48
Application of First Principles Langiven Molecular Dynamics to Hot Dense Plasmas Jianmin Yuan Department of Physics, National University of Defense Technology Changsha 410073, China Workshop: Computational Challenges in Hot Dense Plasmas March 29, 2012, IPAM,UCLA

Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Application of First Principles Langiven

Molecular Dynamics to Hot Dense Plasmas

Jianmin YuanDepartment of Physics, National University of Defense Technology

Changsha 410073, China

Workshop: Computational Challenges in Hot Dense Plasmas March 29, 2012, IPAM,UCLA

Page 2: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Outline

• Introduction

• Quantum Langevin Molecular Dynamics (QLMD)

• Applications– Electronic structure and EOS of Iron – Electric and thermo conductivity– Carbon embedded in dense hydrogen– EOS of solar materials– EOS of D, T and the mixture

• Conclusion

Page 3: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

A large Brownian particle with mass M immersed in a fluid of much smaller and lighter particles.

Brownian Motion: Langevin Equation

Page 4: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

According to Einstein’s theory, the diffusion constant

Brownian Motion: Langevin Equation

According Newton’s law

Langevin Equation

aTk

aNRTD B

A πηπη 66==

)()( tFdt

tvdmrr

=

)(1)()(

)()(

tm

tvmdt

tvd

tvdt

txd

ξγ rrr

rr

+−=

=

γτ

γ

τ

mvetv

and

tvmdt

tvd

B

t B

=

=

−=

− )0()(

)()(

/ rr

rr

∫ −−− +=

−==

t stt sdsem

vetv

ttgttt

BB

0

/)(/

2121

)(1)0()(

)()()(,0)(

ξ

δξξξ

ττ

ξξ

rrr

rrr

Page 5: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

For a Gaussian Process

Brownian Motion: Langevin Equation

TkTmkg

mge

mgvtv

BB

B

BtBeqeq

B

γτ

ττ τ

ξ

2222

)( 2/2

220

2

==

+⎥⎦⎤

⎢⎣⎡ −= −

Fluctuation-Dissipation (Langevin) Theorem: The equilibrium is brought about by a dissipation force (“friction”) between the particle and the bath. It is the same process that produces the random, fluctuating force on the particle. Both processes are uniquely determined by the statistical nature of the microscopic forces .

Page 6: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

( )∑⎥⎥⎦

⎢⎢⎣

⎡−+++=

jj

jj

j

j xxm

mp

xUMpH 2

222

)(22

)(2

αω

∑ −+∂

∂−=

=

jjjj xxm

xxUp

pxM

)()( 2ω&

&

)(2 xxmp

pxm

jjjj

jjj

−−=

=

ω&

).()](sin[

)](sin[)(

)](cos[)()(

0

00

00

sxstds

ttm

tptttxtx

t

t jj

jjj

jjjj

∫ −+

−+−=

ωω

ωω

ω

Classical Independent Oscillator Model

See: P. Hänggi, Lecture Notes in Physics 484, 15-22 (1997)

According to Hamilton Equation:

Page 7: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

−=−

+−−−−∂

∂−=

jjjj

t

t

stmM

st

tFtxttMsxstdsMxxUxM

)](cos[1)()(

)()()()()()(

22

000

ωωαγ

γγ &&&

)()()(

0)(

stMkTsFtF

tF

B

B

−=

=

γρ

ρ

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+−= ∑−

jj

jj

j

jB x

mmp

Z 222

1

22exp

ωβρ

Classical Independent Oscillator Model

∑⎥⎥⎦

⎢⎢⎣

⎡−+−=

jj

jj

jjjjj tt

mtp

tttxmtF )](sin[)(

)](cos[)()()( 00

002 ω

ωωωα

Page 8: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

( )∑⎥⎥⎦

⎢⎢⎣

⎡−+−−=

−−≡

jj

jj

jjj tt

mtp

tttxtx

txttMtFt

)](sin[)(

)](cos[)()()()(

)()()()(

00

000

00

ωω

ωαα

γξ

( )⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−+−=

=

∑−

jj

jj

j

j

jj

xxm

mp

Z

xtxxp

22

2

21

0

)(22

exp

))(|},({ˆ

αω

β

ρ

)()()()()(

0)(

ˆ00ˆ

ˆ

stMkTttstst

t

−=+−=

=

γξξξξ

ξ

ρρ

ρ

Classical Independent Oscillator Model

Page 9: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

)()]()([)(' tsvstdsxUdtvdM

tξγrr

r

+−−= ∫ ∞−

Classical Independent Oscillator Model

Quantum corresponding Eqs. can also be obtained in Heisenberg picture [see for example: Ford and Kac, J. Stat. Phys. 46, 803(1987)]

)()()('

)()]()([

)()(

ttvxUdtvdM

tvsvstds

ststt

ξγ

γγ

γδγ

rrr

rr

+−=

−→−−

−=−

∫ ∞−

When the bath has dense infinite spectra distribution, with random phase approximation one has

Page 10: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Open Quantum System-Wavefunction

Partitioning into system and environment

∑=

⊗=

+⊗+⊗=

m

jjjSB

SBBSBS

tBtStH

tHtHIItHtH

1)(ˆ)(ˆ)(ˆ

)(ˆ)(ˆˆˆ)(ˆ)(ˆ α

∑=Ψ

=

Ψ=Ψ

qBqBSqSBS

BnBnBnBB

xtxtxx

xxH

ttHtdtdi

)(),(),,(

)()(ˆ

)()(ˆ)(

,,

,,

rrrr

rr

ϕψ

ϕεϕ

∑≠

⊗=

⊗=

qppBpBSq

qBqBSq

IQ

IP

,,

,,

ˆˆ

ˆˆ

ϕϕ

ϕϕ

P. Gaspard and M. Nagaoka,J. Chem. Phys. 111 (1999) 5676-5690

Page 11: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

∫−

−−

Ψ+=∂

t

SqSq

t

qtQHQi

qq

txF

qtQHQi

qqSqSSSqSt

dxPHQeQHPi

QeQHPtxHtxi

qq

S

qq

0 ,

)(ˆ

)(ˆˆˆ

)0,,(

ˆˆˆ

,,

),(ˆˆˆˆˆˆ

)0(ˆˆˆˆ),(ˆ),(

ττψ

ψψτγ

τ r4444 84444 76

444 8444 76rr

r

∑≠

qpBpBSpSBSq

BqBSqSBSq

xxxxQ

xtxtxxP

)()0,()0,,(ˆ)(),(),,(ˆ

,,

,,

rrrr

rrrr

ϕψ

ϕψ

Open Quantum System-Wavefunction

Page 12: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

By making an expansion about α and summing over the thermo distributed bath and system initial states:

)()(ˆˆ)(

)(ˆ)()(ˆ)(

3)(ˆ2 αοττψτα

ψαψψ

τ +−−

+=∂

∑−−+

pqSq

tHippq

qSqqSSSt

dSeStCi

tStltHti

S

)'()'()(

,0)'()(* ttCtltl

tltl

pqqp

qp

−=

=

)'()()(* tttltl pqqp −∝ δδFor Markovin

)()(ˆˆ2

)(ˆ)()(ˆ)( 32

αοτψαψαψψ +−+=∂ ∑∑ +

pqSqq

qSqqSSSt SSitStltHti

Open Quantum System-Wavefunction

Page 13: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Application in a Variety of Problem

P. W. Anderson: J. Phys. Soc. Jpn. 9 (1954) 316.R. Kubo: J. Phys. Soc. Jpn. 9 (1954) 935.R. Kubo: in Fluctuation, Relaxation, and Resonance in MagneticSystems, ed. D. TerHaar (Oliver and Boyd, Edinburgh, 1962) p. 23.Yoshitaka TANIMURA, J. Phys. Soc. Jpn. 75 (2006) 082001

Nuclear magnetic resonance spectroscopy

In the fast modulation limit: γγγ /', 2Δ=Δ>>

20

2 )(''2)(ωωγ

γω−+

=I

In the slow modulation limit:

⎥⎦

⎤⎢⎣

⎡Δ−

−Δ

= 2

20

2)(exp22)( ωωωI

Δ<<γ

]exp[)0()( tt γ−=ΩΩ

StHIˆ)(ˆ ΔΩ=

Page 14: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Stochastic Current Density Functional Theory, and Stochastic Quantum Molecular Dynamics

M DiVentra and D’Agosta PRL 98, 226403 (2007) H Appel and Di Ventra, PRB 80, 212303 2009;

Chem. Phys. 391, 27(2011)

Application in a Variety of Problem

Dynamical adsorption of atoms on the suface

M Evstigneev* and P Reimann, PRB 82, 224303 2010

Laser cooling and crystallization of electron-ion plasma

A. P. Gavriliuk et al, PRE 80, 056404 2009

Hot dense plasmas

Frank R Graziani et al,HEDP 8, 105(2012)

Page 15: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Introduction: Molecular dynamics

Classical molecular dynamics:large scale computationpotential is empiricaltemperature and density effect is complicated

Quantum molecular dynamicsmore accurate for degenerate electrons and ion coupling normally for relatively low temperaturesmall sizes

Page 16: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Introduction: Quantum Molecular Dynamics

QMD:– electrons are described using DFT– ions’ moving on smooth potential surface is described

by Newton’s equationLangevin molecular dynamics in condensed

matter and material sciences– ions in Langevin equation

represents the contribution of thermostat for controlling the temperature of the system.

IIItII MM NRFR +−= &&& γ

Page 17: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Quantum Langevin Molecular dynamics• Langevin equation combining DFT can accelerate the calculation

of QMD.

represents the contribution from numerical error.erγ

PRL, 98, 066401 (2007); EPL,88, 20001 (2009)

IIIertII MM NRFR ++−= &&& )( γγ

Page 18: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

QLMD-normally difficult for high temperatures

• Computational cost

• Partially degenerate electrons to Boltzmann distribution

• Accurate potentials

• Numerical problems in self-consistent field calculations at high temperature

} Supercomputer

Efficient QMD ( EPL, 88 (2009) 20001)

Full electrons(semi-core states)

The lost physical effects

The electron-ion interactions are central to numerous phenomena

Page 19: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Ions in a “Sea of Hot Electrons”

QLMD-extended to Warm (Hot) Dense Matters

Page 20: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

QLMD--Unified first principles model• Brown motion• Electron-ion collisions induced frinction (EI-CIF)• Langevin equation:

Whitenoise

Friction coefficient

1/3* 42 0.00001 0.01 . .

3e i B

BI e

m n k TZ a uM m

πγ π ⎛ ⎞= → −⎜ ⎟⎝ ⎠

EI-CIF:

DFT

QLM

D

Bγ represents the electron-ion collisions induced friction (EICIF)

Phys. Rev. Lett. 104: 245001 (2010)

IIIertBII MM NRFR +++−= &4434421

&& )( γγγ

Page 21: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

What can we do based on QLMD?

• Electronic structures based on DFT.

• Ionic structures

• Equation of state

• Transport properties for WDM: diffusion, viscosity, conductivity, x-ray absorption, opacity etc.

Page 22: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Electronic structure and EOS of Iron

• Earth core

• Hydrodynamical process

• DAC (relatively low temperature)

• Shock-wave experiments (temperature is difficult to measure)

Page 23: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

EOS of Iron

Influence of γ on pressure for Fe at a temperature of 100 eV. [Phys. Rev. Lett. 104: 245001 (2010)]

Page 24: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

−100 0 100

DO

S

−50 0 50

DO

S

−100 0 100 200Energy (eV)

DO

S

3s3p3d4s4p

−1000 0 1000 2000

DO

S−1000 1000 3000 5000

0

1

Pop

ulat

ion

−1100 −900

(a) (0.1eV,10g/cm3) (b) (10eV,22.5g/cm

3)

(c) (100eV,34.5g/cm3)

(d) (1000eV,39.65g/cm3)

Energy (eV)

2s2p

(e) (f)

EF

EF

EF

Electronic structures transition from cold condensed matter to ideal ionized gas plasma

Electronic structures of Iron along the Hugoniot

Phys. Rev. Lett. 104: 245001 (2010)

Page 25: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Electronic structures of Iron along the Hugoniot

Page 26: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Hugoniot for Iron: the present calculation

• Rankine–Hugoniot relations:

U: Internal Energy (U0 is important)

P: Pressure

V: Volume (V0 is very important)

02/))(()( 000 =−+−− VVPPUU

Page 27: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

3342.73389.83519.63816.24206.84548.95552.98885.011311.116348.618560.821549.925790.132228.064941.0

131123.9265089.8

1554.61667.71868.62165.42593.92968.23800.26809.98941.8

14213.616422.319591.323589.530749.163375.4131413.1261539.5

1560.1a

1681.8a

1878.6a

2217.0a

2608.7a

2941a

3890a

6640b

8780b

13687b

15920b

18969b

23334b

29972b

63676b

130941b

264847b

-1.2956-1.2689-1.2278-1.0876-1.0209-0.9467-0.7356-0.03600.45981.60952.13292.83193.85285.259912.81227.35655.878

-1.29739a

-1.27401a

-1.2313a

-1.1449a

-1.0456a

-0.9554a

-0.7276a

-0.0380b

0.4717b

1.6229b

2.1410b

2.8429b

3.8485b

5.3367b

12.775b

27.326b

56.052b

500010000200004000062500800001250002500003333335000005714286666678000001×106

2×106

4×106

8×106

PAA (GPa)PQLMD (GPa)PM (GPa)EQLMD/Ne(hartree)

EM /Ne (hartree)

T (K)

Comparison of QLMD results with PIMC results (PRE,79: 155105 (2009) ). He: 5.35g/cm3,Internal Energy of Militzer (EM ),Pressure of Militzer (PM), Internal Energy of QLMD

(EQLMD), Pressure of QLMD (PQLMD), Pressure of AA (PAA )。Ne is the number of electrons。

Page 28: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Test for the Pseudopotential

4.5 5 5.5 6 6.5crystal lattice (a.u.)

−329.32

−329.3

−329.28

−329.26

−329.24

Ene

rgy

(eV

)

E−calE−fit

5.33 a.u.

FLAPW: 5.268-5.342 ( PRB, 82, 132409 (2010) )

Bulk modulus: 169-200 GPa

Bulk modulus:

B=170 GPa

Page 29: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Hugoniot point example at 0.5 eV

10 11 12 13 14 15 16 17ρ (g/cm

3)

−20

−15

−10

−5

0

5

10

(U−

U0)−

P(V

0−V

)/2

(a.u

.)12.125g/cm

3

Page 30: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Hugoniot: Comparison with SESAME

666.7659.933.834.5100

33.5833.0820.522.510

16.915.2817.518.715

3.842 3.56813.2013.261

0.760.62510.1100.1

PQ (Mbar)PS (Mbar)ρQ (g/cm3)ρS (g/cm3)Temperature (eV)

Page 31: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Hugoniot: Ab initio benchmark from the cold normal, across the warm dense, to the hot dense states

Hugoniot of Iron: Density-Pressure

Page 32: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Ionic short ordered structures

There are medium or short ordered structures in hot dense matter

Page 33: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Along Hugoniot – ionic structures

Radial distribution and the orientation order number

Page 34: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

6

61

exp 11,

exp 1

ijij i

Nj avi iav av av

iiji

j av

dd

dd d d

Ndd

=

⎡ ⎤⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦= =

⎡ ⎤⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑∑

6

1 1

1 1 exp 1N N

iji i

i i j i av

dECN ECN

N N d= = ≠

⎡ ⎤⎛ ⎞⎢ ⎥= = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑∑

Effective coordination numbers (ECN)

Along Hugoniot – ionic structures

Page 35: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Along Hugoniot – ionic structures

Page 36: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Along Hugoniot – ionic structures

Page 37: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Self diffusion coefficient - ionic transport properties

33.8

20.5

17.5

13.20

10.1

ρQ (g/cm3)

7.0×10-3

3.5×10-4

2.3×10-4

7.5×10-5

3.0×10-6

DQLMD (cm2/s)

6.4×10-37.0×10-334.5100

1.0×10-41.1×10-422.510

4.9×10-44.2×10-418.715

----13.261

----100.1

DOCP (cm2/s)

DOFMD (cm2/s)

ρS (g/cm3)Tempature(eV)

F. Lambert et al., Europhys. Lett. 75, 681 (2006).

Page 38: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Conductivity

Kubo-Greenwood formula:

)(ˆ

)(3

2)(

2

,

2

ωδψψ

ωπωσ

h

r

−−×

−= ∫ ∑

nmmn

mnmn

EE

ffkde

v

Page 39: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Electrical Conductivity

电导率

Lambert et al. POP, 18, 056306 (2011)

1 10 100 1000T (eV)

107

108

109

σ (1

/(Ω.m

))

QMD+OFMDQLMD

160 g/cm3

80 g/cm3

10 g/cm3

Conductivity of Hydrogen

Page 40: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Thermal Conductivity

热导率

Lambert et al. POP, 18, 056306 (2011)

1 10 100 1000T (eV)

104

105

106

107

κ (W

/(m

.K)

QMD+OFMDQLMD

160 g/cm3

80 g/cm3

10 g/cm3

Conductivity of Hydrogen

Page 41: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Carbon in Dense Hydrogen (10g/cm3,10eV)

0 0.5 1 1.5 20

0.5

1

1.5

H−HC−H

The size of the Coulomb hole depends on the ionic charge

Page 42: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Application: EOS for solar-interior

ApJ. 721: 1158 (2010)

Page 43: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Application: ICF target

How to diagnose the state and the electronic, ionic structures in the process of laser-target interactions.

How the carbon atoms affect the states (may induce instability)?

What’s the influence of local structures on physical properties?

High demand for the uniformities

OMEGA LMJ

NJP, 12 (2010) 043037

Page 44: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Application: EOS table for ICF Capsule

• Wide temperature and wide density

• Important for the simulation of hydrodynamics

• Dominant Ingredients: D-T (gas, ice, solid, warm dense, and hot dense)Plastic (outside face)

Page 45: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

EOS table for Deuterium-Tritium mixture

Page 46: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

EOS table for Plastic (C8H8)

Page 47: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Conclusions

• QLMD can do simulations from warm dense matter to hot dense plasmas.

• EOS, transport properties can be shown within the framework of QLMD.

• Principal Hugoniot of Iron is calculated from first principles up to 100 eV. The results are in agreement with SESAME table and most experiments, and more consistent with experiments than SESAME at high temperature.

• The basic idea of Langevin equation provide the flexibility of cutting the system (or degree of freedom) from the environment and reduce the complexity to be manageable.

• Reliability of the results depends on a adequate fluctuation-dissipation model.

Page 48: Application of First Principles Langiven Molecular ...helper.ipam.ucla.edu/publications/plws1/plws1_10457.pdf · Application of First Principles Langiven Molecular Dynamics to Hot

Acknowledgements:

Colleagues:

Jiayu Dai, Yong Hou, Dongdong Kang

Zengxiu Zhao, Jiaolong Zeng

Supported by:

National Natural Science Foundation of China