38
APPENDIX A EQUIVALENT UNITS Length 12 in: ft 6080:2 ft naut:mi 5280 ft mi 0:3937 in: cm 30:48 cm ft 10 4 mm cm 3 ft yd 1:152 mi naut:mi 10 10 A m 2:54 cm in: 3:28 ft m 1:609 km mi Area 144 in: 2 ft 2 43; 560 ft 2 acre 640 acres mi 2 10:76 ft 2 m 2 929 cm 2 ft 2 6:452 cm 2 in. 2 Volume 1728 in: 3 cu ft 7:481 gal cu ft 43; 560 cu ft acre-ft 3:7854 L gal 28:317 L cu ft 35:31 cu ft m 3 231 in. 3 gal 8 pt gal 10 3 L m 3 61:025 in. 3 L 10 3 cm 3 L 28; 317 cm 3 cu ft Density 1728 lb/cu ft lb/in. 3 32:174 lb/cu ft slug/cu ft 0:51538 g/cm 3 slug/cu ft 16:018 kg/m 3 lb/cu ft 1000 kg/m 3 g/cm 3 Angular 2¼ 6:2832 rad rev 57:3 deg rad 1 2rpm rad/min 9:549 rpm rad/sec

APPENDIX A - ebooks.asmedigitalcollection.asme.orgebooks.asmedigitalcollection.asme.org/data/books/... · Time 60 s min 3600 s hr 60 min hr 24 hr day Speed 88 fpm mph 0:6818 mph fps

  • Upload
    hoangtu

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

APPENDIX A

EQUIVALENT UNITS

Length

12in:

ft6080:2

ft

naut:mi5280

ft

mi0:3937

in:

cm30:48

cm

ft104

mmcm

3ft

yd1:152

mi

naut:mi1010

A

m2:54

cm

in:3:28

ft

m1:609

km

mi

Area

144in:2

ft243; 560

ft2

acre640

acres

mi210:76

ft2

m2929

cm2

ft26:452

cm2

in.2

Volume

1728in:3

cu ft7:481

gal

cu ft43; 560

cu ft

acre-ft3:7854

L

gal28:317

L

cu ft35:31

cu ft

m3

231in.3

gal8

pt

gal103

L

m361:025

in.3

L103

cm3

L28; 317

cm3

cu ft

Density

1728lb/cu ft

lb/in.332:174

lb/cu ft

slug/cu ft0:51538

g/cm3

slug/cu ft16:018

kg/m3

lb/cu ft1000

kg/m3

g/cm3

Angular

2� ¼ 6:2832rad

rev57:3

deg

rad

1

2�

rpm

rad/min9:549

rpm

rad/sec

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Time

60s

min3600

s

hr60

min

hr24

hr

day

Speed

88fpm

mph0:6818

mph

fps0:5144

m/s

knot0:3048

m/s

fps0:44704

m/s

mph

1:467fps

mph1:152

mph

knot1:689

fps

knot152:4

cm/min

ips

Force, Mass

16oz

lbm32:174

lbmslug

444; 820dynes

lbf2:205

lbmkg

9080665N

kgf

1000lbfkip

32:174poundals

lbf980:665

dynes

gf14:594

kg

slug4:4482

N

lbf

2000lbmton

7000grains

lbm453:6

g

lbm105

dynes

N1kilopound

kg

14:594kg

slug28:35

g

oz453:6

gmole

pmole907:18

kg

ton1000

kg

metric ton

Pressure

14:696psi

atm101; 325

N/m2

atm13:6

kg

mm Hg ð0�CÞ 51:715mm Hg ð0�CÞ

psi47:88

N/m2

psf

29:921in. Hg ð0�CÞ

atm105

N/m2

bar13:57

in: H2O ð60�FÞin: Hg ð60�FÞ 703:07

kg/m2

psi6894:8

N/m2

psi

33:934ft H2O ð60�FÞ

atm14:504

psi

bar0:0361

psi

in. H2O ð60�FÞ 0:0731kg/cm2

psi760

torr

atm

1:01325bar

atm106

dynes/cm2

bar0:4898

psi

in. Hg ð60�FÞ9:869

107atm

dyne/cm2133:3

N/m2

torr

o COGENERATION AND COMBINED CYCLE POWER PLANTS

33:934ft H2O ð60�CÞ

atm760

mm Hg ð0�CÞatm

406:79in. H2O ð39:2�FÞ

atm

0:1dyne/cm2

N/m21:0332

kg/cm2

atm

Energy and Power

778:16ft-lb

Btu2544:4

Btu

hp-hr5050

hp-hr

ft-lb1

J

W-s

J

N-m0:01

bar-dm3

J

550ft-lb

hp-s42:4

Btu

hp-min1:8

Btu/lb

cal/gm1kW-s

kJ

16:021

1012J

MeV

33; 000ft-lb

hp-min3412:2

Btu

kW-hr1800

Btu/pmole

kcal/gmole1V-amp

W-s

1:6021

1012erg

eV

737:562ft-lb

kW-s56:87

Btu

kW-min2:7194

Btu

atm-cu ft107

ergs

J

11:817

1012ft-lb

MeV

1:3558J

ft-lb251:98

cal

Btu4:1868

kJ

kcal3600

kJ

kW-hr0:746

kW

hp

1:055kJ

Btu101:92

kg-m

kJ0:4300

Btu/pmole

J/gmole860

cal

W-hr1:8

Btu

chu

37:29kJ/m3

Btu/ft30:948

Btu

kW-sec2:33

kJ/kg

Btu/lbm

Entropy, Specific Heat, Gas Constant

1Btu/pmole-R

cal/gmole-K1

Btu/lb-R

gal/cm-K1

Btu/lb-R

kcal/kg-K0:2389

Btu/pmole-R

J/gmole

4:187kJ/kg-K

Btu/lb-R

Universal Gas Constant

1545:32ft-lb

pmole-R8:3143

kJ

kmole-K0:7302

atm-ft3

pmole-R82:057

atm-cm3

gmole-K

Appendix A o 533726

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Time

60s

min3600

s

hr60

min

hr24

hr

day

Speed

88fpm

mph0:6818

mph

fps0:5144

m/s

knot0:3048

m/s

fps0:44704

m/s

mph

1:467fps

mph1:152

mph

knot1:689

fps

knot152:4

cm/min

ips

Force, Mass

16oz

lbm32:174

lbmslug

444; 820dynes

lbf2:205

lbmkg

9080665N

kgf

1000lbfkip

32:174poundals

lbf980:665

dynes

gf14:594

kg

slug4:4482

N

lbf

2000lbmton

7000grains

lbm453:6

g

lbm105

dynes

N1kilopound

kg

14:594kg

slug28:35

g

oz453:6

gmole

pmole907:18

kg

ton1000

kg

metric ton

Pressure

14:696psi

atm101; 325

N/m2

atm13:6

kg

mm Hg ð0�CÞ 51:715mm Hg ð0�CÞ

psi47:88

N/m2

psf

29:921in. Hg ð0�CÞ

atm105

N/m2

bar13:57

in: H2O ð60�FÞin: Hg ð60�FÞ 703:07

kg/m2

psi6894:8

N/m2

psi

33:934ft H2O ð60�FÞ

atm14:504

psi

bar0:0361

psi

in. H2O ð60�FÞ 0:0731kg/cm2

psi760

torr

atm

1:01325bar

atm106

dynes/cm2

bar0:4898

psi

in. Hg ð60�FÞ9:869

107atm

dyne/cm2133:3

N/m2

torr

532 o COGENERATION AND COMBINED CYCLE POWER PLANTS

33:934ft H2O ð60�CÞ

atm760

mm Hg ð0�CÞatm

406:79in. H2O ð39:2�FÞ

atm

0:1dyne/cm2

N/m21:0332

kg/cm2

atm

Energy and Power

778:16ft-lb

Btu2544:4

Btu

hp-hr5050

hp-hr

ft-lb1

J

W-s

J

N-m0:01

bar-dm3

J

550ft-lb

hp-s42:4

Btu

hp-min1:8

Btu/lb

cal/gm1kW-s

kJ

16:021

1012J

MeV

33; 000ft-lb

hp-min3412:2

Btu

kW-hr1800

Btu/pmole

kcal/gmole1V-amp

W-s

1:6021

1012erg

eV

737:562ft-lb

kW-s56:87

Btu

kW-min2:7194

Btu

atm-cu ft107

ergs

J

11:817

1012ft-lb

MeV

1:3558J

ft-lb251:98

cal

Btu4:1868

kJ

kcal3600

kJ

kW-hr0:746

kW

hp

1:055kJ

Btu101:92

kg-m

kJ0:4300

Btu/pmole

J/gmole860

cal

W-hr1:8

Btu

chu

37:29kJ/m3

Btu/ft30:948

Btu

kW-sec2:33

kJ/kg

Btu/lbm

Entropy, Specific Heat, Gas Constant

1Btu/pmole-R

cal/gmole-K1

Btu/lb-R

gal/cm-K1

Btu/lb-R

kcal/kg-K0:2389

Btu/pmole-R

J/gmole

4:187kJ/kg-K

Btu/lb-R

Universal Gas Constant

1545:32ft-lb

pmole-R8:3143

kJ

kmole-K0:7302

atm-ft3

pmole-R82:057

atm-cm3

gmole-K

Appendix A o 727

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

1:9859Btu

pmole-R1:9859

cal

gmole-K10:731

psi-ft3

pmole-R83:143

bar-cm3

gmole-K

8:3143J

gmole-K8:3149� 107

erg

gmole-K0:08206

atm-m3

kgmole-K

0:083143bar-l

gmole-K

Newton’s Proportionality Constant k (as a conversion unit)

32:174 fps2lb

slug

� �386:1 ips2

lb

p sin

� �9:80665

m

s2N

kg

� �980:655

cm

s2dynes

g

� �

Miscellaneous Constants

Speed of light Avogadro Constant Planck Constant

c ¼ 2:9979 � 108m

sNA ¼ 6:02252 � 1023

molecules

gmoleh ¼ 6:6256� 10�34 J-s

Boltzmann Constant Gravitational Constant Normal mole volume

k ¼ 1:38054 � 10�23 J

KG ¼ 6:670 � 10�11 N-m2

kg22:24136 � 10�2 m3

gmole

o COGENERATION AND COMBINED CYCLE POWER PLANTS728

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

APPENDIX B

Specific Heat of Air at Low Pressures

T, 8R Cp, Btu/lbm 8R Cv, Btu/lbm 8R � (Cp /Cv)

400 0.2393 0.1707 1.402450 0.2394 0.1708 1.401500 0.2396 0.1710 1.401550 0.2399 0.1713 1.400600 0.2403 0.1718 1.399650 0.2409 0.1723 1.398700 0.2416 0.1730 1.396750 0.2424 0.1739 1.394800 0.2434 0.1748 1.392900 0.2458 0.1772 1.387

1,000 0.2486 0.1800 1.3811,100 0.2516 0.1830 1.3741,200 0.2547 0.1862 1.3681,300 0.2579 0.1894 1.3621,400 0.2611 0.1926 1.3561,500 0.2642 0.1956 1.3501,600 0.2671 0.1985 1.3451,700 0.2698 0.2013 1.3401,800 0.2725 0.2039 1.3361,900 0.2750 0.2064 1.3322,000 0.2773 0.2088 1.3282,100 0.2794 0.2109 1.3252,200 0.2813 0.2128 1.3222,300 0.2831 0.2146 1.3192,400 0.2848 0.2162 1.317

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Specific Heats of Products of Combustion (400% Theoretical Air; Fuel (CH2)n; MolecularWeight = 28.9553)

T, 8R Cp, Btu/lbm 8R Cv, Btu/lbm 8R � (Cp /Cv)

800 0.2483 0.1797 1.382850 0.2496 0.1810 1.379900 0.2510 0.1825 1.376950 0.2526 0.1840 1.373

1,000 0.2542 0.1856 1.3691,100 0.2575 0.1890 1.3631,200 0.2609 0.1924 1.3571,300 0.2644 0.1958 1.3501,400 0.2679 0.1993 1.3441,500 0.2712 0.2026 1.3391,600 0.2743 0.2057 1.3331,700 0.2774 0.2088 1.3281,800 0.2802 0.2116 1.3241,900 0.2830 0.2144 1.3202,000 0.2855 0.2166 1.3162,100 0.2878 0.2192 1.3132,200 0.2900 0.2214 1.3102,300 0.2920 0.2234 1.3072,400 0.2938 0.2253 1.3042,500 0.2956 0.2270 1.3022,600 0.2973 0.2287 1.3002,700 0.2988 0.2302 1.2982,800 0.3002 0.2316 1.2962,900 0.3016 0.2330 1.2943,000 0.3029 0.2343 1.2933,200 0.3052 0.2366 1.2903,400 0.3073 0.2387 1.2873,600 0.3092 0.2407 1.2853,800 0.3109 0.2423 1.2834,000 0.3126 0.2440 1.281

o COGENERATION AND COMBINED CYCLE POWER PLANTS730

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

BIBLIOGRAPHY

CHAPTER 1 — AN OVERVIEW OF POWER GENERATION

[1]   Alderfer, R., Eldridge, M., Starrs, T., 2000, ‘‘Making Connections: Case Studies of Interconnection Barriers and their Impact on Distributed Power Projects,’’ NREL/SR-200-28053. 

[2]   Boyce,  M.  P.,  July  1995,  Chapter  1,  ‘‘An  Overview  of  Gas  Turbines,’’  Gas Turbine Engineering Handbook, 7th Edition, Gulf Publishing Company. 

[3]   Clean  Air  Act,  1990,  United  States  Environmental  Protection  Agency, Washington, D.C. 

[4]   ‘‘Cogeneration System Package  for Micro-Turbines,’’ 2000 Sales Literature-Ingersoll-Rand Corporation, Portsmouth, New Hampshire. 

[5]   ‘‘Distributed  Generation:  Understanding  The  Economics,’’  May/June  2000 Distributed Power. 

[6]   ‘‘Kyoto  Protocol  of  1997,’’  1997,  United Nations Framework Convention on Climate Change, N.Y., N.Y., United Nations. 

[7]   Leo.,  A.  J.,  Ghezel-Ayagh,  H.,  Sanderson,  R.,  ‘‘Ultra  High  Efficiency  Hybrid Direct Fuel Cell/Turbine Power Plant,’’ ASME Paper No. 2000-GT-0552, ASME. 

[8]   ‘‘Simple  Cycle  Micro  Turbine  Power  Generation  System,’’  2000,  Sales Literature-Capstone Micro Turbine, Chatsworth, CA. 

[9]   ‘‘Solid  Oxide  Fuel  Cell,  Passing  The  Learning  Curve,’’  May/June  2000 Distributed Power.

CHAPTER 2 — CYCLES

[1]   Boyce,  M.  P.,  November/December  2000,  Advanced Cycles for Combined Cycle Power Plants, Russia Gas Turbo-Technology Publication. 

[2]   Boyce,  M.  P.,  September/October  2000,  Turbo-Machinery for the Next Millennium, Russia Gas Turbo-Technology Publication. 

[3]   Boyce, M. P., Meher-Homji, C. B, Lakshminarasimha, A. N.,  ‘‘Gas Turbine  and Combined Cycle Technologies for Power and Efficiency enhancement in Power Plants,’’ ASME Paper No. 94-GT-435, ASME. 

[4]   Boyce,  M.  P.,  July  1995,  Chapter  2,  ‘‘Theoretical  and  Actual  Cycle  Analysis,’’ Gas Turbine Engineering Handbook, 7th Edition, Gulf Publishing Company. 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

732   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

  [5]   Chodkiewicz, R., Porochnicki, J., Potapczyk, A., 1998, ‘‘Electric Power And Nitric Acid Coproduction — A New Concept In Reducing The Energy Costs.’’ Powergen Europe’98, Milan, Italy, Vol. iii, pp. 611-625. 

  [6]   Chodkiewicz, R., ‘‘A Recuperated Gas Turbine Incorporating External Heat Sources  in  the  Combined  Gas-Steam  Cycle,’’  ASME  Paper  No.  2000-GT- 0593, ASME. 

  [7]   Holden,  P.,  Moen,  D.,  DeCorso,  M.,  ‘‘Alabama  Electric  Cooperative  Compressed Air Energy Storage (CAES) Plant Improvements,’’ ASME Paper  No. 2000-GT-0595, ASME. 

  [8]   Kehlhofer, R. H., et. al., 1999, Combined Cycle Gas & Steam Turbine Power Plants, 2nd Edition, PennWell, Tulsa, Oklahoma. 

  [9]   Lane,  A.  W.,  Hoffman,  P.  A.,  1998,  ‘‘The  U.S.  Dep.  of  Energy  Advanced  Turbine System. Program,’’ ISROMAC-7, Hawaii, D. O. E.

[10]   Miller, H. F., 1989, Blade Erosion — FCCU Power Recovery Expanders, D-R Turbo Products Division, Olean, N.Y.

[11]   Nakhamkin,  M.,  ‘‘Increasing  Gas  Turbine  or  Combined  Cycle  Power Production  With  Compressed  Air  to  Meet  Peak  Power  Demands,’’  ASME Paper No. 2000-GT-0596, ASME.

[12]   Ram, N., ‘‘The Single-Shaft Combined Cycle Myth,’’ ASME Paper No. 2000-GT-0594, ASME.

[13]   Wieler, C. L., 1998, WR-21 Intercooled Recuperated Gas Turbine, http://www. Gas-Turbines.Com.Randd/Icr-Wrds.Htm.

[14]  Ullman Encyclopaedia of Industrial Chemistry, 1991, Vol. A17.

CHAPTER 3 — PERFORMANCE AND MECHANICAL EQUIPMENT STANDARDS

[1]   ANSI/API,  August  1995,  Centrifugal Pumps for Petroleum, Heavy Duty Chemical and Gas Industry Services, 8th Edition, API Std 610, API.

[2]   ANSI/API,  November  1993,  Vibration, Axial-Position, and Bearing-Tempera-ture Monitoring Systems, 3rd Edition, API Std 670, API.

[3]   API, January 1995, Heat Recovery Steam Generators, 1st Edition, Publication 534, API.

[4]  API, May 1997, Fired Heaters & Steam Generators, 1st Edition, RP 556, API.[5]   API,  June  1997,  General Purpose Steam Turbines for Petroleum, Chemical,

and Gas Industry Services, 4th Edition, API Std 611, API.[6]   API, June 1995, Special Purpose Gear Units for Petroleum, Chemical and Gas

Industry Services, 4th Edition, API Std 613, API.[7]   API,  April  1999,  Lubrication, Shaft-Sealing, and Control-Oil Systems and

Auxiliaries for Petroleum, Chemical and Gas Industry Services,  4th  Edition, API Std 614, API.

[8]   API, August 1998, Gas Turbines for the Petroleum, Chemical and Gas Industry Services, 4th Edition, API Std 616, API. 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Bibliography   •   733

  [9]   API,  February  1995,  Centrifugal Compressors for Petroleum, Chemical and Gas Industry Services, 6th Edition, API Std 617, API. 

[10]   API, June 1995, Reciprocating Compressors for Petroleum, Chemical and Gas Industry Services, 4th Edition, API Std 618, API. 

[11]   API,  June  1997,  Rotary-Type Positive Displacement Compressors for Petroleum, Chemical, and Gas Industry Services,  3rd  Edition,  API  Std  619, API. 

[12]   API, October 1998, Special Purpose Couplings for Petroleum Chemical and Gas Industry Services, 3rd Edition, API Std 671, API. 

[13]   API, September 1996, Packaged, Integrally Geared Centrifugal Air Compres-sors for Petroleum, Chemical, and Gas Industry Services,  3rd  Edition,  API  Std 672, API. 

[14]   API,  July  1997  (Reaffirmed  March  2000),  General-Purpose Gear Units for Petroleum, Chemical and Gas Industry Services, 2nd Edition, API Std 677, API. 

[15]   API,  February  1996,  Liquid Ring Vacuum Pumps and Compressors,  1st Edition, API Std 681, API. 

[16]  ASME, 1977 (Reaffirmed 1997), Basic Gas Turbines, B133.2, ASME. [17]   ASME, 1978 (Reaffirmed 1997), Gas Turbine Control And Protection Systems, 

B133.4, ASME. [18]   ASME, 1985 (Reaffirmed 1992), Gas Turbine Fuels, B133.7M, ASME. [19]   ASME, 1977 (Reaffirmed 1989), Gas Turbine Installation Sound Emissions, 

B133.8, ASME. [20]   ASME,  1994,  Measurement Of Exhaust Emissions From Stationary Gas

Turbine Engines, B133.9, ASME. [21]   ASME,  1981  (Reaffirmed  1994),  Procurement Standard For Gas Turbine

Auxiliary Equipment, B133.3, ASME. [22]   ASME,  1978  (Reaffirmed  1997),  Procurement Standard For Gas Turbine

Electrical Equipment, B133.5, ASME. [23]   ASME,  1997,  Performance Test Code on Atmospheric Water Cooling

Equipment, ASME PTC 23, ASME. [24]   ASME, 1981 (Reaffirmed 1992), Performance Test Code on Gas Turbine Heat

Recovery Steam Generators, ASME PTC 4.4, ASME. [25]  ASME, 1997, Performance Test Code on Gas Turbines, ASME PTC 22, ASME. [26]   ASME,  1996, Performance Test Code on Overall Plant Performance,  ASME 

PTC 46, ASME. [27]   ASME, 1983, Performance Test Code on Steam Condensing Apparatus, ASME 

PTC 12.2, ASME.[28]   ASME,  1996,  Performance Test Code on Steam Turbines,  ASME  PTC  6, 

ASME. [29]   ASME, 1988, Performance Test Code on Test Uncertainty: Instruments and

Apparatus, ASME PTC 19.1, ASME.[30]   ISO 10436:1993 Petroleum and Natural Gas Industries — General Purpose

Steam Turbine for Refinery Service, 1st Edition, ISO. 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

734   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

[31]   ISO, 1983, Natural Gas — Calculation of Calorific Value, Density and Relative Density, ISO 6976-(E), International Organization for Standardization. 

[32]   Table of Physical Constants of Paraffin Hydrocarbons and other components of Natural Gas — Gas Producers Association Standard 2145-94.

CHAPTER 4 — AN OVERVIEW OF GAS TURBINES

  [1]   Abidat,  C.,  Baines,  N.  C.,  Firth,  M.  R.,  1992,  ‘‘Design  of  a  highly  loaded  mixed  flow  turbine,’’  Proc. Inst. Mechanical Engineers, Journal Power 8 Energy, 206:95-107.

  [2]   Anderson, R. J., Ritter, W. K., Dildine, D. M., 1947, ‘‘An Investigation of the Effect of Blade Curvature on Centrifugal Impeller Performance,’’ NACA TN-1313.

  [3]   Arcoumanis,  C.,  Martinez-Botas,  R.  F.,  Nouri,  J.  M.,  Su,  C.  C.,  1997. ‘‘Performance  and  exit  flow  characteristics  of  mixed  flow  turbines,’’ International Journal of Rotating Machinery, 3(4):277-293.

  [4]   Baines,  N.  A.,  Hajilouy-Benisi,  A.,  Yeo,  J.  H.,  1994,  ‘‘The  pulse  flow performance and modeling of  radial  inflow turbines.’’  IMechE, Paper No. a405/017.

  [5]   Balje,  O.  E.,  Binsley,  R.  L.,  1960,  ‘‘Axial  Turbine  Performance  Evalua-tion,’’ Journal of Engineering for Power, ASME Transactions, 90A:217-232,  ASME.

  [6]   Balje, O. E., 1964, ‘‘A Study of Reynolds Number Effects in Turbomachin-ery,’’  Journal of Engineering for Power, ASME Transactions, 86(A):227, ASME.

  [7]   Balje, O. E., 1968, ‘‘Axial Cascade Technology and Application to Flow Path Designs,’’  Journal of Engineering for Power, ASME Transactions,  90A:309-340, ASME.

  [8]   Balje,  O.E.,  1952,  ‘‘A  Contribution  to  the  Problem  of  Designing  Radial Turbomachines,’’ Transactions of the ASME, 74:451, ASME.

  [9]   Ballal,  D.  R.,  Lefebvre,  A.  H.,  ‘‘A  Proposed  Method  for  Calculating  Film Cooled Wall Temperatures  in Gas Turbine Combustor Chambers,’’ ASME Paper No. 72-WA/HT-24, ASME. 

[10]   Bammert,  K.,  Rautenberg,  M.,  ‘‘On  the  Energy  Transfer  in  Centrifugal Compressors,’’ ASME Paper No. 74-GT-121, ASME. 

[11]   Barker,  T.,  Jan/Feb  1995,  ‘‘Siemens’  New  Generation,’’  Turbomachinery International. 

[12]   Behning, F. P., Schum, H. J., Szanca, E. M., 1971, ‘‘Cold-Air Investigation of a Turbine with Transpiration-Cooled Stator Blades, IV-Stage Performance with Wire-Mesh Shell Blading,’’ NASA, TM X-2176, NASA. 

[13]   Benign,  F.  O.  P.,  Rust,  H.  O.  W.,  Jr.,  Moffitt,  T.  P.,  1971,  ‘‘Cold-Air  Investigation of a Turbine with Transpiration-Cooled Stator Blades, III — 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Bibliography   •   735

Performance  of  Stator  with  Wire-Mesh  Shell  Blading,’’  NASA,  TM  X- 2166, NASA. 

[14]   Benisek, E., 1998,  ‘‘Experimental and analytical  investigation for  the  flow field of a turbocharger turbine,’’ IMechE, Paper No. 0554/027/98. 

[15]   Benson, R. S., 1970, ‘‘A Review of Methods for Assessing Loss Coefficients  in  Radial  Gas  Turbines,’’  International Journal of Mechanical Sciences, 12:905-932. 

[16]   Bernstien,  H.L.,  1998,  ‘‘Materials  Issues  for  users  of  Gas  Turbines,’’ Proceedings of the 27th Texas A&M Turbomachinery Symposium. 

[17]   Boyce,  M  .P.,  Oct.  1972,  ‘‘New  Developments  in  Compressor  Aerody-namics,’’ Proceedings of the 1st Turbomachinery Symposium, Texas A&M. 

[18]   Boyce, M. P., Oct. 1988,  ‘‘Rerating of Centrifugal Compressors — Part  I.’’ Diesel and Gas Turbine Worldwide. 46-50. 

[19]   Boyce, M. P., Jan.-Feb. 1989, ‘‘Rerating of Centrifugal Compressors — Part II.’’ Diesel and Gas Turbine Worldwide. pp. 8-20. 

[20]   Boyce, M. P., October/November 1999, ‘‘Cutting Edge Turbine Technology, ’’  Middle East Electricity. 

[21]   Boyce,  M.  P.,  Bale,  V.  S.,  ‘‘A  New  Method  for  the  Calculations  of  Blade Loadings in Radial-Flow Compressors,’’ ASME Paper No. 71-GT-60, ASME. 

[22]   Boyce,  M.  P.,  Bale,  Y.  S.,  Sept.  1972,  ‘‘Diffusion  Loss  in  a  Mixed-Flow Compressor,’’  Intersociety Energy Conversion Engineering Conference, San Diego, Paper No. 729061. 

[23]   Boyce,  M.  P.,  Desai,  A.  R.,  Aug.  1973,  ‘‘Clearance  Loss  in  a  Centrifugal Impeller,’’  Proc. of the 8th Intersociety Energy Conversion Engineering Conference, Paper No. 7391 26, p. 638. 

[24]   Boyce, M. P., Nishida, A., May 1977,  ‘‘Investigation of Flow in Centrifugal Impeller with Tandem Inducer,’’ ASME Paper, Tokyo, Japan, ASME. 

[25]   Boyce,  M.  P.,  Sept.  1993,  ‘‘Principles  of  Operation  and  Performance Estimation  of  Centrifugal  Compressors,’’  Proceedings of the 22nd Turbo-machinery Symposium, 14-16 161-78, Dallas, TX. 

[26]   Boyce, M. P., ‘‘A Practical Three-Dimensional Flow Visualization Approach to the Complex Flow Characteristics in a Centrifugal Impeller,’’ ASME Paper No. 66-GT-83, ASME. 

[27]   Boyce,  M.  P.,  ‘‘Secondary  flows  in  Axial-Flow  Compressors  with  Treated Blades,’’ AGARD-CCP-214 pp. 5–1 to 5–13. 

[28]   Boyce, M. P., ‘‘Transonic Axial-Flow Compressor,’’ ASME Paper No. 67-GT-47, ASME. 

[29]   Boyce, M. P., June 1978, ‘‘How to Achieve On-Line Availability of Centrifugal Compressors,’’ Chemical Weekly, pp. 115-127. 

[30]   Boyce, M. P., Schiller, R. N., Desai, A. R., ‘‘Study of Casing Treatment Effects in Axial-flow Compressors,’’ ASME Paper No. 74-GT-89, ASME. 

[31]   Brown, L.E., 1972, ‘‘Axial Flow Compressor and Turbine Loss Coefficients:  A  Comparison  of  Several  Parameters,’’  Journal of Engineering for Power, ASME Transactions, 94A:193-201, ASME. 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

736   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

[32]   Clarke, J. S., Lardge, H. E.,  ‘‘The Performance and Reliability of Aero-Gas Turbine Combustion Chambers,’’ ASME Paper No. 58-GTO-13, ASME.

[33]   Dalla, B., Ralph, A., Nickolas, S. G., Weakley, C. K., Lundberg, K., Caron, T.  J.,  Chamberlain,  J.,  Greeb,  K.,  ‘‘Field  Test  of  a  1.5  MW  Industrial  Gas Turbine with a Low Emissions Catalytic combustion System,’’ ASME Paper No. 99-GT-295, ASME.

[34]   Dallenback,  F.,  Jan.  1961,  ‘‘The  Aerodynamic  Design  and  Performance  of Centrifugal and Mixed-Flow Compressors,’’ SAE International Congress.

[35]   Dawes, W., 1995, ‘‘A Simulation of the Unsteady Interaction of a Centrifugal Impeller  with  its  Vaned  Diffuser:  Flows  Analysis,’’  ASME Journal of Turbomachinery, 117:213-222, ASME.

[36]   Deniz, S., Greitzer, E. Cumpsty, N., ‘‘Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffusers Part 2: Straight-Channel Diffuser,’’ ASME Paper No. 98-GT-474, ASME.

[37]   Domercq,  O.,  Thomas,  R.,  ‘‘Unsteady  Flow  Investigation  in  a  Transonic Centrifugal Compressor Stage,’’ AIAA Paper No. 97-2877, AIAA.

[38]   Dutta, P., Cowell, L. H., Yee, D. K., Dalla Betta, R. A., ‘‘Design and Evaluation of  a  Single-Can  Full  Scale  Catalytic  combustion  System  for  Ultra-Low Emissions Industrial Gas Turbines,’’ ASME 97-GT-292, ASME.

[39]   Editor,  August  1994,  ‘‘Steam  cooled  60  Hz  W501G  generates  230  MW,’’ Modern Power Systems.

[40]   Faires, V. M., Simmang, C. M., 1978, ‘‘Reactive Systems,’’ Thermodynamics, 6th Edition, pp. 345-347, The Macmillan Co., New York.

[41]   Farmer, R., May/ June 1995, ‘‘Design 60% net efficiency in Frame 7/9H steam cooled CCGT,’’ Gas Turbine World.

[42]   Filipenco,  V.,  Deniz,  S.,  Johnston,  J.,  Greitzer,  E.,  Cumpsty,  N.,  1998, ‘‘Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffusers Part 1: Discrete Passage Diffuser,’’ ASME Paper No. 98-GT-473, ASME.

[43]   Gehring,  S.,  Riess,  W.,  March  1999,  ‘‘Through  flow  Analysis  for  cooled Turbines,’’  London 3rd Conference on Turbomachinery — Fluid Dynamics and Thermodynamics.

[44]   Giamati,  C.  C.,  Finger,  H.  B.,  1965,  ‘‘Design  Velocity  Distribution  in Meridional Plane,’’ NASA SP 36, Chapter VIII, p. 255, NASA.

[45]   Glassman,  A.  J.,  Moffitt,  T.  P.,  1972,  ‘‘New  Technology  in  Turbine Aerodynamics,’’ Proceedings of the 1st Turbomachinery Symposium, p. 105 Texas A&M University.

[46]   Graham,  R.  W.,  Guentert,  E.  C.,  1965,  ‘‘Compressor  Stall  and  Blade Vibration,’’ NASA SP 36, Chapter XI, p. 311, NASA.

[47]   Grahman,  J.,  Jones,  R.  E.,  Mayek,  C.  J.,  Niedzwicki,  R.  W.,  ‘‘Aircraft Propulsion,’’ Chapter 4, NASA SP-259, NASA.

[48]   Greenwood, S. A., September 2000, ‘‘Low Emission Combustion Technology for Stationary Gas Turbine Engines,’’ Proceedings of the 29th Turbomachinery Symposium.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Bibliography   •   737

[49]   Hatch,  J.  E.,  Giamati,  C.  C.,  Jackson,  R.  J.,  1954,  ‘‘Application  of  Radial Equilibrium  Condition  to  Axial-flow  Turbomachine  Design  Including Consideration  of  Change  of  Entropy  with  Radius  Downstream  of  Blade Row,’’ NACA RM E54A20. 

[50]   Hawthorne, W. R., Olsen, W .T., Editors, 1960, Design and Performance of Gas Turbine Plants, Vol. II, pp. 563-590. Princeton University Press. 

[51]   Herrig, L. J., Emery, J. C., Erwin, J. R., 1955, ‘‘Systematic Two Dimensional Cascade Tests of NACA 65 Series Compressor Blades at Low Speed,’’ NACA R.M. E 55HII. 

[52]   Hilt, M. B., Johnson, R. H., 1972,  ‘‘Nitric Oxide Abatement in Heavy Duty Gas Turbine Combustors by Means of Aerodynamics and Water Injection,’’ ASME Paper, No. 72-GT-22, ASME. 

[53]   Horlock, J. H., 1973, Axial Flow Compressors, Robert E. Krieger Publishing Company. 

[54]   Horlock,  J.  H.,  1966,  Axial Flow Turbines,  London,  Butterworth  and  Company Ltd. 

[55]    Horner, M. W., August 1996, ‘‘GE Aeroderivative Gas Turbines — Design and Operating Features’’ 39th GE Turbine State-of-the-Art Technology Seminar. 

[56]   Johnston,  R.,  Dean,  R.,  1966,  ‘‘Losses  in  Vaneless  Diffusers  o  Centrifugal Compressors  and  Pumps,’’  ASME Journal of Basic Engineering,  88:49-60, ASME. 

[57]   Karamanis, N., Martinez-Botas, R.F., Su, C.C., 2000, ‘‘Mixed Flow Turbines: Inlet and Exit flow under steady and pulsating conditions,’’ ASME Paper No. 2000-GT-470, ASME. 

[58]   Klassen, H. A., Jan. 1975, ‘‘Effect of Inducer Inlet and Diffuser Throat Areas on Performance of a Low-Pressure Ratio Sweptback Centrifugal Compres-sor,’’ NASA TM X-3148, Lewis Research Center, NASA. 

[59]   Knoernschild, E. M., 1961, ‘‘The Radial Turbine for Low Specific Speeds and Low Velocity Factors,’’ Journal of Engineering for Power, Transactions of the ASME, 83(A):1-8, ASME. 

[60]   Koller,  U.,  Monig,  R.,  Kosters,  B.,  Schreiber,  H-A,  ‘‘Development  of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines Part I: Design and Optimization’’, ASME Paper No. 99-GT-95, ASME. 

[61]   Lakshminarayana,  B.,  1996,  Fluid Dynamics and Heat Transfer of Turbomachinery, John Wiley & Sons Inc., New York. 

[62]   Lavoie,  R.,  McMordie,  B.  G.,  April  1994,  ‘‘Measuring  Surface  Finish  of Compressor Airfoils protected by Environmentally resistant Coatings,’’ 30th Annual Aerospace/Airline Plating and Metal Finishing Forum. 

[63]   Lieblein, S., Schwenk, F. C., Broderick, R. L., 1953,  ‘‘Diffusion Factor  for Estimating Losses and Limiting Blade Loading  in Axial-Flow Compressor Blade Elements,’’ NACA RM No. 53001. 

[64]   Maurice,  L.  Q.  W.,  Blust,  J.W.,  1999,  ‘‘Emission  from  Combustion  of Hydrocarbons in a Well Stirred Reactor,’’ AIAA. 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

738   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

[65]   McMordie, B. G., March 2000, ‘‘Impact of Smooth Coatings on the Efficiency of  Modern  Turbomachinery,’’  Cincinnati, Ohio, 2000 Aerospace/Airline Plating & Metal Finishing Forum. 

[66]   Mellor,  G.,  1957,  ‘‘The  Aerodynamic  Performance  of  Axial  Compressor Cascades  with  Application  to  Machine  Design,’’  Sc.  D.  Thesis,  M.I.T.  Gas Turbine Lab, M.I.T. Rep. No. 38. 

[67]   Moffitt, T. P., Prust, H. W., Jr., Szanca, E. M., Schum, H. J., 1971, ‘‘Summary of  Cold-Air  Tests  of  a  Single-Stage  Turbine  with  Various  Stator  Cooling Techniques,’’ NASA, TM X-52969, NASA. 

[68]   O’Brien, W. J., 1975, ‘‘Temperature Measurement for Gas Turbine Engines,’’ SAE Paper No. 750207, SAE. 

[69]   Owczarek,  J.  A.,  1968,  Fundamentals of Gas Dynamics,  pp.  165-197, International Textbook Company, Pennsylvania. 

[70]   Paul, T. C., Schonewald, R. W., Marolda, P. J., August 1996, ‘‘Power System for the 21st Century — H Gas Turbine Combined Cycles,’’ 39th GE Turbine State-of-the-Art Technology Seminar. 

[71]   Petrovic, M., Riess, W., 1995, ‘‘Through-Flow Calculation in Axial Turbines at Part Load and Low Load. Is,’’ Erlangen, Conference on Turbomachinery —  Fluid Dynamics and Thermodynamics. 

[72]   Phillips, M., 1997,  ‘‘Role of Flow Alignment and Inlet Blockage on Vaned Diffuser  Performance,’’  Report  No.  229,  Gas  Turbine  Laboratory,  Massa-chusetts Institute of Technology. 

[73]   Prust, H. W., Jr., Schum, H. J., Szanca, E. M., 1970, ‘‘Cold-Air Investigation of a Turbine with Transpiration-Cooled Stator Blades, I — Performance of Stator with Discrete Hole Blading,’’ NASA, TX X-2094, NASA. 

[74]   Prust, H. W., Jr., Behning, F. P., Bider, B., 1970, ‘‘Cold-Air Investigation of a  Turbine  with  Stator  Blade  Trailing  Edge  Coolant  Ejection,  II  —  Detailed Stator Performance,’’ NASA, TM X-1963, NASA. 

[75]   Prust, H. W., Jr., Schum, H. J., Behning, F. P., 1968, ‘‘Cold-Air Investigation of  a  Turbine  for  High-Temperature  Engine  Application,  II  —  Detailed Analytical and Experimental  Investigation of Stator Performance,’’ NASA, TN D-4418, NASA. 

[76]   Rodgers,  C.,  Shapiro,  L.,  ‘‘Design  Considerations  for  High-Pressure-Ratio Centrifugal Compressors,’’ ASME Paper No. 73-GT-31, ASME. 

[77]   Rodgers,  C.,  Oct.  1966,  ‘‘Efficiency  and  Performance  Characteristics  of Radial Turbines,’’ SAE Paper 660754, SAE. 

[78]   Rodgers, C., Jan. 1961, ‘‘Influence of Impeller and Diffuser Characteristics and  Matching  on  Radial  Compressor  Performance,’’  SAE  Preprint  268B, SAE. 

[79]   Rodgers, C.,  ‘‘Effect of Blade Numbers on  the Efficiency of  a Centrifugal Impeller,’’ ASME Paper No. 2000-GT-0455, ASME. 

[80]   Rodgers,  C.,  ‘‘The  Performance  of  Centrifugal  Compressor  Channel Diffusers,’’ ASME Paper No. 82-GT-10, ASME. 

[81]   Schilke, P. W., August 1996, ‘‘Advanced Gas Turbine Materials and Coatings,’’ 39th GE Turbine State-of the-Art Technology Seminar.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Bibliography   •   739

  [82]   Schlatter, J. C., Dalla Betta, R. A., Nickolas, S. G., Cutrone, M. B., Beebe, K.  W.,  Tsuchiya,  T.,  ‘‘Single-Digit  Emissions  in  a  full  Scale  Catalytic Combustor,’’ ASME Paper No. 97-GT-57.

  [83]   Schlichting,  H.,  1962,  Boundary Layer Theory,  4th  Edition,  pp.  547–550, McGraw-Hill Book Co.

  [84]   Senoo, V., Nakase, V., ‘‘An Analysis of Flow Through a Mixed Flow Impeller,’’ ASME Paper No. 71-GT-2, ASME.

  [85]   Shahpar,  S.,  ‘‘A  Comparative  Study  of  Optimization  Methods  for  Aero-dynamic Design of Turbomachinery Blades,’’ ASME Paper No. 2000-GT-523, ASME.

  [86]   Shepherd,  D.G.,  1956,  Principles of Turbomachinery,  The  Macmillan Company, New York.

  [87]   Shouman,  A.  R.,  Anderson,  J.  R.,  1964,  ‘‘The  Use  of  Compressor-lnlet Prewhirl for the Control of Small Gas Turbines,’’ Journal of Engineering for Power, Transactions of the ASME, 86(A):136-140, ASME.

  [88]   Stewart, W. L., 1954,  ‘‘Investigation of Compressible Flow Mixing Losses Obtained Downstream of a Blade Row,’’ NACA RM E54120.

  [89]   Szanca, E. M., Schum, H. J., Behnong, F. P., 1970, ‘‘Cold-Air Investigation of a Turbine with Transpiration-Cooled Stator Blades, II — Stage Perfor-mance with Discrete Hole Stator Blades,’’ NASA, TM X-2133, NASA.

  [90]   Szanca, E. M., Schum, H. J., Prust, H. W., Jr., 1970, ‘‘Cold-Air Investigation of a Turbine with Transpiration-Cooled Stator Blades, I — Performance of Stator with Discrete Hole Blading,’’ NASA, TM X-2094, NASA.

  [91]   Talceishi, K., Matsuura, M., Aoki, S. Sato, T., 1989, ‘‘An Experimental Study of heat transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles,’’ ASME Paper No. 89-GT-187, ASME.

  [92]   Thompson, W. E., 1972, ‘‘Aerodynamics of Turbines,’’ Proceedings of the 1st Turbo-machinery Symposium, p. 90, Texas A&M University.

  [93]   Traupel, W., 1988, Thermische Turbomaschinen, Vol. 1., Springer-Verlag, Berlin.

  [94]   Valenti,  M.,  September  1998,  ‘‘A  Turbine  for  Tomorrows  Navy,’’  ASME Mechanical Engineering.

  [95]   Vavra, M. H., March, 1968, ‘‘Radial Turbines,’’ Pt. 4., AGARD-VKI Lecture Series on Flow in Turbines (Series No. 6).

  [96]   Vincent,  E.T.,  1950, Theory and Design of Gas Turbines and Jet Engines, New York, McGraw-Hill.

  [97]   Wallace, F. J., Pasha, S. G. A., 1972. Design, construction and testing of a mixed-flow Turbine.

  [98]   Warnes, B. M., Hampson, L. M., ‘‘Extending the Service Life of Gas Turbine Hardware,’’ ASME Paper No. 2000-GT-559, ASME.

  [99]   Whitney, W. J., 1969, ‘‘Analytical Investigation of the Effect of Cooling Air on Two- Stage Turbine Performance,’’ NASA, TM X-1728, NASA. 

[100]   Whitney, W. J., 1968, ‘‘Comparative Study of Mixed and Isolated Flow Methods for Cooled Turbine Performance Analysis,’’ NASA, TM X-1572, NASA. 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

740   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

[101]   Whitney, W. J., Szanca, E. M., Behning, F. P., 1969, ‘‘Cold-Air Investigation of a Turbine with Stator Blade Trailing Edge Coolant-Ejection, I — Overall Stator Performance,’’ NASA, TM X-1901, NASA. 

[102]   Whitney,  W.  J.,  Szanca,  E.  M.,  Bider,  B.,  Monroe,  D.  E.,  1968,  ‘‘Cold- Air  Investigation of a Turbine  for High-Temperature Engine Application  III — Overall Stage Performance,’’ NASA, TN D-4389, NASA. 

[103]   Whitney, W. J., Szanca, E. M., Moffitt, T. P., Monroe, D. E., 1967, ‘‘Cold-Air Investigation of a Turbine for High-Temperature Engine Application,’’ I — Turbine Design and Overall Stator Performance, NASA, TN D-3751, NASA. 

[104]   Winterbone,  D.  E.,  Nikpour,  B.,  Alexander,  G.  L.,  1990.  ‘‘Measurement of  the  performance  of  a  radial  inflow  turbine  in  conditional  steady  and unsteady flow.’’ IMechE, Paper No. 0405/015. 

[105]   Wood, M. I., March 1999, ‘‘Developments in Blade Coatings: Extending the life of blades? Reducing Lifetime costs?,’’ CCGT Generation, IIR Ltd. 

[106]   Wu, C. H., 1952, ‘‘A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial, Radial, and Mixed-Flow Type,’’ NACA TN-2604. 

[107]   Yee, D. K., Lundberg, K., Weakley, C. K.,  ‘‘Field Demonstration of a 1.5 MW Industrial Gas Turbine with a Low Emissions Catalytic Combustion System,’’ ASME Paper No. 2000-GT-88, ASME.

CHAPTER 5 — AN OVERVIEW OF STEAM TURBINES

[1]   Cotton, K. C., 1993, Evaluating and Improving Steam Turbine Performance, Cotton Fact, Inc., Rexford, NY. 

[2]   Craig,  H.  R.  M.,  Hobson,  G.,  1973,  ‘‘The  Development  of  Long  Last-Stage Turbine Blades,’’ GEC Journal of Science and Technology, 40(2):65-71. 

[3]   Craig, H. R. M., Kalderon, D., 1973,  ‘‘Research and Development for Large Steam Turbines,’’ Proc. American Power Conference. 

[4]   Leyzerovich,  A.,  1997,  Large Power Steam Turbines, Volume 1: Design and Operation, Volume 2: Operations, PennWell Books, Tulsa OK. 

[5]   McCloskey,  T.  H.,  et.  al.,  1999,  ‘‘Turbine  Steam  Path  Damage:  Theory  & Practice, Volume 1:Turbine Fundamentals,’’ EPRI. 

[6]   McCloskey,  T.  H.,  et.  al.,  1999,  ‘‘Turbine  Steam  Path  Damage:  Theory  & Practice, Volume 2:Damage Mechanisms,’’ EPRI. 

[7]   Petrovic, M., Riess, W., ‘‘Off-Design Flow Analysis and Performance Prediction of Axial Turbines,’’ ASME Paper No. 97-GT-55, ASME. 

[8]   Petrovic,  M.,  Riess,  W.,  1997,  ‘‘Off-Design  Flow  Analysis  of  LP  Steam Turbines,’’ Amsterdam, 2nd Conference on Turbomachinery — Fluid Dynamics and Thermodynamics. 

[9]   Sanders,  W.  P.,  December  1998,  Turbine Steam Path Engineering for Operations and Maintenance Staff,  Turbo-Technic  Services  Incorporated, Toronto Ontario, Canada. 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Bibliography   •   741

[10]   Trumpler,  W.  E.,  Owens  H.  M.,  ‘‘Turbine  Blade  Vibration  and  Strength,’’ Transactions of the ASME, 77:337-341, ASME.

CHAPTER 6 — AN OVERVIEW OF PUMPS

[1]   Boyce, M. P., 1977, Chapter 10,  ‘‘Transport and Storage of Fluids-Pumping of  Liquids  and  Gases,’’  Perry’s Chemical Engineers’ Handbook,  7th  Edition, McGraw-Hill. 

[2]   Brown, R. D., 1975, Vibration Phenomena in Boiler Feed Pumps Originating from Fluid Forces, Vibrations and Noise in Pump Fan and Compressor Installations, CP9, Mech. Eng. Publ., Ltd., New York. 

[3]   Corley, J. E., 1978, ‘‘Subsynchronous Vibration in a Large Water Flood Pump,’’ Proceedings of the Seventh Turbomachinery Symposium, College Station, Texas, Texas A&M University. 

[4]   Fraser, W. H., ‘‘Recirculation in Centrifugal Pumps,’’ ASME Winter Meeting 81-WA- 465, ASME. 

[5]   Hergt, P., Krieger, J., 1970 ‘‘Radial Forces in Centrifugal Pumps with Guide Vanes,’’  London,  I.  Mech.  E.,  Convention  on  Advanced  Class  Boiler  Feed Pumps. 

[6]   Massey,  I.  C.,  1985,  ‘‘Subsynchronous  Vibration  Problems  in  High  Speed Multistage Centrifugal Pumps,’’ Proceedings of the Fourteenth Turbomachinery Symposium.

CHAPTER 7 — HEAT RECOVERY STEAM GENERATORS

[1]   Aalborg  Industries  Inc.,  2000,  ‘‘High  Performance  Heat  Recovery  Steam Generators,’’ Erie, PA. 

[2]   Boyce,  M.  P.,  Meher-Homji,  C.  B.,  Focke,  A.  B.,  Nov.  1984,  ‘‘An  Overview of Cogeneration Technology Design Operations and Maintenance,’’ Proc. of the 13th TurboMachinery Symposium, Houston, TX, 13-15, 3-24, Texas A & M University. 

[3]   Brady, M. F., 1999,  ‘‘Differences Between once Through Steam Generators and Drum-Type HRSG’s and Their Suitability for Barge Mounted Combined Cycles,’’ Asia, POWER-Gen. 

[4]   Dooley R. B., Cycle Chemistry Guidelines for Combined Cycle/Heat Recovery Steam Generators (HRSGs), Report Number 1010438, 2006; EPRI, Palo Alto, CA.

[5]   Duffy, T. E., 2000, ‘‘Heat Recovery for Steam Injected Gas Turbine Application,’’ Cambridge, Ontario, Innovative Steam Technologies. 

[6]   Duffy,  T.  E.,  2000,  ‘‘Once  Through  Heat  Recovery  Steam  Generators Evaluation  Criteria  for  Combined  Cycles,’’  Cambridge,  Ontario,  Innovative Steam Technologies. 

[7]   Ganapathy, V., August 1987, ‘‘HRSGs for Gas Turbine Application,’’ Hydro-carbon Processing.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

742   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

  [8]   George, N. S., et al.,  ‘‘Dynamic Behavior of a Vertical Natural Circulation Two  Pressure  Stage  HRSG  Behind  a  Heavy  Duty  Gas  Turbines,’’  ASME Paper No. 2000-GT-0592, ASME. 

  [9]   Jeffs,  E.,  January/February  1998,  ‘‘ABB  Brings  GT  24  and  Once-Through Boiler to New England Merchant Plant,’’ Turbomachinery International. 

[10]   Johns,  W.  D.,  1995,  ‘‘Enhanced  Combined  Cycle  Technology,’’  Eleventh Symposium on Industrial Applications of Gas Turbines.

CHAPTER 8 — CONDENSERS AND COOLING TOWERS

  [1]   Addison D. R., Lloyd L., 2008, “The Unique Application of a Separate Bed Condensate Poloshing System (TRIPOL) in a 400 MW Combined Cycle Gas Turbine Power Plant — The Huntly Power Station Experience,” IEX2008, Recent Advances in Ion Exchange Theory and Practice, Fitzwilliam College, Cambridge, UK.

  [2]   ASME, 1983, Performance Test Code on Steam Condensing Apparatus, ASME PTC 12.2, ASME. 

  [3]   Aull, R. J., Wallis, J. S., 2000, Brentwood Industries, Sales Documentation.   [4]   Burger, R., Chapter 6, ‘‘Thermal Evaluation Cooling Tower,’’ Cooling Tower 

Technology Textbook, 3rd Edition.   [5]   Burger,  R.,  July,  2000,  ‘‘Cooling  Tower  Fill:  The  Neglected  Moneymaker,’’ 

Hydrocarbon Processing , Cooling Tower Institute Material Standard STD-136.  [6]   Dooley,  B.  R.,  Aspden,  D.  J.,  Howell  A.  G.,  du  Preez  F.,  Assessing  and 

Controlling  Corrosion  in  Air-Cooled  Condensers,  PowerPlant  Chemistry 2009, 11(5).

  [7]   Kennicott, C., http://www.kennicott.co.uk/EN/Technologies/Conesep/, 2009.  [8]   Meek, G., 1967, ‘‘Cellular Cooling Tower Fill,’’ CTI Paper TP-32A.   [9]   Phelps, P., 1979,  ‘‘Cooling Tower — Waste Heat Superstar,’’ CTI Paper TP 

76-06.[10]   Shields,  K.  J.,  Mathews  J.  A.,  2008,  “Condensate  Polishing  Performance 

Assessment: Use of Separate Bed Single Vessel Designs,” Report No. 1014130, 1-7, EPRI, Palo Alto, CA.

[11]   Shields,  K.  J.,  et  al.,  2006,  “Condensate  Polishing  Guidelines  for  Fossil Plants,” Report Number 101018, 2-1, EPRI, Palo Alto, CA.

[12]   Shields K. J. et al., 2006, “Condensate Polishing Guidelines for Fossil Plants,” Report No. 101018, 2-10, EPRI, Palo Alto, CA.

CHAPTER 9 — GENERATORS, MOTORS AND SWITCH GEARS

[1]   ASME,  1978  (Reaffirmed  1997),  Procurement Standard For Gas Turbine Electrical Equipment, B133.5, ASME. 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Bibliography   •   743

[2]   Daugherty, R. H., 1997, ‘‘Chapter 29 Electric Motors and Auxiliaries,’’ Perry’s Chemical Engineers’ Handbook, 7th Edition, McGraw-Hill. 

[3]   Hargett, Y. S., ‘‘Large Steam turbine Driven Generators,’’ Large Steam Turbine Generator Department-Schenectady N.Y. 

[4]   McNeely, M., May/June 2000, ‘‘New Switchgear Targeted at DG Applications,’’ Distributed Power. 

[5]   Nippes, P. I., 2000, ‘‘Synchronous Machinery,’’ The Electric Power Engineering Handbook, CRC Press LLC. 

[6]   Wright,  J.,  ‘‘A  Practical  Solution  to  Transient  Torsional  Vibration  in Synchronous Motor Drive Systems,’’ Pub. 75-DE-15, ASME.

CHAPTER 10 — FUELS, FUEL PIPING AND FUEL STORAGE

[1]   Bahr,  D.  W.,  Smith,  J.  R.,  Kenworthy,  N.  J.,  ‘‘Development  of  Low  Smoke Emission Combustors for Large Aircraft Turbine Engines,’’ AIAA Paper No. 69-493.

[2]   Boyce, M. P., 1997, Chapter 10, ‘‘Transport and Storage of Fluids — Process  —Plant Piping,’’ Perry’s Chemical Engineers’ Handbook, 7th Edition, McGraw- Hill. 

[3]   Boyce, M. P., Trevillion, W., Hoehing, W. W., March 1978 (Reprint), ‘‘A New Gas Turbine Fuel,’’ Diesel & Gas Turbine Progress.

CHAPTER 11 — BEARINGS, SEALS AND LUBRICATION SYSTEMS

[1]   Abramovitz,  S.,  December,  1977,  ‘‘Fluid  Film  Bearings,  Fundamentals and  Design  Criteria  and  Pitfalls,’’  Proceedings of the 6th Turbomachinery Symposium, pp. 189–204, Texas A & M University.

[2]   API,  April  1999,  Lubrication, Shaft-Sealing, and Control-Oil Systems and Auxiliaries for Petroleum, Chemical and Gas Industry Services,  4th  Edition, API Std 614, API.

[3]   Boyce, M. P., Morgan, E., White, G., 1978, ‘‘Simulation of Rotor Dynamics of High- Speed Rotating Machinery,’’ Madras, India, pp. 6–32, Proceedings of the First International Conference in Centrifugal Compressor Technology.

[4]   Clapp, A. M., 1972, ‘‘Fundamentals of Lubricating Relating to Operating and Maintenance  of  Turbomachinery,’’  Proceedings of the 1st Turbomachinery Symposium, Texas A&M University.

[5]   Egli, 1935, ‘‘The Leakage of Steam through Labyrinth Seals,’’ Transactions of the ASME, pp. 115-122.

[6]   Fuller, D. D., 1956, Theory & Practice of Lubrication for Engineers, Wiley Inter-science.

[7]   Herbage,  B.  S.,  October  1972,  ‘‘High  Speed  Journal  and  Thrust  Bearing Design,’’ Proceedings of the 1st Turbomachiery Symposium, pp. 56-61. Texas A&M University.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

744   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

  [8]   Herbage, B., December, 1977, ‘‘High Efficiency Fluid Film Thrust Bearings for  Turbomachinery,’’  6th Proceedings of the Turbomachinery Symposium, pp. 33-38, Texas A&M University.

  [9]   King,  T.  L.,  Capitao,  J.  W.,  October  1975,  ‘‘Impact  on  Recent  Tilting  Pad Thrust Bearing Tests on Steam Turbine Design and Performance,’’ Proceed-ings of the 4th Turbomachinery Symposium, pp. 1-8, Texas A&M University. 

[10]   Leopard, A. J., December 1977, ‘‘Principles of Fluid Film Bearing Design and Application,’’ Proceedings of the 6th Turbomachinery Symposium, pp. 207-230, Texas AM University. 

[11]   Reynolds,  O.,  1886,  Theory of Lubrication, Part I,  Trans.  Royal  Society, London. 

[12]   ‘‘Rolling Bearing Damage,’’ 1995, FAG Publication No. WL 82 102/2 Esi. [13]   ‘‘Rolling  Bearings,’’  1996,  Fundamentals,  Types,  Design,  FAG  Publication 

No. WL 43 1190 EA. [14]   Shapiro, W., Colsher, R., December, 1977, ‘‘Dynamic Characteristics of Fluid 

Film Bearings,’’ Proceedings of the 6th Turbomachinery Symposium, pp. 39-53, Texas A&M University.

[15]   Tessarzik, J. M., Badgley, R. H., Anderson, W. J., February 1972, ‘‘Flexible Rotor Balancing by the Exact-Point Speed Influence Coefficient Method,’’ Transactions of the ASME, Institute of Engineering for Industry, 94 B(1):148, ASME.

CHAPTER 12 — CONTROL SYSTEMS, AND CONDITION MONITORING

  [1]   ASME, 1978 (Reaffirmed 1997), Gas Turbine Control And Protection Systems, B133.4, ASME.

  [2]   Boyce, M. P., Cox, W. M., August 1997, ‘‘Condition Monitoring Management-Strategy,’’ Presented at The Intelligent Software Systems in Inspection and Life Management of Power and Process Plants in Paris, France.

  [3]   Boyce, M. P., Herrera, G., Sept. 1993, ‘‘Health Evaluation of Turbine Engines Undergoing  Automated  FAA  Type  Cyclic  Testing,’’  Presented at the SAE International Ameritech ’93. Costa Mesa, CA, 27-30. SAE Paper No. 932633, SAE.

  [4]   Boyce, M. P.,  Venema,  J.,  June 1997,  ‘‘Condition Monitoring and Control Center,’’ Presented at the Power Gen Europe in Madrid, Spain, Power Gen.

  [5]   Boyce, M. P., July/August 1999, ‘‘Condition Monitoring of Combined Cycle Power Plants,’’ pp. 35-36, Asian Electricity.

  [6]   Boyce,  M.  P.,  December  1994,  ‘‘Control  and  Monitoring  an  Integrated Approach,’’ pp. 17-20, Middle East Electricity.

  [7]   Boyce, M. P., Gabriles, G. A., Meher-Homji, C. B., 3-5 Nov. 1993, ‘‘Enhancing System Availability and Performance  in Combined Cycle Power Plants by the Use of Condition Monitoring,’’ Presented at the European Conference and Exhibition Cogeneration of Heat and Power, Athens, Greece.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Bibliography   •   745

  [8]   Boyce, M. P., Gabriles, G. A., Meher-Homji, C.B., Lakshminarasimha, A.N. Meher-Homji,  F.  J.,  14-16  Sept.  1993,  ‘‘Case  Studies  in  Turbomachinery Operation  and  Maintenance  using  Condition  Monitoring,’’  Proc. of the 22nd Turbomachinery Symposium.  Dallas,  TX,  pp.  101-12,  Texas  A  &  M University.

  [9]   Boyce, M. P., March, 1999, ‘‘How to Identify and Correct Efficiency Losses through  Modeling  Plant  Thermodynamics,’’  Proceedings of the CCGT Generation Power Conference, London, U.K. 

[10]   Boyce,  M.  P.,  March/April  1996,  ‘‘Improving  Performance  with  Condition Monitoring,’’ Power Plant Technology Economics and Maintenance, pp. 52-55. 

[11]   Meher-Homji,  C.  B.,  Boyce,  M.  P.  Lakshminarasimha,  A.  N.,  Whitten, J.  A.  Meher-Homji,  F.  J.,  Sept.  21-23,  1993,  ‘‘Condition  Monitoring  and Diagnostic Approaches for Advanced Gas Turbines,’’ pp. 347-55, Proc. ASME Cogen Turbo Power 1993. 7th Congress and Exposition on Gas Turbines in Cogeneration and Utility. Sponsored by ASME in participation of BEAMA. IGTI-Vol. 8 Bournemouth, United Kingdom, ASME.

CHAPTER 13 — PERFORMANCE TESTING OF A COMBINED CYCLE POWER PLANT

  [1]   ASME, 1981 (Reaffirmed 1992), Performance Test Code on Gas Turbine Heat Recovery Steam Generators, ASME PTC 4.4, ASME. 

  [2]   ASME, 1983, Performance Test Code on Steam Condensing Apparatus, ASME PTC 12.2 1, ASME. 

  [3]   ASME, 1985 (Reaffirmed 1992), Gas Turbine Fuels, B 133.7M., ASME.   [4]   ASME, 1988, Performance Test Code on Test Uncertainty: Instruments and 

Apparatus, ASME PTC 19.1, ASME.   [5]   ASME,  1996,  Performance Test Code on Overall Plant Performance,  ASME 

PTC 46, ASME.   [6]   ASME,  1996,  Performance Test Code on Steam Turbines,  ASME  PTC  6, 

ASME.   [7]   ASME,  1997,  Performance Test Code on Gas Turbines,  ASME  PTC  22, 

ASME.   [8]   ASME, 1997, Performance Test Code on Atmospheric Water Cooling Equipment, 

PTC 23, ASME.   [9]   Boyce, M. P., August 1999, ‘‘Performance Characteristics of a Steam Turbine 

in a Combined Cycle Power Plant,’’ Proceedings of the 6th EPRI Steam Turbine Generator /Workshop, EPRI. 

[10]   Boyce,  M.  P.,  July,  1999,  ‘‘Performance  Monitoring  of  Large  Combined Cycle Power Plants,’’ Proceedings of the ASME 1999 International Joint Power Generation Conference, San Francisco CA. Vol. 2 pp. 183-190, ASME. 

[11]   ISO, 1983, Natural Gas — Calculation of Calorific Value, Density and Relative Density, International Organization for Standardization, ISO 6976-1983(E). 

[12]   Table of Physical Constants of Paraffin Hydrocarbons and other components of Natural Gas — Gas Producers Association Standard 2145-94.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

746   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

CHAPTER 14 — MAINTENANCE TECHNIQUES

[1]   Boyce, M. P., July 1999, ‘‘Managing Power Plant Life Cycle Costs,’’ pp. 21-23, International Power Generation.

[2]   Herbage, B. S., 1977,  ‘‘High Efficiency Film Thrust Bearings  for Turboma-chinery,’’ pp. 33-38, Proceedings of the 6th Turbomachinery Symposium, Texas A&M University.

[3]   Nakajima, Seiichi, Total Productive Maintenance, Productivity Press, Inc.[4]   Nelson, E., 1973, ‘‘Maintenance Techniques for Turbomachinery,’’ Proceedings

of the 2nd Turbomachinery Symposium, Texas A&M University.[5]   Sohre, J., ‘‘Reliability Evaluation for Trouble-Shooting of High-Speed Turbo-

machinery,’’  ASME Petroleum Mechanical Engineering Conference, Denver, CO., ASME.

[6]   Sohre, J., Sept. 1968, ‘‘Operating Problems with High-Speed Turbomachinery —  Causes  and  Correction,’’  23rd Annual Petroleum Mechanical Engineering Conference. 

[7]   VanDrunen, G., Liburdi, J., 1977, ‘‘Rejuvenation of Used Turbine Blades by Host Isostatic Processing,’’ pp. 55-60, Proceedings of the 6th Turbomachinery Symposium, Texas A&M University.

CHAPTER 15 — MAINTENANCE TECHNIQUES

[1]   Addison D. R., 2003, “Oxygenated Treatment in 2-Shifting Plants: The Huntly Power Station, New Zealand, Experience,” EPRI International Conference on Power Station Chemistry, 2003.

[2]   Dooley  R.B.,  Tilley  R.,  2005,  “Guidelines  for  Controlling  Flow-Accelerated Corrosion in Fossil and Combined Cycle Plants,” Report No. 1008082, 2-16, EPRI, Palo Alto, CA.

[3]   Dr. J. Stoiber, Allianz Zentrum Fur Technik GmbH, VGB PowerTech 2/2002[4]   Electrical  Power  Research  Institute  (EPRI),  1998,  “Flow-Accelerated 

Corrosion in Power Plants,” Report TR-106611-R1 Revision 1.[5]   Electrical  Power  Research  Institute  (EPRI),  1998,  “Flow-Accelerated 

Corrosion in Power Plants,” Report TR-106611-R1 Revision 1, pp. 2–18.[6]   Electrical  Power  Research  Institute  (EPRI),  1998,  “Flow-Accelerated 

Corrosion in Power Plants,” Report TR-106611-R1 Revision 1, pp. 5–12.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

A

Absolute velocity, 177, 181, 183–184, 213, 215, 219, 559, 573

Absorption coolers, 23Absorption Cooling Systems, 66Absorption refrigeration, 66Accelerometers, 146, 148, 237Acid gas corrosion, 111Acid gas removal (AGR), 59Acid Phosphate Corrosion (APC), 688–689Acoustic velocity, 177, 553, 572Actual, 63, 84, 86, 89, 128, 133, 146, 159, 163,

175, 189, 191, 193, 195, 204, 227, 300, 397, 450, 454, 528, 536, 546, 555, 559, 575, 577, 583, 589

Adiabatic, 70, 76, 86, 176–178, 201, 208–209, 526, 552–553, 555, 573–574

Adiabatic processes, 70, 76, 176–177, 552–553

Advanced combined cycle power plants (ACCP), 15

Advanced Gas Turbine, 81, 155, 164–165, 237Advanced gas turbine cycles, 81Aero-derivative, 117, 119, 122, 128, 142,

152, 155, 506, 541Aero-dynamic Cross Coupling Whirl, 142Aerothermal Analysis, 524, 526Affinity laws, 299, 312AGMA, 147Air-cooled condensers (ACCs), 369–371Air-cooled generators, 400–401Air Inlet Filter, 539Air Pollution, 196Air separation unit (ASU), 52, 53Aircraft-Derivative Gas Turbine, 156, 168Alabama Electric Cooperative, 82Alarm/System Logs, 526Alternating Current Squirrel-Cage

Induction, 396

American Petroleum Institute (API), 136, 459American Water Works Association, 459Ammonia, 66Ammonia slip, 352Amplification factor, 143Analysis Programs, 526Annular, 165, 169, 173, 175, 191, 193–196,

310, 396, 426, 446, 460, 487Annular combustors, 165, 196, 426, 634–635,

645ANSI/API, 139–140, 586API Publication, 140, 586API RP, 140, 586API Standard, 141, 143–146, 148–149, 151,

460–461, 465API Standards, 151, 460, 465API Std, 136, 138–141, 586Approach Temperature, 48, 109, 324–325Arc of Peripheral Admission, 254ASME Code for Boiler and Pressure

Vessels, 346, 349ASME Performance Test Codes, 131, 558ASME PTC, 131–134, 146, 536–538, 542,

544, 546, 584ASME PTC 12., 134, 546, 584ASME PTC 12.3, 349ASME PTC 4., 133, 536, 542, 584ASME STS-1-2000, 351Aswan Dam hydroelectric plant, 8Aswan High Dam hydroelectric plant, 8Asymmetrical stage, 184Atmospheric, 135, 141, 198, 299, 459–461,

465, 489, 496, 498–499, 522, 546, 584Atmospheric Tanks, 459–460Attemperators, 346–348Austenitic stainless steels, 280Auto-ignition, 205–207Automatic transfer switch, 419–420Automatic transfer switching equipment,

419

INDEX

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

748   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

Automatic Voltage Regulating System, 410Automatic voltage regulation, 402, 408Automotive regenerators, 73Auxiliary systems, 138, 163–164, 169Availability, 44–46, 119, 131, 136, 156, 159,

163–165, 419, 427, 429, 505, 524, 529, 533, 535, 577, 589–591, 594

Avoided cost, 33Axial flow compressor, 159, 165, 168,

173–175, 180, 182, 184–185, 519, 609Axial flow compressors, 607, 608–611, 626Axial flow pumps, 297, 302Axial-Flow Turbines, 215, 247, 248,

653–662

B

Babbitt, Isaac, 479Backpressure, 48, 109, 569Backward-curved, 188–189Backward-swept vanes, 188Ball, 142, 467, 469, 473, 583Barrel roller, 469, 473Base, 66, 119, 129–130, 132, 146, 156, 217,

227, 235–236, 305, 426, 439, 448, 465, 492, 497, 512, 521, 526, 587

Bearing Lubrication Oil, 409Bearing rings, 469, 471, 474Bearings, 139, 142–144, 147–148, 150,

152–153, 165, 308, 403, 409, 467–479, 481–483, 485–487, 489, 491, 493, 495–497, 499–501, 503, 520, 582, 585, 587, 594, 598, 715–722

Biased Differential, 414–415Biomass plants, 27Black start, 395Blade attachment, 272Blade coatings, 164, 235Blade life, 163Blade materials, 279–282blades, 63, 111, 128, 141–143, 152–153,

155, 159, 165, 173, 178, 180–181, 183–185, 188–189, 212, 215, 219, 221–222, 225–232, 234–237, 297, 308, 395, 430, 441, 447–448, 520–521, 525, 528, 591, 594, 598

Blast furnace gas, 425Bleed points, 246Blending, 425, 439, 442Bond coat, 662Bottoming cycle, 25, 31, 37, 39, 107, 434Brayton Cycle, 2, 3, 39, 317

Brayton-Rankine Cycle, 100, 104Buchholz, 414, 416Buffered gas, 489Buggenum IGCC, 60Bunker C oil, 240

C

Cages, 471, 473Camber of the blades, 183Campbell diagrams, 276Can-annular, 165, 169, 190, 195–196, 207Can-annular combustors, 165, 196, 207,

635–636, 637–638, 641, 646–647Capacity, 74, 97, 133, 149, 159, 163, 185,

195, 226, 298–300, 302, 305–306, 310, 314, 451, 454–455, 469, 471, 473–474, 476–477, 486, 492, 494, 498, 501, 529, 589–590, 594

Capacity payments, 163, 590Capital cost, 65, 156, 412, 441Carbon capture, 15, 57–59Carbon deposits, 193, 432, 446Carbon Island concept, 59Carbon Monoxide, 193, 198–199Carbon sequestration, 57–58Carnot cycle, 76, 91Casing Insulation, 339Catalytic cleanup, 198Catalytic combustion, 208, 210Catalytic converters, 198Catalytic reactor, 211–212Catalytica, 210–211Catastrophic oxidation, 434Caustic gouging, 689Cavern, 82, 84Cavern recharging, 84Cavitation, 297–298, 302, 314, 594Centrifugal compressor, 66, 171, 173–175,

185, 188, 214–215, 310, 399, 443–444, 586

Centrifugal Flow Compressors, 185Centrifugal pumps, 139, 297, 306–307,

310–312, 495, 586Centrifuges, 146, 499, 509Chemical Storage and Dosing, 359Chevron-Texaco Gasifier, 54–55Chlorofluorocarbon (CFC), 66Choke point, 174–175, 519Circular casing, 310Circumferential grooved, 474Cleanliness, 134–135, 427, 429, 473, 523

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Index   •   749

Cleanliness factor, 134–135, 523Coal, 10, 15, 137, 240, 425, 434Coal-based plants, 9Coal gasifiers, 54–57Coalescers, 366Coatings, 155, 215, 232, 235–237, 465, 521Coefficient of performance, 70Cogeneration, 3–4, 29, 31–39, 62, 64, 66,

68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 117–118, 120, 122, 124, 126, 128, 130–132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 156, 158, 160, 162, 164, 166, 168–170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 298, 300, 302, 304, 306, 308, 310, 312, 314, 396, 398, 400, 402, 404, 406, 408, 410, 412, 414, 416, 418, 420, 422, 424–426, 428, 430, 432, 434, 436, 438, 440, 442, 444, 446, 448, 450, 452, 454, 456, 458, 460, 462, 464, 468, 470, 472, 474, 476, 478, 480, 482, 484, 486, 488, 490, 492, 494, 496, 498, 500, 502, 505, 536, 538, 540, 542, 544, 546, 548, 550, 552, 554, 556, 558, 560, 562, 564, 566, 568, 570, 572, 574, 576, 578, 580, 582, 584, 586, 588, 590, 592, 594, 596, 598, 600

Cogeneration qualifications, 34–35Coke oven gas, 425Collector, 185Combined cycleCombined cycle plant, 61, 104, 110, 117,

518, 549, 564Combined cycle power plant, 3, 10, 13,

15, 39–44, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106–108, 110–112, 114, 117–120, 122, 124–126, 128–132, 134, 136, 138–142, 144, 146, 148, 150, 152, 155–156, 158, 160, 162, 164–166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216–218, 220, 222, 224, 226, 228, 230–232, 234, 236, 238, 298, 300, 302, 304, 306–308, 310, 312, 314, 317, 333, 395–396, 398, 400, 402, 404, 406, 408, 410, 412, 414, 416, 418, 420, 422, 424–426,

428, 430, 432, 434, 436, 438, 440, 442, 444, 446, 448, 450, 452, 454, 456, 458, 460, 462, 464, 468, 470, 472, 474, 476, 478, 480, 482, 484, 486, 488, 490, 492, 494, 496, 498, 500, 502, 505–506, 508, 510–512, 514, 516, 518, 520, 522, 524, 526, 528–530, 532, 535–572, 574, 576, 578, 580, 582, 584, 586, 588–592, 594, 596, 598, 600

Combined heat power, 31, 37, 173Combustion Analysis, 525Combustion efficiency, 191, 199Combustion instability, 205, 207Combustion Systems problems, 634–650Combustor, 61, 77, 79–81, 84, 91, 93, 97,

104, 145–146, 152, 164–165, 169, 171, 175, 189–197, 199–201, 203–207, 209–212, 226, 237, 315, 395, 426, 429, 436, 446, 506, 518, 521, 525, 528, 539, 541, 558, 562, 573–574, 591

Combustor Design, 193–194, 196, 211, 562Combustor Module, 541Combustor performance, 191, 195Compound-Flow/Tandem Compound

Turbine, 260Compressed Air Energy Storage, 81Compressed air injection, 79Compressor, 61–63, 65–66, 70, 72, 75–77,

79–82, 84, 86–89, 91, 93, 97, 100, 104, 136, 138, 141–142, 146, 152, 155, 159, 165, 168–169, 171, 173–175, 178–181, 183–186, 188–193, 195–196, 204, 206, 210, 215, 217, 225–226, 236–237, 315, 395, 399, 410, 434, 442–445, 448–449, 476, 496, 509–510, 516, 518–521, 523, 526, 528, 530, 532, 535, 539–541, 547, 553–555, 558–559, 562, 571–574, 584–585, 587

Compressor blade coating, 616Compressor blade problems, 616–631Compressor blades, 611, 616Compressor problems, 604, 615–616Compressor washing, 448Condensate heaters, 343Condensate Make-Up Flow, 290Condensate Polisher Systems, 371–380Condenser, 66, 104, 109, 111, 118, 119,

128–129, 134, 139, 153, 306–307, 312, 314, 367–383, 510, 512, 517, 518, 522, 522–524, 537, 544, 546, 546–547, 564, 569, 571–572, 594

Condenser back pressure, 290

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

750   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

Condenser dearation, 109Condenser fouling, 381–383Condensing Cycle, 239–240Condensing steam turbine, 118, 522Condition-monitoring system, 508, 517,

524, 527–528, 530–533CONESEP mixed-bed systems, 376,

378–379, 380Conoco-Phillips (E-Gas) gasifier, 55Constant Speed Motors, 396Contact angle, 469, 473Continuity equation, 177Continuous Electrical De-ionization

(CEDI), 357Continuous emission monitoring (CEM),

351Continuous oil flow, 501Control rods, 6Control systems, 148, 156, 163–164, 497,

505–507, 509, 511, 513, 515, 517, 519, 521, 523–525, 527, 529, 531, 533, 590

Control-vortex prewhirl, 188Convection cooling, 225–227Cooling, 63, 65–66, 70, 75, 89, 109, 111,

118, 128–129, 135, 138–139, 147, 149, 155–156, 163–164, 169, 190, 194–195, 198–199, 207–208, 215, 217, 225–232, 234, 305, 307, 312, 314, 399–401, 403–405, 409–410, 412, 414, 416–417, 426, 444, 446, 474, 501, 509, 517, 521–524, 532, 539, 542, 546, 555, 559, 569, 572, 584, 588

Cooling Air contamination, 631–634Cooling Towers, 128, 135, 383–393, 517Cooling Water Pumps, 312, 314Copper-backing, 486Corona, 406Corrected, 159, 163, 430, 526, 536,

562–563, 589Corrected fuel flow, 563Corrected power, 563Corrected speed, 563Corrected temperature, 563Corrosion, 91, 97, 100, 104, 108, 110, 129,

195, 231–232, 234–237, 297, 302, 314, 429–430, 432, 434, 441–442, 446, 449, 456, 464, 479, 497–498, 517, 521, 524–525, 530, 598

Corrosion Analysis, 525, 530Corrosion fatigue, 687–688Corrosivity, 427, 429, 525Coulomb Whirl, 142, 479

Coupling lubrication, 501Couplings, 117, 138, 140, 145–146, 148,

152–153, 477, 501–503, 586, 588Creep fatigue in superheaters/reheaters,

686–687Critical speeds, 142, 147, 477Cross Compound Turbines, 260Cross-over tubes, 638Crude, 118, 128, 155, 425, 427, 431, 434,

436, 438–439, 441, 450Curtis stages, 251Curtis turbines, 251Curtis-type impulse turbines, 247, 251Cycle analysis, 84, 104Cycle Chemistry guidelines, 354–355Cylindrical rollers, 469

D

D-CS, 410, 505–506, 509–510, 524, 527, 529Dampers, 37Deaerators, 348–351Dearation, 108–109Dearator, 109, 564Degree of reaction, 183–184, 212–213, 221,

249Deposition, 236–237, 427, 429–430,

441–442, 445Deposition and fouling tendencies, 427Desalination plants, 33–34Design, 82, 86, 101, 104, 107, 111, 132,

139–141, 144–145, 147–149, 155–156, 159, 163–165, 168–170, 173, 179, 181, 185, 188, 191, 193–196, 198–199, 201, 205–206, 215, 219, 225, 227, 230, 234–235, 298–302, 307, 310, 312, 314, 395–396, 398, 401–402, 419, 425, 432, 445–446, 457, 459–461, 465, 467, 473, 476–477, 479, 485, 487, 512, 522–524, 526, 528–533, 535–537, 546, 548, 562–564, 566–567, 571, 577–578, 581–583, 589, 591, 594, 600

Desuperheaters (DSH), 262, 348Diagnosis, 525Diagnostic Analysis, 527Diaphragm seals, 277, 615Diaphragms, 266, 267, 268, 611, 614, 615,

629–631, 695Diesel and gasoline engines, 21Diesel Cycle, 3Diesel engine efficiency, 1Diesel plants, 9

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Index   •   751

Diffuser, 97, 104, 152–153, 171, 179, 185, 187–189, 194, 306, 310

Diffuser casing, 310Diffusion type blading, 185Diffusion-type Combustors, 637–641Direct fuel cells (DFC), 25–26Direct water fogging, 63Directional solidification, 234Directionally solidified blade materials,

654Directionally solidified blades, 215, 234Distillate fuel, 137, 425, 442Distillate oil fuels, 84Distributed Generation, 417Distributed generation (DG), 17–28Diverters, 337–338DLE, 199, 201, 203, 205, 207, 637, 642–644Domestic object damage (DOD), 606, 619,

621, 706–708 double-flow low-pressure (DFLP), 260Double-Flow Turbines, 260–261Downtime of, 591Drift eliminators, 386Droop, 512Drum-type HRSG, 129Dry Low NOx, 164, 199, 201, 517–518, 525,

541, 591Dry Low NOx Combustors, 164, 517–518,

541, 591, 604, 605–606, 637, 641–648Dual Fuel Nozzles, 80Duct burners, 337Duct work, 336–337, 362–366Duplex stainless steels, 281Dynamic combustion monitors, 648–650Dynamic pressure transducers, 237, 517, 525

E

Economizer, 108–109, 314, 522, 542, 544, 564–567

Eductor, 489Edwardsport, Indiana, IGCC Plant, 59Effective forced outage hours, 159, 589Efficiency, 62–63, 66, 70, 72, 76–77, 84,

86, 89, 91, 93, 95, 100, 102, 104, 109, 111, 119, 122, 125, 128–129, 131–133, 145, 151, 153, 155–156, 159, 169–171, 173, 175, 185, 189, 191–192, 195, 198, 215, 218–219, 225, 230–232, 297, 299, 310–311, 396, 398, 400–402, 427, 434, 442, 451, 457, 467, 476, 487, 489, 505, 518–522, 524, 527–533, 535–536, 539,

541, 546, 548, 553–555, 558–559, 567, 569, 573–574, 576–577, 589–591, 594, 600

Electric tracing, 452, 454–459Electrical motor, 131, 395Electrostatic separators, 441Elevated Tanks, 459–460Elliptical, 474Emergency generation, 17, 19Emergency oil pump, 494Emissions, 137, 193, 198–199, 201, 206,

208, 586Enclosures, 119, 130, 138, 410End seals, 277Enercon E-126, Emden, Germany, 27, 29Energy equation, 176, 549Energy marketplace, 1Environmental considerations, 164Environmental Effects, 50Environmental Protection Agency, 198EPRI, 517, 678Euler turbine equation, 182–183, 552Europe, 122, 156, 512Evaporative coolers, 63, 65Evaporative Cooling, 65–66, 70, 81–82,

607–608, 615Evaporative Regenerative Cycle, 100–101Evaporator, 48, 66, 100, 108–109, 111,

312, 314, 343–344, 522, 542, 544, 564, 566–567, 687–688

Excitation System, 399, 402, 408–411Exhaust Guide Vanes (EGV), 608Exhaust manifold problems, 672–676Expander Module, 541Expansion joint failures, 676–677External, 142, 171, 191, 410, 415, 461, 469,

492, 499, 502, 517, 523Extraction Flow Turbines, 260

F

Failures, 150, 237, 454, 457, 503, 512, 577–578, 590, 594, 599, 723

Fan Units, 371Feedback, 505–506Feedforward, 505–506Feedwater, 108–109, 134, 510, 522, 564Feedwater heater, 564Feedwater tank, 108–109Film cooling, 194–195, 225–227, 229–230Filter Housing, 362–366Filter Selection, 498

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

752   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

Filtration, 144, 149, 152, 429, 442, 448, 496, 502, 519, 526

“fir-tree” blade configuration, 272Firing Temperature, 62–63, 81, 155–156,

159, 163, 211, 215, 217–218, 227, 232, 235, 426–427, 434, 512, 518, 532, 535, 541–542, 553–555, 558–559, 567, 590

Fixed Roof Tanks, 460Flash-back, 205, 646–648Flexible diaphragm coupling, 145Flexible shaft, 142Flow-Accelerated Corrosion (FAC), 341,

351, 369, 374, 380, 680–686Fog, 66, 70For low Btu gases, 426Forced Circulation System, 48, 340Forced-vortex prewhirl, 187Foreign object damage (FOD), 617, 706–708Foremen and lead machinist, 584Forward-curved, 188–189Forward-swept, 188Fouling resistance, 134Frame Type, 117, 119, 122, 128, 142, 152,

191, 196, 226, 474France, nuclear power, 5Free-vortex prewhirl, 187Freeze protection, 691–692Frequency response, 512Fuel, 61, 72, 76, 86–87, 89, 93, 97, 104,

111, 118–119, 128–129, 133, 136–138, 143, 145–146, 152, 155–156, 164, 171, 173, 189–196, 198–201, 203–210, 212, 236, 238, 307, 312, 315, 422, 425–427, 429–439, 441–447, 449–451, 453, 455, 457, 459, 461, 463, 465, 506, 508–511, 519–521, 523, 526, 528–529, 531, 536–537, 541, 547, 553, 555, 558, 565, 571–573, 591

Fuel cells, 23–26Fuel Economics, 449Fuel Pumps, 312, 315Fuel treatment, 425, 427, 430, 434, 436,

446, 450, 509Fuel Washing Systems, 441FuelCell Energy, 25Full admission turbines, 247, 256–257Fundamental natural frequency, 142

G

Gas Producers Association, 135Gas turbine cogeneration, 33

Gas turbine cycle, in cogeneration mode, 35–39

Gas Turbine Exhaust, 46–47, 70, 109, 133Gas turbine heat recovery, 47–49Gas-Turbine Performance Calculation,

554Gas turbine power plants, 9Gas turbine problems, 603–677Gas Turbines, 66, 70, 80, 84, 89, 91, 119,

122, 125, 128, 130, 132–133, 136–138, 141–144, 155–157, 159, 161, 163–165, 167–171, 173–175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195–199, 201, 203, 205, 207, 209, 211–213, 215, 217, 219, 221, 223, 225–227, 229–235, 237, 307, 395, 426, 448–450, 467, 474, 487, 497, 512, 518–519, 527, 532, 535–538, 542, 554, 584, 586, 590–591, 594

Gasifier, 164, 169, 237, 510, 541, 555, 558–559, 562–563

Gasifier turbine, 169, 237, 510, 541, 558–559, 562

GE Frame 7FA, 649GE gasifier, 55GE LMS100 Gas Turbine, 356Gear Pumps, 307Gear-type coupling, 145, 501–502Gear-type pumps, 297, 314Gears, 722–723Generator bearings, 403Gland Seal Systems, 277, 708–709Grand Coulee hydroelectric plant, 8Graphic User Interface (GUI), 524–525Grease-packed, 501–502“green power” laws, 13Guri hydroelectric plant, 8

H

Half-frequency whirl, 479Hatfield IGCC project, 13Head, 135, 170–171, 174, 182–183,

185–186, 189, 205, 213, 297–302, 305–306, 308, 310–311, 314–315, 425, 463–464, 489, 491, 495, 509, 526, 528

Heat added, 61, 100, 565Heat balance, 522, 553, 558–559Heat exchangers, 72–73, 108, 193, 525Heat rate, 14, 122, 134, 156, 214, 216, 243,

286, 520, 537, 539, 541, 547–549, 562, 571–572

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Index   •   753

Heat-Recovery Steam Generator, 77, 107, 122, 129, 133, 140, 395, 517–518, 521, 535, 544, 564, 584, 586

Heat Tracing, 450–452, 455, 457Heated Compressed Air, 77, 79Heating value, 191, 427, 429–431, 528, 555,

573Heavy Fuels, 122, 128, 438–439, 442, 450Helical gear pump, 307High Cycle Fatigue (HCF) fracture,

627–628High Efficiency Filters, 144, 366High-pressure compressor, 168, 179High-pressure turbine, 86, 89, 168High-pressure turbine stage (HP), 246,

249, 258–259, 263, 318, 651, 678, 693, 694–699

High-voltage insulation, 406Historical Data Management, 527Hot corrosion, 164–165, 232, 234–235, 430HP Circulating Pumps, 312, 314HP Economizers, 343HP Feed Water Pumps, 312–313HP rotor (HPR), 694HP steam-turbine power, 567HRSG, 36, 39–41, 52, 61, 77, 79–80,

107–112, 114, 118, 122, 128–130, 133, 136, 140, 262, 312, 314, 317–366, 339, 424, 506, 510–512, 516–517, 520–521, 523–524, 537–538, 542, 544, 547, 564–567, 571–572, 591, 594

HRSG Chemical Cleaning, 359–362HRSG economizers, 342–343HRSG Effectiveness, 336, 523, 542, 567,

571HRSG Exhaust Fired, 327HRSG Exhaust Stack, 351HRSG Horizontal, 318–320, 330HRSG Once Through Steam Generators

(OTSG), 322–323, 331–333HRSG problems, 677–692HRSG Vertical, 321–322, 329–330“Huff and Puff ” type Filters, 365–366, 606,

607Humidified, 77, 79Hybrid, 70, 441Hybrid power plants (HPP), 15Hybrid system, 70, 441Hydraulic power plants, 7–8Hydrodynamic Whirl, 142Hydroelectric power plants, 7–8, 9Hydrogen, 193, 200, 400–402, 430–431, 445

Hydrogen-cooled generators, 400–401Hysteretic Whirl, 142

I

Ice, 70IGVs, 185–186Impeller, 171, 185–186, 188–189, 212, 215,

297, 299–300, 302, 305–308, 310, 444, 594

Impeller eye, 185Impingement cooling, 225–228Impulse and reaction combination, 254Impulse Turbines, 212, 247Impulse type, 215, 522Impulse/reaction blades, 263, 268–271, 669IN 738 blades, 234Incidence angle, 183, 186Independent power producers, 165India, 15Inducer, 185–188Industrial cogeneration, 33Industrial Heavy-Duty Gas Turbines, 156,

165Inertial Filters, 366Injection of Steam in, 80–81Inlet air fogging systems, 607Inlet Cooling, 63Inlet Filtration problems, 606–607Inlet fogging, 66Inlet guide vanes, 40, 107, 178, 184–185,

204, 317, 335, 426, 510, 521, 553, 608, 611, 613, 615

Insulation, 236, 402, 406, 412–414, 416, 452, 454–457, 464–465

Integral shroud blade (ISB) structure, 268–269

Integrated gasification combined cycle (IGCC) power plants, 13, 15, 50–53, 59, 59–60

Intercooled Regenerative Reheat Cycle, 91Intercooled simple cycle, 89Intercooler, 76, 82, 89, 91, 633Intercooling, 66, 74–77, 89, 91, 104Intercooling regenerative cycle, 89Intermediate-pressure turbine stage (IP),

246, 250, 258, 263, 318, 349, 653, 678, 693, 699–701

Interstage Seals, 277–278IP Economizers, 343IP-LP Circulating Pump, 312, 314Isentropic processes, 61, 552

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

754   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

ISO 10436, 140, 586Isobaric process, 61Isolated Phase Bus-Duct, 402, 407, 410Isothermal, 77, 91Isothermal compression, 77, 91

J

Jet gas turbines, 168Jethete M152, 281Journal bearings, 409, 467, 474–477

K

Kinetic, 61, 75, 183, 188–189, 213, 218–219, 489, 552, 573

Kinetic energy, 75, 188–189, 213, 218–219, 489, 552, 573

“Kingsbury”-type tilting pad thrust bearings, 720–721

Knockout drums, 146

L

Labyrinth lands, 489Labyrinth Seals, 142, 267, 277, 487–490Larson-Miller, 235, 521, 528Larson-Miller parameter, 235, 521, 528Latent heat of vaporization, 65, 77Leading-edge lockup, 478Lemon bore, 474Life Cycle Analysis, 527, 535Life cycle cost, 129, 155, 334, 518, 531–533,

535, 575, 583Life Cycle Costs, 531–533, 535, 583Liquid fuels, 133, 136, 146, 425–427, 429,

434, 509, 520Lithium-bromide, 66Lithuania, nuclear power, 5Ljongstrom turbine, 248–249Load rating, 473Losses, 74, 84, 104, 135, 193, 224, 231–232,

299, 310, 401, 404–406, 408, 412, 414, 434, 460, 476, 486, 518, 521, 523–524, 539–540, 542, 546–547, 552, 571–572, 577–578, 581

Losses in a Combined Cycle Power Plants, 518

Louvers, 364Low-cycle fatigue, 234–235Low humidity, 65

Low NOx combustors, 41, 143, 164, 207, 237

Low-pressure compressor, 168, 179Low-pressure turbine, 168, 522–523, 572,

594Low-pressure turbine stage (LP), 246, 250,

259, 318, 678, 693, 702–706Lower heating value, 135, 191, 523, 555,

571–573LP Blades, 272–276LP Economizers, 343, 687LP steam-turbine power, 569Lubricant Selection, 497Lubrication Management Program,

502–503Lubrication Oil, 409, 492, 508–510Lubrication Pumps, 312, 314Lubrication System failures, 709–715Lubrication systems, 139–140, 144,

148–149, 152, 164, 174, 314, 467, 469, 471, 473, 475, 477, 479, 481, 483, 485, 487, 489, 491, 493, 495, 497, 499, 501, 503, 508, 516, 583

Lukens Inc., 463Luminosity, 434

M

Mach number, 177, 184–185, 187–189, 553, 573

Magnesium, 128, 438, 441–442, 446–447, 456, 520

Main fuel, 203, 211–212Main fuel injector, 211–212Main stop valve (MSV), 265Maintenance, 66, 128–131, 136, 140, 156,

163–164, 169, 196, 308, 396, 417, 423, 427, 441, 449–450, 455, 498, 502–503, 505–506, 516–518, 524, 528–532, 535, 541, 575–585, 587–591, 593–595, 597–601

Maintenance Communications, 599Maintenance costs, 156, 449–450, 455, 516,

531–532, 535, 575, 590Maintenance engineers, 531, 583, 594Maintenance Scheduling, 506, 583, 598Man Service Platforms, 690–691Martensitic stainless steels, 280Materials, 129, 140, 146, 155, 164, 209,

225, 232, 297, 302–303, 305, 308, 408, 460, 464–465, 471, 479, 486, 489, 497, 517, 521, 528, 532, 542, 599–600

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Index   •   755

Maximum unbalance, 143Maximum work, 63, 65, 86, 89, 155Mechanical Analysis, 525–526Mechanical efficiency, 244Mechanical Refrigeration, 66, 70Meridional velocity, 181MI Cables, 456Micro gas turbines, 17Micro-turbines, 19, 22–23Micro-Turbines, 156Mid compressor Flashing of Water, 77Mineral oils, 497Misalignment, 140, 142, 147, 473, 476–477,

594Mixed fills, 388Mixed flow, 247, 249Mixed-Flow Turbine, 215, 247Mollier diagram, 282, 284Momentum Equation, 182, 552Monitoring Software, 525Motors, 131, 138, 145, 165, 314, 395–399,

401, 403, 405, 407, 409, 411, 413, 415, 417, 419, 421, 423–424, 494, 527

Multi-pressure Steam Generators, 48, 324Multi-shaft combined cycle power, 117,

119, 130Multistage turbines, 247, 251

N

NACA, 184Nakoso, Japan, IGCC, 60NASA, 145, 184Natural, 84, 111, 118, 122, 128, 135,

137–138, 140, 142, 147, 155, 193, 412, 423, 425–427, 430–431, 434, 450, 477, 521, 584, 586

Natural gas, 10, 12, 13, 84, 111, 118, 122, 128, 135, 137–138, 140, 155, 193, 425–427, 430–431, 434, 450, 521, 584, 586

Natural gas reciprocating engines, 21NEC (NFPA 70), 420Needle rollers, 469Negative prewhirl, 186–187Net positive suction head, 298No. 2 distillate, 84, 128, 425, 450No. 6 Residual Oil, 128, 450Noise, 130, 137, 164–165, 297, 342, 400,

467Non-Condensing Cycle, 239Non-contacting probes, 146Non-contacting Seals, 486–487

Non-salient pole, 408Norway, river hydro power plants, 7NOx Emissions, 97, 100, 164, 199, 203,

207–208, 212, 525Nozzle vane problems, 656–662Nuclear fission, 4, 5Nuclear fusion, 4Nuclear power plants, 4–7, 9, 43

O

Off-Design Performance, 48Oil, 15Oil Contamination, 497–498Oil coolers, 149, 495–496, 498–500Oil-filled, 413, 501Oil Sampling and Testing, 497Oil Whirl, 142, 476, 479, 482, 594, 715–717On-line monitoring, 164, 237, 505On-line turbine wash, 128Once through heat recovery steam

generator, 125, 129Open Tanks, 460, 465Optimization Analysis, 527Optimum pressure, 63, 75, 86, 89, 114, 159Optimum pressure ratio, 63, 86, 89, 159Organic bottoming cycles, 37, 39OSTG, 125Overall thermal efficiency, 95, 215, 553,

562Overcurrent, 415–416Oxides of Nitrogen, 198

P

Palladium, 211Partial admission turbines, 247, 257Peak shaving, 17, 19Peaking, 81, 119, 130, 156, 417, 419–422,

427, 521Performance analysis, 508, 535–536, 581,

583Performance-Based Total Productive

Maintenance, 576–577, 580, 598–599Performance Curves, 153, 299, 311, 508,

536, 546Performance Maps, 525–526, 528, 530Photovoltaic cells, 27Physical Constants of Paraffin

Hydrocarbons, 135Pilot fuel, 203Pinch point, 109, 542, 544

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

756   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

Pinch Point, 48, 324, 330Pitting, 689Plain Journal, 474Plant Location, 119, 122Plant Losses, 571Plant Power Optimization, 529Pocket guide, 599–600Polytropic compression, 75Positive displacement compressors, 138,

174, 586Positive displacement-type pump, 297Positive prewhirl, 186Potassium, 425, 430–431, 434Potential energy, 61, 552, 573Pour point, 429–431, 465Power, 66, 74, 77, 79–82, 84, 86–87, 89, 91,

97, 104, 107–111, 117, 121–122, 128–133, 135–140, 145–147, 150, 152, 155–156, 159, 163–164, 168–169, 173, 191–192, 195, 199, 205–208, 211, 214, 216–217, 221, 225, 227, 230, 232, 237, 297, 299–300, 302, 305–308, 310, 314, 395–398, 400–403, 411–414, 416–424, 426, 434, 443–444, 447, 451, 454, 456–458, 467, 476, 479, 486, 488, 494, 505–506, 510–512, 516–520, 522–526, 528–529, 531, 536–539, 541, 546–549, 553, 555, 558, 562–564, 567, 569, 571–573, 576, 578, 584–585, 588–590, 594, 599

Power-Factor, 398Practical training, 585Pre-burner, 210–212Pre-heater, 79, 108Pre-mixing chamber, 203Prefilters, 366Preload, 477–478Pressure dam, 474, 594Pressure ratio, 62–63, 65, 86, 89, 91, 95,

100, 104, 152, 155–156, 159, 165, 169, 171, 174–175, 179, 183–185, 189, 191, 215, 226, 443–444, 510, 518–519, 521, 526, 535, 553–554, 562, 590–591

Pressure Tanks, 461Preventive, 163, 499, 517, 575–578, 590Preventive maintenance programs, 163, 590Privatization schemes, 1Process gas, 136–137, 425, 427, 489, 494Process Pumps, 302, 305Producer gas, 425Protective Load Shedding (PLS), 345Proximity Probes, 151Psychrometric Chart, 66, 67–69, 70, 384PTC, 132–133, 135, 536, 538, 546, 584

PTC 19., 132, 584Public Utility Regulatory Policies Act

(PURPA), 31–32Pulverized coal plants (PC), 13Pump, 93, 100, 108, 139, 141, 149,

297–303, 305–308, 310–314, 436, 438, 460, 492–496, 500, 509, 521, 526, 564, 584, 588, 594

Purging, 145PURPA Efficiency, 34–35Pyrometer technology, 237Pyrometers, 237, 510, 517, 525

R

Raceway, 469, 472–473Radial flow turbines, 23, 247, 248–249Radial-Inflow Turbine, 171, 212, 214Radial vanes, 188Radioactive waste, 7Rain Screens, 364Rankine Cycle, 2, 3, 39, 46, 61, 239,

240–243, 244, 262, 282, 317, 518, 567Rateau stages, 251Rateau turbine, 251, 253Rateau-type impulse turbines, 247, 251–252Reaction type, 212, 215Reaction/Parsons turbines, 212–213, 215,

222, 224–225, 247, 252–253, 522Reciprocating, 66, 91, 138, 586Reciprocating engines, 91Recuperative, 15, 72, 74, 170–171Recuperative gas turbine (RGT) plants, 15Recuperative heat exchanger, 74, 170Recuperator, 82Reference velocity, 191, 194Refinery gas, 425Refrigerated inlet, 65–66, 70, 540Regenerated gas turbines, 36Regeneration, 70, 89Regeneration Effect, 70Regenerative, 72–73, 76, 87–89, 95, 100,

104, 136, 159, 170, 189, 191, 198, 306, 436

Regenerative cycle, 72, 87, 89, 100, 104, 159, 198

Regenerative gas turbine, 73, 76, 88, 189Regenerative heat exchanger, 72, 170Regenerative Pumps, 306Regenerative–Reheat Cycle, 104, 244–245Regenerator, 35, 72, 74, 76–77, 87–89, 93,

100, 104, 170, 189–190

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Index   •   757

Regenerator and reheater, 77Regenerator effectiveness, 72, 74Reheat Effects, 75Reheat steam pressure, 290Reheat steam temperature, 288–290Reheat stop valves (RSV), 266Relative velocity, 181, 183, 185–187, 213,

218, 221Reliability, 45–46, 136, 141, 151, 155–156,

163–164, 185, 195, 206, 396, 400–402, 412, 417, 451, 454, 456–457, 467, 487–488, 501, 527, 529, 531–532, 583, 589–591

Reliability of Combustors, 195Remote operations, 19Renewable energy power plants, 8–9Reservoir, 145, 149, 235–236, 492, 494–496,

498–501Residual Fuel, 118, 425, 434, 521Residual nitrogen injection, 53–54Residual unbalance, 143, 148Restricted Earth Fault, 414–415River hydro power plants, 7Roller bearings, 467, 469, 472–473Roof Tanks, 460–461Rotor unbalance, 142, 147Rotor velocity, 181Rotors, 246

S

Saturation temperature, 109Scale Control for Cooling Towers, 390–391Schikorr Reaction, 683Screw Pumps, 307Scroll, 185, 188, 215Seal Leakage, 487Seals, 108, 142, 148, 153, 305, 467, 469,

471, 473–475, 477, 479, 481, 483, 485–489, 491, 493, 495, 497–499, 501, 503, 520, 582, 585, 587, 598

Selective Catalytic Reduction (SCR), 323, 351–353

Self-equalizing tilting-pad thrust bearing, 485Seminars and workshops, 600–601Service Manuals, 599Serviceability, 164Severity charts, 482Shell gasifier, 56Shrouds, 268, 275, 629, 631, 695–697Side combustors, 165, 169, 190, 196Silencers, 119, 144–145, 164, 338

Simple cycle, 74, 76–77, 84, 86, 89, 91, 95, 101, 104, 130, 159, 562

Simple cycle gas turbine, 2–3, 15, 21, 74, 159Single crystal blade materials, 653Single crystal blades, 146, 215, 234Single-Flow Single Casing Turbines,

259–260Single line diagram, 423Single-shaft combined cycle power plant,

117, 119, 122, 125, 128, 130Single-stage/simple impulse turbine, 247,

250Site Configuration, 119Skin-Effect Current Tracing, 456Slip catalysts, 352Slip-ring assembly, 403Slip-rings, 409Smoke, 164, 193, 196, 430, 445–446Sodium, 146, 425, 430–431, 434, 436, 439, 449Solar cells, 37Solar energy, 27Solid oxide fuel cell (SOFC), 24–25Solid polymer electrolyte cells, 24Spare Parts Inventory, 583, 588Special base load application, 17, 19Specific gravity, 297, 311, 425, 432, 439,

449Specific heat, 62, 76, 299, 412, 539, 552,

558, 569, 573Specific speed, 301–302Splash fills, 388Split-shaft cycle, 86–87, 89, 104Split-shaft gas turbine, 87, 95, 558Split-shaft simple cycle, 86Spur gears, 307Squealer blades, 142Squealer tips, 620Squirrel-cage, 397–398Stack temperatures, 111, 429Stacks of fuel cells, 24Standard, 61–62, 76, 79, 131, 133, 135–141,

145–148, 150, 195, 234, 236, 303, 419, 425, 430, 434, 442, 446, 452, 456, 459–460, 463–465, 485, 512, 586

Start-up, 119, 131, 143, 247, 395, 426, 438–439, 442, 492, 506, 508

Starting reliability (SR), 45Stator, 178, 182–184, 225, 231–232,

396–397, 399, 401, 403–408, 486Stator Magnetic Core, 403–404Stator Windings, 397, 401, 403–406Stators, 246

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

758   •   COGENERATION AND COMBINED CYCLE POWER PLANTS

Steam cooling, 165, 207–208, 217, 225–227, 231–232

Steam Drums, 344–345Steam flow, 288Steam generation calculations, 47Steam Injection, 77, 79–82, 91, 95, 97, 100,

102, 104, 133, 138, 199, 230, 516, 594Steam Injection Cycle, 91, 97, 100, 102Steam pressure, 288Steam rate, 243Steam temperature, 286–288Steam-Tracing, 452, 454–455, 457–458Steam Turbine, 2, 13, 15, 43, 61, 100–101,

104, 107–112, 114, 117–118, 122, 125, 128–131, 134, 136, 140, 145, 151, 153, 156, 165, 230, 310, 314, 395, 399–400, 409, 424, 467, 493–494, 496–498, 506, 508–512, 516–518, 521–523, 527, 535–537, 544, 546–548, 559, 566–567, 569, 572, 584–587, 594

Steam turbine nozzles, 246, 247, 254–256, 267–268

Steam turbine performance, 282–296Steam turbine plant, 2, 13, 15, 43, 512Steam turbine problems, 692–723Steam turbines, 239, 246–263Steel-backing, 486Stiff shaft, 142Stoichiometric, 193–194, 199, 207Stone wall, 175Storage of Liquids, 459Strouhal Number, 342Suction specific speed, 302Sulfur, 111, 198, 429–432, 594Sump Pumps, 139, 305Supercritical pulverized coal (SCPC)

plants, 15Superheater, 111–112, 346, 354, 522, 542,

566–567, 591, 686, 688Supplementary Firing, 50, 325–327, 516Support, 129, 147, 403–404, 406–407, 414,

464–465, 467, 477, 485–486Surface Treatments, 281Surge point, 174Surge-to-choke margin, 185Switchgear, 417Symmetrical stage, 184Synchronous, 131, 147, 395, 397–399, 407, 424Synchronous motors, 395, 397–399Synchronous rotor, 407Synchronous whirl, 147Synthetic oil, 496–497

T

Tangential flow, 247, 249Tank Volume, 461, 464Tanks, 149, 438, 442, 449, 459–461,

463–465, 496Tap Changer, 413, 415–416Tapered-land thrust bearing, 485Tapered roller, 469Theoretical head, 188–189Thermal barrier coating, 208, 236–237Thermal barrier coatings (TBC), 653–657,

662–663, 665–667Thermal efficiency, 76–77, 89, 91, 100, 102,

104, 110, 132, 155–156, 159, 205, 518Thermal energy storage, 65, 70Thermal Energy Storage Systems, 65, 70Thermal fatigue in economizers/

superheaters/reheaters, 686–687Thermal power plants, 2–3, 9Three Gorges Dam hydroelectric plant, 8Three-lobe bearing, 476Throat, 256Throttle valve assembly, 265Thrust Bearings, 63, 145, 152–153, 159,

467, 473, 482, 485–486, 488, 528, 594Tilting pad bearings, 142, 476, 594Tip rubs, 617, 619Tip shrouds, 653, 667, 669–670Titanium, 195, 522Titanium alloys, 281–282Tools and Shop Equipment, 587Tooth pitting index, 147Topping cycles, 39Total energy, 31Total Productive Maintenance, 575–576, 578Tracing Systems, 452, 456–457Traditional utilities, 1Trailing edge slots, 231Training Materials, 599–600Training of Personnel, 583Transformer, 118, 125, 137, 399, 402,

408–417, 424, 455Transition pieces, 650–653Transpiration Cooling, 225, 227Transpose power output, 564Transposed, 406, 536, 564Trending and Prognosis, 525TRIPOL Single Vessel Separate Bed

Systems, 376, 379–381Tubing, 340–342Tubing Heat Transfer, 341–342

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Index   •   759

Tubular, 190, 195–196Turbine Blade Cooling, 225, 227Turbine blade problems, 662–671Turbine casings, 263–265Turbine component efficiency, 243–244Turbine efficiency, 1, 80, 231, 486, 520,

539, 546, 548, 554, 562Turbine firing temperature, 62, 159, 164,

232, 510, 519, 521, 535, 548, 553, 555, 558–559, 563, 572

Turbine inlet temperature, 63, 66, 76, 86, 95, 100, 104, 152, 156, 159, 165, 169, 173, 191–192, 208–209, 214, 225, 231, 510, 541, 558, 590

Turbine Pumps, 302, 306, 310Turbine Wash, 446, 451Turbochargers, 214Turbomachinery, 181, 212, 486–487, 497,

499–502, 517, 575, 578, 583, 587, 594, 598Turbosplash fills, 389Turnaround, 578, 588, 598–599Turning gears, 145Type of Fuel, 117, 119, 122, 128, 152, 163,

521, 527–528, 532, 542, 590

U

UK, IGCC power plant, 13UL 142, 459–460UL 58, 459–460Unburnt Hydrocarbons, 198–199Underdeposit corrosion, 688United States, 156Update training, 585Uranium, 5–6, 10U.S. Department of Energy’s (DOE)

Advanced Gas Turbine Program, 50U.S. Rural Electrification Agency (REA), 17Utility cogeneration, 33Utilization factor, 213, 218, 221–222, 224

V

Valves wide open (VWO), 266Vanadium, 128, 146, 425, 430–431, 434,

436, 438, 441–442, 447, 520Vanes, 364Vapor pressure, 297–299Velocity transducers, 146Vertical fills, 386–388Vertical/side combustors, 636Vibration, 342, 622–623

Vibration Analysis, 524–525, 527Vibration limit, 143Vibration Measurements, 145, 149Viscosity, 297, 306, 310, 406, 425, 429–432,

434, 439, 441–443, 449–451, 473, 476, 478, 497, 502

Volute casings, 310

W

Wabash, River Basin Plant, 59–60Waste heat boilers (WHB), 36Water chemistry, 354, 358–359, 681Water contamination, 498–499Water cooled condenser, 118, 129, 369Water-cooled generators, 400Water Injection, 77, 80, 100, 104, 199, 434,

547Water treatment criteria, 354Water treatment for Cooling Towers,

389–393Water Treatment Plants, 356–359Wear, 473, 495, 498, 501–502, 575Wet combustor, 164, 201Wetting, 386Wheel space, 671Whirl, 184, 186–187, 476, 479, 594Whirling mechanisms, 142Wind energy, 27–28Winding Temperature, 415–416Wobbe Number, 194Work, 61, 65, 70, 74–77, 84, 86, 89, 91, 93,

95, 100–102, 104, 109, 111, 145, 149, 159, 173, 177, 183–184, 186, 192, 205, 213, 218–219, 221, 225, 299, 308, 421, 426, 448, 520, 523, 541–542, 552–555, 558–559, 569, 573, 580, 584–585, 587, 598

Work of the compressor, 555Work of turbine, 61, 573World energy consumption, 1–2World energy production, 8–9, 27Written memos, 599–600

Y

Ytrium, 236

Z

Zero Exit Swirl, 218, 221Zero Reaction, 213, 222

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

ABOUT THE AUTHOR

Dr. Meherwan P. Boyce, P.E., Fellow ASME & IDGTE, has over 35 years ofexperience in the field of TurboMachinery in both industry and academia. Hisindustrial experience covers 20 years as Chairman and CEO of Boyce EngineeringInternational, and 5 years as a designer of compressors and turbines for gasturbines for various gas turbine manufacturers. His academic experience covers a15-year period, which includes the position of Professor of Mechanical Engineer-ing at Texas A&M University and Founder of the TurboMachinery Laboratoriesand The TurboMachinery Symposium, which is now in its 30th year. He is theauthor of several books such as the Gas Turbine Engineering Handbook(Butterworth & Heinemann), Cogeneration & Combined Cycle Power Plants(ASME Press), and Centrifugal Compressors, A Basic Guide (PennWellBooks). He is a contributor to several Handbooks; his latest contribution is to thePerry’s Chemical Engineering Handbook Seventh Edition (McGraw Hill) inthe areas of Transport and Storage of Fluids, and Gas Turbines. Dr. Boycehas taught over 100 short courses around the world attended by over 3000 studentsrepresenting over 400 companies. He is a Consultant to the Aerospace,Petrochemical and Utility Industries globally, and is a much-requestedspeaker at Universities and Conferences throughout the world.

Dr. Boyce was the pioneer of On-Line Condition Based PerformanceMonitoring. He has developed models for various types of Power Plants andPetrochemical Complexes. His programs are being used around the world inPower Plants, Offshore Platforms, and Petrochemical Complexes. He is aconsultant forMajor Airlines in the area of Engine Selection, Noise and Emissions.

Dr. Boyce has authored more than 100 technical papers and reports on GasTurbines, Compressors Pumps, Fluid mechanics, and TurboMachinery. He is aFellow of the ASME (USA) and the Institution of Diesel and Gas TurbineEngineers (UK), and member of SAE, NSPE, and several other professional andhonorary societies such as Sigma Xi, Pi Tau Sigma, Phi Kappa Phi, and Tau BetaPhi. He is the recipient of the ASME award for Excellence in Aerodynamics and theRalph Teetor Award of SAE for enhancement in Research and Teaching. He is alsoa Registered Professional Engineer in the State of Texas.

Dr. Boyce received his B.S. and M.S. degrees in mechanical engineering fromthe South Dakota School of Mines and Technology and the State University of NewYork, respectively, and Ph.D. degree (Aerospace and Mechanical engineering)from the University of Oklahoma.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 09/05/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use