11
Underwater superoleophobic modified polysulfone electrospun membrane with efficient antifouling for ultrafast gravitational oil-water separation M. Obaid 1 , Euntae Yang 1 , Dong-Hee Kang 2 , Myung-Han Yoon 2 , and In S. Kim 1,* 1 Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea. 2 School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea. Corresponding author: Tel: +82-62-715- 2436, Fax: +82-62-715-2434 E-mail: [email protected]

ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

Underwater superoleophobic modified polysulfone

electrospun membrane with efficient antifouling for

ultrafast gravitational oil-water separation

M. Obaid1, Euntae Yang1, Dong-Hee Kang2, Myung-Han Yoon2, and In S. Kim1,*

1Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental

Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu,

Gwangju 61005, South Korea.2School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123

Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.

Corresponding author:

Tel: +82-62-715- 2436, Fax: +82-62-715-2434

E-mail: [email protected]

Page 2: ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

Table S1: Conditions of modification process for the PSf electrospun membrane

Membrane code NaOH Conc. (M) Temp. (C) Time (h)

M1 0 25 1M2 0 50 1M3 0 75 1M4 0 100 1M5 0.1 25 1M6 0.1 50 1M7 0.1 75 1M8 0.1 100 1M9 0.5 25 1M10 0.5 50 1M11 0.5 75 1M12 0.5 100 1M13 1 25 1M14 1 50 1M15 1 75 1M16 1 100 1M17 0 25 3M18 0 50 3M19 0 75 3M20 0 100 3M21 0.1 25 3M22 0.1 50 3M23 0.1 75 3M24 0.1 100 3M25 0.5 25 3M26 0.5 50 3M27 0.5 75 3M28 0.5 100 3M29 1 25 3M30 1 50 3M31 1 75 3M32 1 100 3M33 0 25 5M34 0 50 5M35 0 75 5M36 0 100 5M37 0.1 25 5M38 0.1 50 5M39 0.1 75 5M40 0.1 100 5

Page 3: ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

M41 0.5 25 5M42 0.5 50 5M43 0.5 75 5M44 0.5 100 5M45 1 25 5M46 1 50 5M47 1 75 5M48 1 100 5M49 0 25 7M50 0 50 7M51 0 75 7M52 0 100 7M53 0.1 25 7M54 0.1 50 7M55 0.1 75 7M56 0.1 100 7M57 0.5 25 7M58 0.5 50 7M59 0.5 75 7M60 0.5 100 7M61 1 25 7M62 1 50 7M63 1 75 7M64 1 100 7

Page 4: ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

M8

M12 M16

M20 M24

M28 M32

M4

Page 5: ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

Fig.S1: FE SEM images for the PSf nanofiber membranes modified at 100oC for different

time and in various concertation of NaOH solutions.

Page 6: ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

Fig.S2: Water contact angle (WCA) of the pristine and modified membranes, where the x axis from 1 -64 represents the membrane code based on Table S1 and value 0 represent the

pristine PSf.

Fig.S3: Images of oil contact angle (OCA) under water of the modified membrane (M64).

Page 7: ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

Fig.S4: No water flux for the pristine PSf nanofiber membrane was obtained.

Page 8: ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

Table S2: Comparison of the performance of the modified membrane and various other membranes in literature in the oil/water separation under gravity.

Membrane Code Applied Preesure Oil Type

Water Flux

(LMH)

Separation Efficiency %

Refs.

PSF nanofiber membrane GravitySoybean oil/water mixture

>11,865 >99.99 This work

bio-based polycocolloid foam membrane Gravity Hexane/water

mixture >500 98 [1]

porous nitrocellulose (NC) membranes Gravity Gasoline/water

mixture~611

(calculated) >99 [2]

Elctrospun polyamide-PSf nanofiber membrane Gravity Oil/water

mixture 509 >99.9 [3]

PMMA-b-PNIPAAm nanofiber membrane

Gravity Hexane/water mixture 9400 >99.5 [4]

PHFBMA-b-PNIPAAm coated st.st. mesh Gravity Hexane/water

mixture 9000 >98 [5]

Mineral-coated membrane Gravity Dichloroethane/water mixture 90 >99.9 [6]

GO@CNF membrane Gravity Hexane/water mixture 960 >99 [7]

PVDF-g-PAA tree-like nanofiber membrane Gravity Hexane/water

mixture 9600 >99.58 [8]

APM-260 porous membrane Gravity

petroleum ether/ water

mixture1357 ~98 [9]

PAA-g-PVDF membranes Gravity

hexadecane/water

surfactant free emulsion

570 99.99 [10]

cellulose paper filter modified with NFC Gravity Hexane/water

emulsion 89.6 99 [11]

PVDF-TEA modified electrospun membrane Gravity Soybean/water

emulsion 2727 >99.9% [12]

Texture of the nylon membrane Gravity Hexadecane/

water 200 ≥ 99.9 [13]

Page 9: ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

emulsions

Polymer blend-coated Stainless steel mesh 400 Gravity Oil/water

emulsion 430 >99 [14]

A cellulose sponge Gravity Toluene/water emulsion 91 >99.94 [15]

Hygro-responsive membranes Gravity hexadecane-in-

water emulsion 90 >99 [16]

Reference

[1] J.P. Chaudhary, S.K. Nataraj, A. Gogda, R. Meena, Bio-based superhydrophilic foam membranes for sustainable oil–water separation, Green Chemistry, 16 (2014) 4552-4558.[2] X. Gao, L.P. Xu, Z. Xue, L. Feng, J. Peng, Y. Wen, S. Wang, X. Zhang, Dual‐Scaled Porous Nitrocellulose Membranes with Underwater Superoleophobicity for Highly Efficient Oil/Water Separation, Advanced Materials, 26 (2014) 1771-1775.[3] M. Obaid, N.A.M. Barakat, O.A. Fadali, S. Al-Meer, K. Elsaid, K.A. Khalil, Stable and effective super-hydrophilic polysulfone nanofiber mats for oil/water separation, Polymer, 72 (2015) 125-133.[4] J.-J. Li, L.-T. Zhu, Z.-H. Luo, Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation, Chemical Engineering Journal, 287 (2016) 474-481.[5] Y.-N. Zhou, J.-J. Li, Z.-H. Luo, PhotoATRP-based fluorinated thermosensitive block copolymer for controllable water/oil separation, Industrial & Engineering Chemistry Research, 54 (2015) 10714-10722.[6] P.-C. Chen, Z.-K. Xu, Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation, Scientific reports, 3 (2013).[7] C. Ao, W. Yuan, J. Zhao, X. He, X. Zhang, Q. Li, T. Xia, W. Zhang, C. Lu, Superhydrophilic graphene oxide@ electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation, Carbohydrate Polymers, (2017).[8] B. Cheng, Z. Li, Q. Li, J. Ju, W. Kang, M. Naebe, Development of smart poly (vinylidene fluoride)-graft-poly (acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation, Journal of Membrane Science, 534 (2017) 1-8.[9] L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, J. Zhai, Underwater superoleophobic porous membrane based on hierarchical TiO 2 nanotubes: multifunctional integration of oil–water separation, flow-through photocatalysis and self-cleaning, Journal of Materials Chemistry A, 3 (2015) 1279-1286.[10] W. Zhang, Y. Zhu, X. Liu, D. Wang, J. Li, L. Jiang, J. Jin, Salt‐Induced Fabrication of Superhydrophilic and Underwater Superoleophobic PAA‐g‐PVDF Membranes for Effective Separation of Oil‐in‐Water Emulsions, Angewandte Chemie International Edition, 53 (2014) 856-860.[11] K. Rohrbach, Y. Li, H. Zhu, Z. Liu, J. Dai, J. Andreasen, L. Hu, A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation, Chem. Commun., 50 (2014) 13296-13299.

Page 10: ars.els-cdn.com · Web viewM13 1 25 1 M14 1 50 1 M15 1 75 1 M16 1 100 1 M17 0 25 3 M18 0 50 3 M19 0 75 3 M20 0 100 3 M21 0.1 25 3 M22 0.1 50 3 M23 0.1 75 3 M24 0.1 100 3 M25 0.5 25

[12] M. Obaid, H.O. Mohamed, A.S. Yasin, M.A. Yassin, O.A. Fadali, H. Kim, N.A.M. Barakat, Under-oil superhydrophilic wetted PVDF electrospun modified membrane for continuous gravitational oil/water separation with outstanding flux, Water Research, 123 (2017) 524-535.[13] G. Kwon, A. Kota, Y. Li, A. Sohani, J.M. Mabry, A. Tuteja, On‐Demand Separation of Oil‐Water Mixtures, Advanced Materials, 24 (2012) 3666-3671.[14] A.K. Kota, G. Kwon, W. Choi, J.M. Mabry, A. Tuteja, Hygro-responsive membranes for effective oil–water separation, Nature communications, 3 (2012) 1025.[15] G. Wang, Y. He, H. Wang, L. Zhang, Q. Yu, S. Peng, X. Wu, T. Ren, Z. Zeng, Q. Xue, A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation, Green Chemistry, 17 (2015) 3093-3099.[16] A.K. Kota, G. Kwon, W. Choi, J.M. Mabry, A. Tuteja, Hygro-responsive membranes for effective oil–water separation, 3 (2012) 1025.