑑Ԧ𝑙 × Ԧ𝑟′

    = −𝑅𝑑𝜑𝑠𝑒𝑛𝜑 𝑦 − 𝑅𝑠𝑒𝑛𝜑 𝑘 − 𝑅𝑑𝜑𝑠𝑒𝑛𝜑𝑧 − Ƹ𝑗 + 𝑅𝑑𝜑𝑐𝑜𝑠𝜑 𝑥 − 𝑅𝑐𝑜𝑠𝜑 −𝑘

    + 𝑅𝑑𝜑𝑐𝑜𝑠𝜑 𝑧 Ƹ𝑖𝑑Ԧ𝑙 × Ԧ𝑟′ = 𝑅𝑧𝑐𝑜𝑠𝜑𝑑𝜑 Ƹ𝑖 + 𝑅𝑧𝑠𝑒𝑛𝜑𝑑𝜑 Ƹ𝑗 + 𝑅(𝑅 − 𝑦𝑠𝑒𝑛𝜑 − 𝑥𝑐𝑜𝑠𝜑)𝑑𝜑𝑘

    𝑑𝐵 =𝜇0𝐼

    4𝜋

    𝑅𝑧𝑐𝑜𝑠𝜑𝑑𝜑 Ƹ𝑖 + 𝑅𝑧𝑠𝑒𝑛𝜑𝑑𝜑 Ƹ𝑗 + 𝑅(𝑅 − 𝑦𝑠𝑒𝑛𝜑 − 𝑥𝑐𝑜𝑠𝜑)𝑑𝜑𝑘

    (𝑟2 + 𝑅2 − 2𝑥𝑅𝑐𝑜𝑠𝜑 − 2𝑦𝑅𝑠𝑒𝑛𝜑)32

    𝑃𝑜𝑟 𝑐𝑎𝑢𝑠𝑎 𝑑𝑎 𝑠𝑖𝑚𝑒𝑡𝑟𝑖𝑎 𝑐𝑖𝑙í𝑛𝑑𝑟𝑖𝑐𝑎 𝑝𝑜𝑑𝑒𝑚𝑜𝑠 𝑔𝑖𝑟𝑎𝑟 𝑜 𝑒𝑖𝑥𝑜 𝑒𝑚 𝑡𝑜𝑟𝑛𝑜 𝑑𝑒 𝑧 𝑎𝑡é 𝑞𝑢𝑒𝑥 𝑜𝑢 𝑦 𝑠𝑒𝑗𝑎 𝑧𝑒𝑟𝑜, 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑎𝑛𝑑𝑜 𝑎 𝑐𝑜𝑛𝑡𝑎

  • 𝑪𝒂𝒎𝒑𝒐𝑴𝒂𝒈𝒏é𝒕𝒊𝒄𝒐 𝒅𝒆 𝒖𝒎𝒂 𝒆𝒔𝒑𝒊𝒓𝒂

    Ԧ𝑟′ = Ԧ𝑟 − 𝑅

    𝑟′2= 𝑟2 + 𝑅2 − 2𝑟𝑅𝑐𝑜𝑠𝜃

    Ԧ𝐴 =𝜇04𝜋

    නԦ𝑗

    𝑟′𝑑𝑣′

    Ԧ𝐴 =𝜇0𝑖

    4𝜋ර

    1

    𝑟2 + 𝑅2 − 2𝑟𝑅𝑐𝑜𝑠𝜃𝑑Ԧ𝑙′q

    x

    y

    z

    i

    Ԧ𝑟’

    𝑑Ԧ𝑙′

    Ԧ𝑟

    𝑅𝜑

    Ԧ𝑗𝑑𝑣′ = 𝑖𝑑Ԧ𝑙′

    1

    𝑟2 + 𝑅2 − 2𝑟𝑅𝑐𝑜𝑠𝜃=

    1

    𝑟𝑅𝑟

    2

    + 1 − 2𝑅𝑟𝑐𝑜𝑠𝜃

    =1

    𝑟

    𝑛=0

    ∞𝑅

    𝑟

    𝑛

    𝑃𝑛(𝑐𝑜𝑠𝜃)

    Ԧ𝐴 =𝜇0𝑖

    4𝜋

    𝑛=0

    ∞1

    𝑟𝑛+1ර𝑅𝑛𝑃𝑛(𝑐𝑜𝑠𝜃)𝑑Ԧ𝑙′

    𝑀𝑎𝑛𝑡𝑒𝑛ℎ𝑜 𝑜 𝑅 𝑑𝑒𝑛𝑡𝑟𝑜 𝑑𝑎 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙, 𝑝𝑜𝑖𝑠 𝑒𝑠𝑡𝑎𝑐𝑜𝑛𝑡𝑎 𝑠𝑒𝑟𝑣𝑒 𝑝𝑎𝑟𝑎 𝑞𝑢𝑎𝑙𝑞𝑢𝑒𝑟 𝑡𝑖𝑝𝑜 𝑑𝑒 𝑒𝑠𝑝𝑖𝑟𝑎,

    𝑚𝑎𝑠 𝑠𝑒 𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 é 𝑐𝑙𝑎𝑟𝑜 𝑞𝑢𝑒 𝑅 é 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒

    Ԧ𝐴 =𝜇0𝑖

    4𝜋

    𝑛=0

    𝑟𝑛ර1

    𝑅𝑛+1𝑃𝑛(𝑐𝑜𝑠𝜃)𝑑Ԧ𝑙′ 𝑟 < 𝑅

  • 𝑪𝒂𝒎𝒑𝒐𝑴𝒂𝒈𝒏é𝒕𝒊𝒄𝒐 𝒅𝒆 𝒖𝒎𝒂 𝒆𝒔𝒑𝒊𝒓𝒂

    q

    x

    y

    z

    i

    Ԧ𝑟’

    𝑑Ԧ𝑙′

    Ԧ𝑟

    𝑅𝜑

    Ԧ𝐴 =𝜇0𝑖

    4𝜋

    1

    𝑟ර𝑑Ԧ𝑙′ +

    1

    𝑟2ර𝑅𝑐𝑜𝑠𝜃𝑑Ԧ𝑙′ +

    1

    𝑟3ර𝑅2(

    3

    2𝑐𝑜𝑠2𝜃 −

    1

    2)𝑑Ԧ𝑙′ + ⋯

    Monopoloර𝑑Ԧ𝑙′ = 01

    𝑟2ර𝑅𝑐𝑜𝑠𝜃𝑑Ԧ𝑙′ Dipolo

    1

    𝑟3ර𝑅2(

    3

    2𝑐𝑜𝑠2𝜃 −

    1

    2)𝑑Ԧ𝑙′ Quadrupolo

    𝑃𝑎𝑟𝑎 𝑟 ≫ 𝑅 Ԧ𝐴~𝜇0𝑖

    4𝜋

    1

    𝑟2ර𝑅𝑐𝑜𝑠𝜃𝑑Ԧ𝑙′

    ර𝑅𝑐𝑜𝑠𝜃𝑑Ԧ𝑙′ = ර Ƹ𝑟 ∙ 𝑅𝑑Ԧ𝑙′ = − Ƹ𝑟 × ර𝑑 Ԧ𝐴′ 𝑚𝑎𝑠 𝑖 ර𝑑 Ԧ𝐴′ = Ԧ𝜇 𝑚𝑜𝑚𝑒𝑛𝑡𝑜 𝑑𝑒 𝑑𝑖𝑝𝑜𝑙𝑜

    Ԧ𝐴 =𝜇0𝑖

    4𝜋

    1

    𝑟2− Ƹ𝑟 × ර𝑑 Ԧ𝐴′ =

    𝜇04𝜋

    1

    𝑟2− Ƹ𝑟 × Ԧ𝜇 Ԧ𝐴 =

    𝜇04𝜋

    Ԧ𝜇 × Ƹ𝑟

    𝑟2

    𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑠𝑐𝑒 𝑜 𝑑𝑖𝑝𝑜𝑙𝑜

    𝑟 > 𝑅

  • 𝐵 = 𝛻 × Ԧ𝐴 =1

    𝑟𝑠𝑒𝑛𝜃

    𝜕𝑠𝑒𝑛𝜃𝐴𝜑

    𝜕𝜃−𝜕𝐴𝜃𝜕𝜑

    ො𝑎𝑟 +1

    𝑟

    1

    𝑠𝑒𝑛𝜃

    𝜕𝐴𝑟𝜕𝜑

    −𝜕𝑟𝐴𝜑

    𝜕𝑟ො𝑎𝜃 +

    1

    𝑟

    𝜕𝑟𝐴𝜃𝜕𝑟

    −𝜕𝐴𝑟𝜕𝜃

    ො𝑎𝜑

    Ԧ𝐴 =𝜇04𝜋

    Ԧ𝜇 × Ƹ𝑟

    𝑟2=𝜇04𝜋

    𝜇

    𝑟2𝑠𝑒𝑛𝜃 ො𝑎𝜑

    q

    x

    y

    z

    i

    Ԧ𝑟’

    𝑑Ԧ𝑙′

    Ԧ𝑟

    𝑅𝜑

    Ԧ𝜇

    𝐵 =1

    𝑟𝑠𝑒𝑛𝜃

    𝜕𝑠𝑒𝑛𝜃𝐴𝜑

    𝜕𝜃ො𝑎𝑟 −

    1

    𝑟

    𝜕𝑟𝐴𝜑

    𝜕𝑟ො𝑎𝜃

    𝐵 =1

    𝑟𝑠𝑒𝑛𝜃

    𝜇04𝜋

    𝜇

    𝑟2𝜕𝑠𝑒𝑛2𝜃

    𝜕𝜃ො𝑎𝑟 −

    1

    𝑟

    𝜇04𝜋

    𝜇𝑠𝑒𝑛𝜃𝜕

    𝜕𝑟

    1

    𝑟ො𝑎𝜃

    𝐵 =𝜇04𝜋

    𝜇

    𝑟32𝑐𝑜𝑠𝜃 ො𝑎𝑟 + 𝑠𝑒𝑛𝜃 ො𝑎𝜃

    𝐵 =𝜇04𝜋

    1

    𝑟33 Ԧ𝜇. ො𝑎𝑟 ො𝑎𝑟 − Ԧ𝜇