47
Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding of this book. DEFINITION A.l.l. Let lR (rcsp. C) be a field constst111g of all rea.) numbers (resp. complex n1nnbers), denoted by o·, ;3, .. ., and X be a. real (resp. complex) linear spa('e with elements denoted by :c, y, .... Then, an inner pmd-uct dellot<'d by(·,-) on X x.Y with val uPs in lR (resp. C) is defined by the mapping satisfying (y, :r) (x + y,z) (x, ny) (x,:r) > (:c,y), (:c, z) + (y, z), n(:c, y), 0, (x,x)=O<=>x=O. X with a.n inner product defined in it is called an inner· pmduct space. Let Jlxll := ...j(x, :r). Then, the Schwar:: inequality is expressed by the following statement: THEOREM A.1.2. l(:c, Y)l IJ:rJI·IIyJI, .c, !/ E X holds, where the left hand side lenn is exactly equal to the 1·ight hand side if and only if there exists a real (resp. complex) constant >. 8alisfying y = >.x or x = 0. This inequality shows that the functional 11·11 satisfies the following conditions of a non11: ll:rll > II a:r II llx+vll < 0, llxll = 0 :r Jal·llx II, llxll + llvll- 263 0,

Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

Appendix 1

A.l Elements of Hilbert Spaces

In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding of this book.

DEFINITION A.l.l. Let lR (rcsp. C) be a field constst111g of all rea.) numbers (resp. complex n1nnbers), denoted by o·, ;3, .. . , and X be a. real (resp. complex) linear spa('e with elements denoted by :c, y, .... Then, an inner pmd-uct dellot<'d by(·,-) on X x.Y with val uPs in lR (resp. C) is defined by the mapping satisfying

(y, :r)

(x + y,z) (x, ny)

(x,:r) >

(:c,y),

(:c, z) + (y, z), n(:c, y), 0, (x,x)=O<=>x=O.

X with a.n inner product defined in it is called an inner· pmduct space.

Let Jlxll := ...j(x, :r). Then, the Schwar:: inequality is expressed by the following statement:

THEOREM A.1.2.

l(:c, Y)l ~ IJ:rJI·IIyJI, .c, !/ E X

holds, where the left hand side lenn is exactly equal to the 1·ight hand side if and only if there exists a real (resp. complex) constant >. 8alisfying y = >.x or x = 0.

This inequality shows that the functional 11·11 satisfies the following conditions of a non11:

ll:rll > II a:r II

llx+vll <

0, llxll = 0 ~ :r

Jal·llx II, llxll + llvll-

263

0,

Page 2: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

264 APPENDIX 1

If an inner product. space .Y is a. Banach swu:c, that is, a. complete uormed space whose norm arises fro111 the inucr product, this space is said to be a Hilbert space H.

THEOREM A.1.3 (Pa.ra.llelogra.m law).

THEOREM A.1.4 (Polar identity).

(x, y) = ~ [llx + Yll 2 - 11-'C- Yll 2 + illx + iyll 2 - illx- iyll 2] , x, Y E 1l.

Let X be a Banach space with the norm 11·11, and the functional~·,·~ on XxX be defined by the following equation:

If the not·m 11·11 satisfies the parallelogram law, it can be proved that~·,·» satisfies the conditions for inner product, a.ud (X,~-,·») has the same metric structure as II illwrt spac:C's.

Example 1: IR" c'quipped with the iuner product defined by

is a real Hilbert space.

n

(:c, y) = L:l:i1Ji· i=I

Example 2: en equipped with the inner product dcfiued by

71

(x, y) = LXiYi· i=l

is a complex Hilbert space.

Example 3: Let f 2 be the linear space consisting of the square summable complex sequences, and (-, ·) be the fuctiona.l on e2 xt2 defined by

00

({:t'n}, {Yn}) = LXn?Jn, {:en}. {Yn} E e2 •

n=l

Then, (f2, (·,·))is a. llilhert. span•.

Page 3: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

:\ PPENDIX I 265

Example 4: Let (n, :F, Jt) be a a-finite measure space, L2 (Q) be the linear space coJtsisting of all equivalence classes of square integrable complex-valued functions on n, and (·,-)be the functional on L2 {Q) xL2 (Q) defined by

(x(·),y(·)) =In x(w)y(w)dw, :r,y E L2 (Q).

Then, (L2 (Q, (·,·))is a. llilbert space.

DEFINITION A.l.!). Le11i he' a Hilbert spare with the inner product(·,·), and x and y be elements of 1£. Then x is said to be orthogonal to y, if (x,y) = 0 holds. A subset {.1:j : jEJ} is said to be a11 orthogonal system if it satisfies (xi,Xj) = 0 for any distinct i,j E./. A11 orthogonal system {xj : jEJ} is said to be a.u orlhorwrmal system, in short ONS, if it satisfies llxill = 1 for all i E J. Moreover, a.n orthonormal system {xj; jEJ} is said to be complete, in short CONS, if (y, Xi) = 0 for all j E J implies y = 0.

Zorn's lemma assures that any Hilbert space ha .. .;; a. complete orthonormal system. In particular, a Hilbert space having a countable orthonormal syste111 is said to be sepamblc.

THEOREM A.1.6 (Bessel's i1wqualit.y). If {xj} is rm orthonormal system, then

L j(:r,:rj)l.2 :::; ll:rjj 2 , :1: E 1£, jEJ

wher-e the equality holds £jJ { :r j} is complete.

THEOREM A.1.7 (FouriPr's ('Xpansion formula). If {:rj} ts a complete orthonormal 8yslf:1n. then

.r = 2:) :r, :r j) :r .i , :r E 1£. JE·I

{(x,xj): j E J} is said to be a sd of Fourier cor.fllcicnl.o; of:z: with respect to{xi: iEJ}.

THEOREM A.l.S (Parseval's equality). {xj} is a CONS ij]

(;r,y) = L(:z:,xj)(:rj,y), :r,y E 1{. jEJ

DEFINITION A.1.9. Lc't. [ be a. su bspa.ce of 1{. Tlwn, [is said to be closed if it is a closed subset of 1i. The o1'ihogonal subspace of[, denoted by [l., is defined by {x E 'H.: (:r, y) = 0, y E £}.

Page 4: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

266 APPENDIX 1

It is clear that £.1. is also a closed subspace. For any two subspa.ces £ and IC, £ is said to be odhogonal to K if for any x E £ and any y E IC, (x, y) = 0 holds. For such a.n orthogonal pair£ and K, the direct sum .Cff)/C is a closed subspace of 11.. For any subset £ of 11., ,C.l..l. defined by (.C.l. ).1. is the smallest closed subspace including £. Moreover, if£ is a complete orthonormal systern of 11., then £.1. is equal to {0} and £.1..1. is equal to .C.

THEOREM A.l.lO (Least distance theorem). Let£ be a closed subspace. Then, for any x E 11., there uniquely exists a11 clement z of .C satisfying the following eq·uation:

llx- zil = inf{IJ;c- vii: y E £}.

Let Pc. be the mappin~?; on 11. \\'ith va.lut>s in £ defined by Pc.x = z, where x belongs to 11. a.nd z is the unique elenwnt of £ satisfying the above equality. Then, it is known that the mapping Pc. is a bounded linear operator. This operator is usJJa.lly udl<'d a. projcclion. We have the following two important results:

THEOREM A.l.ll (Projection theorem). Let£ be a closed subspace of11.. Then,

THEOREM A.l.12 (Ri<'sz's theorem). For any bounded linear functional f, there uniquely cxisls y E 11. .<;uch that

f(a:) = (y, x), :c E 11.,

and the following equality holds:

sup{l.f(~r)l: :c E 11., llxll = 1} = IIYII·

DEFINITION A.J.J:t l~'or an~' 1.\\'o Hilbert span's 11. and K, 11. is said to be isomorphic t.o K, denol<'d 11.'::::..1\.:, if there <'xists a bounded linear operator U on 11. with valn<'s in A.: sa1isfying

( x, !J) H = ( {/ :r, U y )K, :c, y E Ji.

It is known tha.t if dim 11. = n, then 11. is isomorphic to then-dimensional vector space !Rn or en' a.nd moreover, if 11. is a separable infinite dimensional Hilbert space, then 11. is isomorphic to C2 .

Page 5: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

APPENDIX I 267

Let x (resp. y) be an clenwnt of 1i (resp. K) and ~rOy be the conjugate bilinear functional 011 7-l x A.~ ddi ned by

:~:Oy(n, v) = (:r, ·u)H(Y, v)K, u E 7i, v E K.

Let t: denote the linear space consisting of conjugate bilinear functionals constructed by forming all finite linear combinations of the elements of { x®y : x E 7i, y E K}. It is clear that the sesquilinear functional (from Latin sesqui= 'one and a half') (-, ·) defined by

(x0y, nOv)= (x, u)H(Y, v)JC, x, u E 7-l, y, v E K

satisfies the conditions for the inner product. Now, the tensor product Hilbert space, denoted by 7iOK, is defined as the completion oft: in the norm constructed by the inner product stated above. It is known that if {xj} (resp. {yk}) is a complete orthonorrnal system of 7-l (rcsp. K), then {xj®yk} is also a complete orthonormal system of 1iGK.

Let (X, It) and (Y, v) be two cr-finite measure spaces, 1i be a separable Hilbert space and t:(X, 11; 7i) denote the linear space consisting of the Hilbert space valued functions constructed by taking finite linear combinations of the clements of {f(·)x: J(·) E L2 (.Y,p), x E 7i}. It is clear that the scsqui-linca.r functional«·,·» defin('(l by

nL "'L

«L J(·):rj. L ,r;(·):tfk» j=I k=l

satisfies the conditions for the inner product. Now, the llilbcrt space consisting of all square surnmable Hilbert space valued functions, denoted by L 2(X, J.li 11.), is dcfiucd by the completio11 of t:(X, flj 7-l) in the norm constructed by the inner product «·, ·».

THEOREM A.l.l4. U(.Y, Jt)OL 2 (V, v) is isvrnorphic to U(XxY, ft0v), and L 2 (X,ft)01i is i:wmo17Jhic to L 2 (X,Jt;tl).

Let D be a subspace of 1i and A be a mapping on D with values in K. If A(O:'x + j3y) = nA:z: + {3J3y holds for all o·, j] E C and :r, y E 11., A is called a linem· operator, D is called the donwin of A and denoted by dom A and {Ax : x E domA} is called the range of A and denoted by ranA. The graph of A, which is denoted by 9(A) is defined by {(x, Ax): x E dom A}. If 9(A) is a. closed subset of 7itDK, then A is called a closed operator.

THEOREM A.l.l5. ~I(A) is closed if]' ll:rn- :rll-+0 and IIA.1:n- vll-+0 imply that both x E dornA and .<1:r = y hold.

Page 6: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

268 APPENDIX 1

Let A and B be linear operatms. Then, A is said to incl-ude B, denoted by A C B, if 9(A)C9(B) holds. A is called a closable operator if there exists a closed operator including A. Especially, the smallest operator including A is called the closure of A, wIt ich is denoted by A.

Let A be an operator on 1l with values in 1l satisfying domA = 1l. Then, by Riesz's theorem, for any y E dmnA, there uniquely exists z E 1l satisfying

(y, A:t) = (z, x), x E 1l.

With the use of this result, the adjoint opemlor A* of A is defined by A*y = z, where y E 1i and z is the unique vector satisfying the above equality.

DEFINITION A.l.16. Let A be an operator with domA = 1i. A is said to be symmetric if A C A* holds. If a symmetric operator A satisfies domA = domA*, then A is said to be selfadjiont, and if the closure of a symmetric operator A is self adjoint, then A is said to be essmtially selfadjoint.

It can be easily proved that the closure of a symmetric operator A is equal to A**. The kcmcl of a. linear operator A on 1l, denoted by kerA, is the linear subspace of 1i def-ined as {:r E 1i; Ax= 0}.

THEOREM A .1.17. The necessary and su.fJicient conditions which a symmetric operator A should satisfy to be a selfadjoint operator is:

ker(A'" +if) ran(.'l +if)

ker(A"'- if)= {0}, ra.n(A- if)= 1l.

DEFINITION A.l.18. Let :1 be a linear operator on 1l. If there exists a positive constant AI satisfying IIAxll s; AIII.1:II for all x E 1i, then A is said to be bounded. The set of all bounded linear operators on 1l is denoted by B(1l). The norm of A, denoted by 11.411, is defined by

IIAII = sup{IIA1:II: ll:rll = 1}.

It can be proved that 13(71.) equipped with the norm 11·11 is a Banach space.

A bounded operator A is positive if it satisfies

(.1:, A:t) 2: 0, :t E dornA.

It follows from applying Gelfand's representation theorem (Appendix 2) to the smallest commutative algebra generated by {A, I} that there uniquely

Page 7: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

APPENDIX 1 269

exists a positive operator 13 satisfying A = 8 2 . According to the unique existence of B, B is denoted by JA and is ca.lled the square mot of A. Especially, IAI denotes JA· A and is called the absolute val-ue of A.

It should be rnentioncd that not all positive operators on a real Hilbert space are selfadjoint, but all positive operators on a complex llilbert space are selfadjoint.

Let A be a bou11ded operator. Then, A is called a. normal operator if A* A = AA *. A is called a. pmjection if A = A* = A 2 • A is called an isometry if IIAxll = jj;cll holds for all x E 'H.. A is called a unitary operator if ranA = 11. and (Ax, Ay) = (x, y) holds for all x, y E 11.. A is a partial isometry if A is an isometry on (kcrA)l.. (kerA)l. is called the initial space asociated with A and ranA is called the final space associated with A.

For any partial isometry A, it is known that A* A is the projection whose range is (kerA)l. and :1.1* is the projection whosP range is ra.n.4.

THEOREM A .1.1 !J. F'or any bounded opemlor A. there uniquely exists a partial isometry II' .wll isfiJin.,r; thr fol!otflilly cqualiolls:

A lVI AI, IAI IV* A, A"' lV*IA"'j,

IA*I lVIAIW*.

Moreover, the initial space associated with the pm·tial isometry l1' is raniAI and the final space as.<;ociatcd with lV iB rau /l. If either A is normal or 'H. is finite-dimensional, /hen JV is ·tmitm·y.

DEFINITION A.l.20. Let A he a liuear operator on domA with the values in ran A. Then, A is said to be invedible if A is i njectivc. A -J denotes the inverse operator of A on ra.uA with the values in domA. Here, the set of all resolvents of A is dcfi ned by

Re(A) = p. E <C: (A- >.l)- 1 is bounded}.

The set of all spectral points, called the 8peclnun, is dcfi ned by

Sp(/l) = <C- He(A).

Moreover, the spectru nt can be devided into tlH' followiug three sets:

(1) The point spcclrurn of :'I is ddi ued by

Sp( 7'>(;1) = {.\ E <C: (A- >.1)- 1 docs not exist}.

(2) The continuous spectrum of A is defined by

Sp(c) = {>. E <C: (A- >.1)-1 is unbounded, ran(A- >.I)= 1l}.

Page 8: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

270 APPENDIX I

{3) The r·esidual spectrum of A is dcfi ned by

Sp(r) = p. E C: (.4- >..!)- 1 is uubounded, ran{A- >..I)=/:-7-l}.

It is clear that the following equalities hold:

ra.n(.4- >..!) = dom(!l- >..1)- 1,

Sp(A) = Sp(Pl(A) USp(cl(A) USp(r)(.4).

DEFINITION A.l.2l. Let A be a.n operator on 1{. Then, a. complex number >..is called an appm:rinwlc SJJCclml point if there exists a. sequence {xn} such that

n EN, lim II(A- >..f)xull = 0. n-+oo

Let Sp(r!p)(A) deuotcs the set of all approximate spectral points. Then, it is easily proved that

Sp(Pl(/1) USp(cl(A) C Sp(ap)(/1) C Sp(A),

and if Sp(,·)(A) is empty, tiH'll Sp(ap)(A) = Sp(A) holds.

An elernent of Sp(p) (.~1) is called a proper value (cigcrwalue) of A, and a non-zero vector :c sa.tisf~,in~ /h =>.:cis caiiPd a proper· vector (eigenvector) associated with >.. The sn hspace sparllt('(l by all proper vectors associated with >.. is called the proper 8JH1Cf (eigenspace) associated with >.., and the dimension of this space is called tlte rnultiplicily of>...

DEFINITION A.l.22. Let 1l be a Hilbert space, and { E,, : -oo ::; >. ::; oo} be a family of projections on 1{ indicated by real numbers. Then, {E,\ -oo ::; >.. ::; oo} is called a. 8pectnJ.l rneasw·c if it satisfies

~~;\ ]?;Jl. == B,,E_, EJ,, J.l ~ >.., I i nt II 1~\:r II

,\-+-•:x; 0, :r E 1-l,

lim II E_,:l: - J: II 0, X E 1{. .\-+•X•

THEOREM A.l.2:~. A spectr·al rneaslt1'e is slmn.fJ/y r·ighl continuous and has a left stmng limit if E,\+etE_,, as E tends to 0 decn:asirzgly, and there exists a projecliort denoted byE,\- sati.r;!IJing E,\-cil:-',\-o::;E,\, as E tends to 0 decreasingly. M onovl'T. /('{

Page 9: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

APPENDIX l 271

is satisfied. If .4 ·is the OJJO'alm· defined by

(x, Ay) = /_: >.d(x, E,,y), x, y E 1£,

then A ·is selfadjoint.

THEOREM A.l.24 (spectra.! decomposition theorem). Po1· any selfadjoint operator A, th.e1'e uuiqudy o:i.<;ts a spcclml m.ca.<;ure E.\ satisfying

(x, Ay) = ;~: >.d (x, E_w), :t:, y E 1£.

THEOREM A.1.25. >. E Sp(Pl(A) holds if and only if if E,,_0=f.E>.. holds, and ran ( E,\ - E.\-o) i.<; c:J.:actly equal to the proper space of>.. AI oreo-ver, if Sp(A) = Sp(Pl(A) ho/d,r,;, lhcu Sp(A) is countable and A can be represented by

A= L ..\1\, .\eSp(.·1J

where P,, is the p7'0jcdion whose range is ran (e., - B.\-o).

DEFINITION A.l.2G. For a.ny :c, y E 1£, h't x()y be the operator defined by

(:rt_;>Y)z = (y, z):t, :; E 1£.

Then, :rQfj is bonndc'd and ran(.1:C•Y} = {..\:r: ..\ E C} l1olds. l'dorcovcr, the following equalities hold:

ll:~:c·JJII ( .r:::.fj)'"

( n:r )0(/Jy)

(:1: + y)O~ ( xQy)( :;(}w)

A(:rC)Y)

(.7>:·:·Y)A

II-1·IIIIYII. yC.)x,

nfJ(xCy), xO~+ y:,)~,

( 11 z)xnw /:1' -· ,

(Ax )Oy, .1 E /3(1£),

:r () ;1 * y·. :1 E 13 ( 1l) .

THEOREM A.l.27. (I) Ld .tl be the operator dc.fincr!IJ.tJ Lie.! ..\Ft:iOYi· Then the followin.fJ cqua.lilic.'i hold:

.4~ = LAiY/()Xj, jEJ

Page 10: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

272

A" A

IAI

II All

APPENDIX 1

~ 2 L I.-\JI YJ0JJj, jEJ

L IAJIYJ0Yj, jEJ

IIA"II = IIA"AII 112 = IIIAI "· {2} For A of (1), lei c and d be positive twmbc1·s satisfying 0 < c~d. If for any j E J c ~ l.-\JI ~ d holds, then A is inuertible and A -I can be represented by

1-1 ~ \ -1 0-f =L"'i YJ'·1:j.

jEJ

THEOREM A.1.28. For an operator A on 1l,

{1} A is a projeclimt opn·atm· ¢:> V CONS{:tj} C ranA, A= LXj 0ij. J

{2} A is a unitm'y opu·ator ¢:> 3 CONS {:cj}. {:11y} C 1l, .t\ = LXj 0 YJ· J

{3} A is an isom.dric opcmlor ¢:> 3 ONS { :r1 }, CONS {:l}j} C 1l, A = L:xJ 0fJJ· j

(4) Aisasemi-isonwlricopemtor¢:>3 ONS{:rj}, {JJj} C 1l,A=L:xJ0 J

An operator A E B(1l) satisfying dim(ranA)< oo is called finite rank. We denote the set of all finite rank operators by F(1l): A E F(1l) ¢:> 3n E

n N, {.-\J} C IR, CONS {.?:J}, {yj}, .t\ = L: Aj:tj c) Yi·

j=l

An operator A : 1£ 1 ---+ 'H 2 between two Hilbert spaces 1£ 1 and 1l2

is completely contin1wus (c.c. for short) or compact if the irnagc A£ of a bounded set £ C 'H through A is totally bounded. We denote a set of all c.c. operators by C(1l1, 1-l2). Then the followi11g statements are satisfied.

1° A is c.c. ¢:>if :tn ~ :r (i.<•., (y. :r 11 )---+ (y, :~:), Vy E 1l, weak converyence),

implies Axn 4 A:c (i.e .. ll:b:,, - ;hjj---+ 0. stron.fJ convcl:fJence).

2° {An} C C (1l1, 1l2) and /\ 11 ~A (i.e., operator (uniform) nMm IIQII = sup{IIQ:rll ;:c E 7-lJ, !1:1:11 = 1}, IIAn- All--+ 0, unifonn converycnce, or norm. conver:ryencc) and if' ;1 E 13 (1l 1 , 1l2 ) (i.P., the set of all bounded linear operators fro111 7-1. 1 to 'fl 2 ) ,the11 /\ E C (1-1. 1 , 1l2 ).

3° C (1l 1 , 1l2 ) is a closed subspace in Ban<u·h space lJ ('fl 1 , 1-1. 2 ) w.r.t. the operator norm, therefore C (71_ 1 , 1£2 ) is a Banach space itself.

In the following sta.t<'ments, we assunte 1{1 = 11. 2 = 1l, hence, C(H1, 1l2)= C(1l, 11.)= C'(1l).

Page 11: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

APPENDIX 1 273

4° C('H.) is a. two-sided ideal of H('H.) {i.e., VA E C(1l), VB E 8(1£) => AB, BA E C'(7i).

5° If one of A, A*, IAI and IA*I for A E /3 ('H) is c.c., then the other ones are also c.c.

6° For any sequence of points { Aj} C C satisfying Aj -+ 0 and two ONS{xj}, {yj}, .4 = l:Aixi ®iii is c.c.

7° If A E C('H.), then there exists x E 1l such that

l(x, Ax) I= max {l(y, Ay)l: y E 11., IIYII = 1}.

Moreover, if A E C(1l) is selfadjoint, then there exists x E 'H. such that IIAII = l(x, Ax)l. Here xis the eigenvector of .4. Tha.t is, Ax= Ax (A= IIAII' -11.411).

THEOREM A.l.29 (Eigenvalue expansion theorem). A selfadjoint operatm· A E C('H.) satisfies the following properties:

{1) Sp(A) = Sp(P)(A) U {0} C IR and the set Sp(.4) is at most countable. Eigenvalues exr-ept 0 /l(we finite multiplicity and can be arrrmged as follows:

AJ: lAd= JIAII (111ultiplif'ily= nd => ...\1 = .-\2 = · · · = An1;

An 1+J: 1-',,.+11 = max{l...\1: ...\ E Sp(.:\)- {,\I}} (multiplicity= n2)

:::;.. .A,,. +I = Ant +2 = · · · = .,\.,11 +n2

Then we dr:tenninf' A11 rc:cm·sivcly. 11n· ,._Hruence {...\ 1, A2, ••• } obtained is finite or I Ani ~ 0.

(2} Ifwe can choost the eigcnveclorsxn (llxll = l}forever·yA,1 E Sp(P) (A) such that Xn.l..X 711 (m, :f. n), then A== l:A11 X11 0.in. If every eigen·value is nondegenemtc, llntt thh; decompo8ifiolt ;,.. ·auique.

(3} If£= spa.u{x 71 : u = I, 1, · · ·} and A.~= {z E 11.; Az = 0}, then

£ = K.l., !J = L (:t:n, y):c11 + PJ(y, Ay == L A11 (x 11 , y)xn (Vy E 'H.).

THEOREM A.1.30 (~liui-rna.x theorem). When A E C (11.) is positive, the eigenvalues { A,J of 11 can be calc·ulated irt the follo·wing mini-max fonn:

An= min {max {(A:c, x): llxll = 1, x.l.C}: dim .C = n- 1}.

Here £ is an ( n - 1) -dimensional closed subsJiace (A 1 is the eigenvalue calculated in 7°).

8° When A, B E C (11.) ar£' selfadjoint OfJer·alors, the follo-wing relation is satisfied:

:1H = H/1 ¢:? 30NS {:ru} C 1l.such tha.t.

Page 12: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

274 APPENDIX 1

go For any A E C (1£) lhe1·e exists a unique point sequence {An} such that 0 $ An ,J.. 0 (An: eifjCHIJalue of IAIJ. Tlten A = I: AnXn 0 Yn for ONS

n {xn}, {Yn}·

10° If a selfadjoint opaalm· A satisfies An E C (1£) for a natural number n E N, then A is c.c. il.r:;e/f.

DEFINITION .A.L~l. For any two CONS {xi}, {xi} C 1£, if one of the following three infinite sPries

J J IJ

converges, then the other ones also do and they have the same limit value. Then A E B (1£) is called a Schmidt operator· { llilbert-Sclnnidt operator) and the set of all Schmidt operators is denoted by S (1£).

For any CONS {.1:i} and A E S (1-l), !lA IIz = 2:;: I!Axjll 2 is a norm J

(Schmidt norm ( Jlilbcri-Schmidt norm)) a)l(l S (1£) is a. Banach space w.r.t. ll·lb·

The elements .4, BE S (1£) ltave the following properties :

lo llx 0 Vll2 = llxi!IIYII, Vx, Y E 1£. 2° IIAII $ IIAib' IIA"II2 = IIAIIz, IIABIIl $ IIAIIIIBII2 I IIBAib <

IIAIIIIBib => S (1£) is a two-sided ideal of B (1£). 3° A E s (1£) => !AI E S' (1l)' IIIAIII2 = 11.4112.

For any .4, BE .S (1l) <utd any CONS {:t:j}, ((.4, /3)) = Lj (Axi, Bxi) absolutely convNges, wlticlt is independent of a choice of {:t:j}. Then S (1£) is a Hilbert space w.r.t. this innN product((·,·)).

This inner product.((-.·)) ha.o;.; tltc following propNt.ies: 4° ((x 0 y, u (..:) v)) = (:~:, u) (y, '1.')' V:z;, y, II, 'U E 1{, 5° For A,B E S(1l).C E H(1l), ((A*,/3")) = ((B,!l)), ((CA,B))

((A, C* B)) , ((.'IC, /3)) = ((A, HC*) ). 6° S (1l) C C (1l), so that A = Lj AjXj (' l/j for any A E S (1l). Moreover,

c.c. operator A = Lj AjXj 0 Yi E S (1l) ~ L.i 1Ail 2 < oo.

DEFINITION A. 1.:32. If a.n infinite sNies L.i (.1: j, A:r J) absolutely converges for any CONS { .'L' j} C 1{, tltPn the limit va.hw does not depend on the choice of CONS {xj}· Then A E 13 ('H) is called a trace class opn·alor and the set of all trace class operators is <1<-noU•d by T (1l). Not<' that a positive trace class operator is oftc•n called a. density opcmlo1· in physics.

Lj (xj, A:1:j) is ndiPd a lntcc and denoted IJy t.r A.

A trace class OfH'ra.tor ltas the following properties:

Page 13: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

APPENDIX 1 275

1° The following st.atcmu'nts are equivalent: (i) /\ E T (1l), (ii) lA I E T(1l), (iii) 1.41 1/ 2 E S(/1}, (iv) triAl< oo.

2° For any .4, /3 E T (1l) aud a:,/3 E C, a:A + !111 E T (1l), A* E T (1£). If 11.411 1 = tr lA I ('v'A E T (1l)), then 11·11 1 becomes a nann (trace norm)

and T (1l) becomes a Banach space w.r.t. 11·11 1 •

3° trx 0 y = (y, x), llx 0 flll 1 = llxllllvll, 'v'x, Y E 1l. 4° T (1l) is a two sided ideal of B (1l). 5° IIAII ~ 11.4112 ~ !lAIIt· 6° A E T (1l) <=> 38, C E S (1l) such that A= JJC. 7° A = L AjXj 0 Yj E C (1l) (Aj 2:: 0). A E T(1l) <=> L Aj < oo. Then

j j

IIAIII = r= Aj. J

4° and 5° imply T (1l) C ,..,. (1l)

THEOREM A.l.:~:3. F (H) c T (H) c S (H) C C (1l) c l3 (1l).

1° F (1l) is the minimal irlf;'(tl in other spaces. C (1£) is an ideal closed by a uniform nonn in B (1l). JlfoT"eotJ(:T, if 1l is sepam.ble, then C (1l) is the maximal ideal.

2° {i) F (11.) ll·llt = T (H) (ii) F (1l) ll·lb = S (1£) (iii) F (1£) IHI = C (1l). 3° Each F (1l), T (1l), S (1l), C (1l) i.<> dcw;e w. r·.t. the weak topology (An~ A} iu H (11.).

Let X* be the set of all bounded linear functionals <p (i.e., <p: X -t C is linear and I'P (A)I ~ i\/ll.illl, 0 < M < +oo) on a Banach space X. Then the following sta.tesmentl-) a.r<' held:

(1) For any o.p E C (1/.r then' exsits a unique 7~; E 7' (1l) such that <p (A)= trT~PA ('v'.4 E C (1l)).

(2) If <pr (.4) = tr1'.4 ('v'.4 E C (1l)) for any T E 1' (1l), then 'PT E C (1l)*. (3) IITII 1 = llcprll =sup {I'PT (.I\) I :A E C (IT), IIAII = 1} (4) For any 1/.• E T (11.)* thPre exsits a uuique Hr1. E 13 (1l) such that

1/'(.4) = trAB,1. ('v'A E T(1l)). (5) If V'B (A) = t.r:l /J ('v'.'l E 'J' (11.)) for any H E 13 (1l), then li-'B E T (1l)*

a.nd 111311 = II·~''HII· T E T (11.) and IJ E 13 (H) Cillt be idPnt.iliNI \\'ith <;'T E C (1l)* and

1/JB E T (1lr' resp<•ctiVPiy. so t.lta.t \\'(' !taw tit<~ rollowing theorem:

THEORSM A.l.3.·1. ( 1) C (11.)"' = T (11.). {2} T (1l)* = B (1l). {3} s (1l)* = s (1l). {4) B (1l)* = T (1l) tfl C (1l)J_, where

C {1l)J_ = {;p E /3 (11.)"': <p (A)= 0, 'v'A E C (1l)}.

Page 14: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

Appendix 2

A.2 Elements of Operator Algebras

In Appendix 1, we discussed the Hilbert space method to describe quantum systems. Presently, a more general method, the operator algebraic approach is considered. Namely, we explain son1e of fundamental facts of C*-algebras and Von Neumann algebras. ThP operator algebraic approach to quantum systems is particularly important when a quantum system has infinitely many degrees of freedom. In physics, one co11sidcreds several systems with an infinite number of degrees of freedom, such as quantum fields, quantum statistical systems with symnretry breaking, etc.

Let A be a linear space on the set of complex numbers C. A is said to be an a.lgebmifit satisfies: (i) ABE A for any :1, BE A; (ii) (A+B)+C = A+ (B +C), (AB)C = A(BC) for any A, 13, C EA.

An algebra. A having the involution* frorn A to A such that (i) (A*)* = A, (ii) (A+ >..13)* = A• +Xu·, (iii) (A/Jt = J3•A· for any A, l3 E A and >.. E C, is called a. *-al.fJclnn 011 C.

Moreover, the lto1"111 11·11 011 A is a rnappi11g from A to JR+ satisfying (i) IIAII ~ 0, 11.111 = 0 ¢} /\ = 0, (ii) 11,\AII = 1,\IIIAII, (iii) IIA + Bll ~ II All+ liB II for II, B E A a11d ,\ E C.

DEFINITION A.2.1. Let A be a.11 algebra with nonn 11·11·

(1) A is a 1w1·med algebra if 11/1/311 ~ IIAIIIIHII for any A, /3 EA. (2) A is a Banach alrJcbra if A is a complete normcd algebra w.r.t. 11·11· (3) A is a Banach *-algcu1Yt (f3•-afgcbra) if A is a. Ba11aclr algebra with

IIA*II = IIAII for any A EA. (4) A is a C*-algebm if A is a. !3'"-algebra. with 11.-1•AII = IIAII 2 for any

A EA.

Let us give :some exanr pies for the above algebras.

(1) The set Aln(C) of n x n matrices with complex entries is a C*-a.lgebra. (2) The set B(1i) of all bounckcl linear operators on a Ililbert ::;pace 1i

and the set C(1i) or all cornpa.ct operators on 1i arc C*-algcbras. (3) The set T(1i) of all trace class operators on 1i and the set S(1i) of all

Hilbert-Schmidt operators are !3*-a.lgcbras, but not C*-algebras. (4) The set C(X) of all continuous functions 011 a locally compact

Hausdorff space X is a C* -algebra.

277

Page 15: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

278 APPENDIX 2

Now take a subset A of /3(1l) and define the commltlcmt of A by

A'=: {A E /3 ('H) : AB = BA, BE A},

and the double col/1'11/llla'lll /\ 11 by

A"= (A')'

DEFINITION A.2.2. A is a Von Neumann algebra ( VN-algebra for short) if A"= A.

Remark that a VN-algebra is a C*-algcbra.. It is easily shown that

{1) A" ::) A, (2) A'= A(3 l = A(·5l = ... , (3) A"= A('1l = A(nl = ... .

Let A be a c~-algebra witl1 an identity I (i.e.,/\/= Iii= A, VA E A). Any C*-algebra. without I can be always exteltdf'd to a C'*-a.lgrbra with /.

DEFINITION A.2.3. Let il, 13 be elements of A and A, ft be el(•ments of C. {1) A is regular (invertible) if there exists .4-I E A satisfying AA- 1

A- 1A =I. (2) Resolvent set: Re(.1) ==: {A E C : :3 (A- Al)- 1 E A}.

(3) Spectral set: Sp(A) ==: C- Re(A). {4) The mapping \ fron1 A toC is a clunnclcT if y is a homomorphism not

identically 0. The set Sp(A) of all charact.ers of A is called a character space or a. speclml spocc.

(5) The mapping .1 f'rotn Sp(A) to C is defined by A (y) = y (.4), and the correspondence 1\ : A -t A is called a Grlfwul repre.'>entalion.

Note that >. E Sp(A) iff there exists a character \ such that y(A) = >., which is a reason that we call Sp(A) a spectral space.

THEOREM A .2.4. The followin.fJ slrt.lenwnls an NJilivalcnl:

{1} A is an abelian (i.e. _,\ 13 = 13A, VA. lJ E A) C*-algcbra. {2} The HHifJ]Jin.r; A frolll A to C'(.S'tJ(A)) (IIIC sri of all CU!tlinuous functions

on Sp(A)) is r1 '"-isoiJirlry (i.e.,.\·= (.1)*, 11/111 = 11.<111). By the above theor('f!l, A and C(Sp(A)) an• idf'ntilied. Sp(A) is a weak *-compact I·lausdorfr span>, and it becOII\('S local!~· compact when IE A.

The mapping ..p from A to Cis a. linear fuw·liotwl 011 A if' <p(AA+pB) = >.<p(A)+Jli.P(B), and a linear functiona.l tp fro111 A to Cis said to be positive if <p(A* A) 2: 0 for any A EA. Tl1e norm 11·11 of <pis defined by

II if II = s 11 p { I y ( /1 ) I : A E A' II A II ~ 1 } .

For a linear functional cp, the following th(•orcms arc satisfied:

Page 16: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

;\PPENDfX 2

1° Schwarz's inequality: j<p(A*/3)j 2 :::; j<.p(/1"/l)jj<.p(B*B)j. 2° A= I=> II'PII = <.,?(/).

279

<p is faithful i[ ';?(A" A) = 0 => A = 0. Let A"', called the dual, be the set of all continuous linear functionals <p on A (i.e., II An - Am II ---7 0 => jcp(An)- <p(Am)l ---7 0), and A+ be the set of all positive cp in A*.

DEFINITION A.2.5. :

(1) <p E A+ is a slate on A if !l'Pll = 1. The set of all states on A is denoted by 6(A) or 6 for simplicity.

(2) For if!I, l.f!2 E A+, 'PI dominates t.p2 (denoted by 'PI ~ 'P2) if l.f!l - l.f!2 E A+.

(3) 'P E 6 is a mi:red stale if there exist A E JR+ and V' E 6 satisfying A<p~'l/J, and 'P is a pare slate if <p is not mixed state.

When A contains /, t.p is a. mixed state iff" there exists A E (0, 1) and

7/Jt, 'I/J2 E 6 such that ~'I f lh, r..p = A~'J + (1- A)lh. The topology on A* is usnally defined by one of the follO\ving two£­

neighborhoods N,(.p) of t.p for an~' cp E A":

i\'; ( y) = { •t:'• E A"' : II t.p - t!• II < E} '

and

N, ( y) '= { ~· E A" : j 'P {. I J.-) - 1/' ( /1 k) j < E, :11 , · · · , ,1\ n E A} .

The first topology is callc~d t.h{' uniform. lopoloqy and the second is the weak *-topology or a(A", A) -lopolom;.

Below we list up some fundal!wntal propc'rLies of' tlu' sla.t.e space 6 as 1° and 2° above.

3° \Vhen I E A, 6 is \\'('ak *-colllpact. 4° By using the 1\r<'in-~·lilrnan theorent \V(' obtain 6 = w"' co ex 6, where

ex 6 is the> set of all extr('flte points of 6 (an c:.~.:ln:rnc poiHt of 6 is an elemcut not rcprt•seul.ed by a. convex contbination or two other clements of 6). \Vhen I E A, ex 6 = 6 7,, i.e., the set of all pure states. ~vloreover,

w*cocx6 =: {~nAn'f'n: ~nAn= l, An~O,cp.,1 E ex6}-w*, where -W* means the closure or t.ltt' set { ... }with respect to the weak*-topology.

Let a be a ma.pping front a one-pararneter group G to Aut(A), which is the set of all autolltorpltisms OIL A satisfying the following conditions :

(i) O't+s = O'tl:ts,

(ii) E~6ilat (/1)- /Ill= 0 (sli'OII!J col!tinuily),

{iii) a 1(A*) = n 1{.1)* {ViE G. V.:l E A).

Tlte gerund fJIWnlu/1/ dywtmi('ul syslt/1/ (CQDS) is described by a triple (A, 6, n) or (A, 6, n{(,')). This description should co11tain the usua.lllilbert space dcscripliott as a s1wcial cas<'. This is ass!JI'ed by the f'ollowing GNS (Gelfand- 1\'ai 11w rl.-- Scr;u I) //l(m·en1:

Page 17: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

280 APPENDIX 2

THEOREM A.2.6 (GNS). For· any <p E 6, there ·uniq·uely exist the following items up to the unitaty equivalence:

{1} GNS llilbCT't space 1-l.p; {2} GNS repr·esentalion 1L.; (i.e., 'lro.p is a *-ho111011101']Jit.ism., i.e., rro.p(AB) =

rro.p(A)rro.p(/3), n.;(A") = rro.p(A)*) fmm A lo 13(11.); {3} GNS cyclic vector.?: . .; E H.; (i.e., {rr.,(J\).t: . .;: ;1 E A}-= 7-I.'P) satisfying

<p(A) = (x.p, rr.,(A):r"').

THEOREM A.2.7. For an o:-invariant slate <p (i.e., <p(o:t(A)) <p(A), 'v' A E A, Vt E JR), there exists a slmngly continuous unitary one­parameter group { u 1 : t E IR} satisfying t!te following equalities:

{1} UtX<p = Xo.p 1

{2} 11'o.p(o:1(11)) = u1rr,.p(A)u_ 1•

From the abov£' thcor£'nls, the usual llilbert space description is reconstructed if it is needPcl. ~·lorpover, if we take a. sufficiently large Hilbert space, then we have

THEOREM A.2.8. For geuem.l C* -algcbm A. there exists a 1/ilbcrt space 1-l such that a C*-algebrn B (C 13(11.)) on.'}{ is isomo1phic io A.

Next we discuss some topologies on 8(1-l). Let {.4.\} be a net of B(1-l), and "A>. ~ A" means that A.\ converges to A as A ---t '·ex/' with respect to the (operator) topology r:

(1) Uniform (operator) lrJ!Jofogy Tn: ~ IIA.\- Ali-t 0.

(2) Strong (opernlor) lopolorJ.IJ r·': .&b II(A.\- A) .1:1!---t 0, V:r E 1-£.

(3) Weak (opera/or) lopolo.qy T"': ~ (a:, (.'l\- :l) y) ---t 0, V3:, y E 1-l.

(4) Ultmstmng (oJHTolor) topolo.r;y T 11 "': ~ For any {:r11 } C 7-I.F

{ {xn} C 1-l: L:;~l IJ:cnll2 < +oo, L~,;,J II(A.\- .4) Xnll 2 ---t 0}. (5) Ultmwcak (opcmlol'} topology Tu.w:

!de~ Ln J(xn, (.4.\- A) Yn)l ---t 0, V {xn}' {y.,J E 1-lF. (6) Strong* (operator) lOJJology r-~·:

def 2 2 ¢=:::} IJ(A.\- A) :cll + IJ(A~- A*) xll ---t 0, Vx E 7-1..

(7) Ultrastmng* (operator) topology Tus*:

!de~ Ln {II (A,\ - /l) 3: n 11 2 + II (A~ - A •) :r"' 11 2 } ---t 0, V { :t n} C 1-l.

These topologies are n'la t<'d as rollows:

Tu > Tll8* > TII.S > Tu.w

v v v TS* > T' > Tw

("strong" topology > "weak" topology). When dim1-l < +oo, every topology coincides each other.

Page 18: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

APPENDIX 2 281

Denote by B a uuif'ormly bounded subset of 13(11.), for example, the unit ball 81 = {A E B(Jl) : IIAII :S 1}. On this ball, T 1L.w = Tw,Tu.s = 7 s, 7 us• = 7 s•.

When A.\ --t A, B.\ --t 13 in a certain topology r, we shall show whether the following propositiolls hold or not: (a.) A~ --t A*; (b) A.\Q --t AQ and QA.\ --t QA, VQ E /3(11.); (c) A,d3.\ --t AB; (d) A.\B.\ --t AB for {A-X}, {B.,} C B.

We write 0 if the proposition holds, a1td write x if it does not.

T (a.) (b) (c) (d) Tu 0 0 0 0 r' X 0 X 0 Tw 0 0 X X

Tli.S X 0 X 0 Tli.W 0 0 X X TS* 0 0 X 0

TUS* 0 0 X 0

Note that r 1 < T'2 implies ~l:W2 (the closure of T2-topology) C 9JF1 • Let 9:11 be a. *-algebra such that 9Jl 11 ··' = 9.J1 for all algebra 9Jl C B(Jl). A linear functional c.p is T-con1.inuorrs if A.\ --t A(T) impliPs .y(A.\- /1) --t 0. When r 1 < r2, r1 -contilluit~' of c.p irnplics r 2-continuity of c.p.

Denote by 9:!1'" the set of all 7 11-continuous linear functionals. Put 9:11+ _ {cp E 9Jl*: c.p(A*!\)20}, 6:::: {.p E 9Jl:t: 11-,;11 = 1},9:11"':::: {c.p E 9:11*: rw-continuous},9Jl. = {.y E 9J1"';r«w_continuous}.

We have the following fH'OJWrtiPs:

5° 9:11"' = 9:11*, where the clmwre is taken for the norm 11·11 on 9Jl*. 6° cp E 9Jl"' {:::} 3 {.7: 11 }n=l, {Yn}n=l C 11., and 3.1V E N such that cp (A) =

I:;';=l (xn, Ay.,). r cp E 9Jl* {:::} 3 {:r"}n=l, {:Yn}n=l C }{., and such that

L~=l ll:z:nll 2 < +oo, I::~= I 11Ynll 2 < +oo, ..P (.1\) = LH (.?:n, Ayn)·

When 9Jl is identical witlr /3(H), we hav£' ~R. = T(H.) (trace cla ... ">s). This identity is particrili1 rly i 111 port ant.

THEOREM A.2.D. 9Jl* is r1. Banach space tCilh respect to the nonn of 9:11*, and (9Jl*)* = 9:11.

DEFINITION A.2.10. c.p E 9Jl* is norma.! if 0 :S A.\ t .4 implies r.p (A.\) t cp (A).

The following two theorer11s an~ essential.

Page 19: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

282 APPENDIX 2

THEOREM A.2.11. For 'P E 9J1:;_, the followin.r; slolcmenls arc equivalent: {1) <p E 9JI*. {2) t..p is normal. {3) There exists p E T('Ji)+ s·uch that t..p(A) = trpA.

THEOREl\1 A.2.12 (\'on Ncuma.llll density theorem). lV!ten !!JI ts a *­algebra with I, the following equations are equioalcnl:

{ 1) 9JI" = 9JL {2) 9JF = 9JL {3) illrs* = 9JL

In the sequel, we assume that 9J1 is a Von Neu ma.llll algebra.

DEFINITION A.2.1:3. 9J1 is said to bc a-ji11ilr' if any family of mutual orthogonal projections is countable.

THEOR8M t\.2.11. '/'/!( full01nin_r; 8latcmrnls rm utllil'(l/cnl:

{1) 9J1 is a-finilr. {2) There c:J:i81s a faithful IWT"IIIal .'i/alr on 9.ll. {3) 9J1 is isommpltir· to a Von Netwumrt algdnn 9J1 1 !tat>ing a sepamting

and cyclic ucclor :r (sec below).

For a. Von Ncurna.Hn algebra 9J1 over a. llilbcrt space K, a vector x E K is cyclic if 9Jix = K, and is sepm·aling if A:r = 0 implies A = 0.

Now one can easily prove the following two propositions:

S0 If 'Ji is separa.hl<', t.lwn 'Ji is a-finitc>. 9° If t..p is a fait.hf'ul nor111al st.ate, then rr.;(9JI)" = 7!".;(9JI) ::= 9JI, 'Ji,.,!::::! H.

S0 implies t.hat alrnost all Von Neumann algebras w;cd in physics are a-finite.

Let P(9JI) be a spt. of all proj<'ctions 011 ~.rt. and E, FE P(9JI). E domirwlts F (dP!!Olc'd by F'<!:E) if ranF CranE, awl 1~ is equivalent

to F (denoted by E ::= F) if there exists <I partial isonwtry such as E = W*l¥, F = lVW*.

DEFINITION A.2.l!J. (I) 1:: is finite if E:::: F <!: E implies E = F. (2) E is scnnJinile if' ar1~' F <!: /:' lras 110 finit<' subprojection. {3) B is in/illite if"/~' is rrot firritc. (4) B is pnnly ill.fiuil< if tlr<'n' <·xists 110 non-zc•ro finite projc•ct.iorr F such

that F < g

DEFINITION J\.~.J(i. L<'t 9JI be· a. Vorr Ncrrrll<~lllr algebra..

Page 20: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

APPENDIX 2

{1) 9Jt is finite¢:? I is finite. {2) 9Jt is semifinite ¢:? I is semi-fi·nite. {3) 9Jt is infinite¢:? I is infinite. (4) 9Jt is purely infinite¢:? I is purely infinite.

283

Let us introduce the "trace" on a. Von Ncuma.nn algebra 9J1. A tracer over 9Jt is a map frorn 9J1+ to IR+ = [0, oo] satisfying:

(i) r(,\A +B) = -\r(A) + r( B), \fA, 13 E 9J1+, >.:2:0. (ii) r(A* A) = r(AA"'), \fA E 9JL

This T is not a linear functional on a. VN-algebra. 9Jt in general, but it can be extended to a linear functional T on 9Jt in the following sense: Put 9Jt~ :::: {A E 9J1+ : r(A) < oo} and 9Jtf :::: {A E 9J1 : A* A E 9Jt~}, 9J1t = {~i= 1 AiAiBi; Ai, I3i E 9J1f, n < oo}.

THEOREM A .2.17. ( 1) 9.H 1 is a two sided idcal of 9J1, namely, 9J1 1 9J1 C 9J1 and 9J1 9J1 1 C 9JL

(2) Ther·c exists a unique lincm· fu~tctional r on 9:11 1 such that r t 9J1 1 n 9J1+ = T and r(AB) = r( BA) (\fA E 9:11 1, \f 13 E 9J1).

We denote r by the same symbol T for simplicity.

DEFINITION A.2. U:~. Let r be a. trace,

(1) Tis faithful if r(/1) = 0, .:\ E 9J1+ impli('S /\ = 0. (2) Tis normal if 0 :2: :1.\ t .·1 irnpli('s r(A.\) t r(-'1). (3) Tis finite if r(A) ~ x, \f.'1 E 9:11+. (4) T is sc1ni.fini!c if for a11~1 :l(:f: 0) E 9J1+, tlrerc exists 13(# 0) E 9J1+

such tha.t 0 ~ /3 :S .'\ a11d r(/3) < +oo. (Note' that if Tis normal and semifinite, thc11 r(.·l) = srrp{r(/3): 0 ~ 13 :S /\, r(l3) < +oo})

(.5) A family of tracC's {T.J : j E ./} is su.f]icirut if' f'or a.11y A(:f: 0) E 9J1+, there exists j E J such that TJ(A) =/= 0.

THEOREM A.2.19. ( 1} fl)l is finite 1j9JI has r1. family of sujjicicnt normal fin£le trace::;.

(2) When 9J1 is CJ-finilr:, 9J1 is .finite if 9)1 ha8 r1. faithful nomud finite trace. (3) 9J1 is .sewi-jinifr if 9.H has a foilltful IWI'/1/(/I sc-rnifinite trace.

Examples of tran's:

(1) VVhen 9JI = Aln(C), r(A) = trA = Li~ 1 rlii, aii =diagonal elements of A is a faithful 11orrnal finite trace.

(2) \Vhen 9JI 13(H) and di11r H oo, r(i\) tr A (= L:n(X 11 , A:r 71 ) for a CONS {.7:n} of H) rs a faithful uorma.l semifinite trace.

Page 21: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

284 APPENDIX 2

(3) When rot= L00 (0.,p) (a finite Von Neumann algebra on 1l = L 2 (0.,J.L)), f E M(0.) (the set of a.ll p-measura.ble functions) and /?:..0, JL-a.e., put

r (A) =In A (w) f (w) dp (w).

Then

(i) f > 0, p-a.e. => r is a faithful normal trace. (ii) f E £1(0.,Jt) => r is a finite trace.

(iii) f E L 00 (0., JL) => r is a. semi finite trace.

We now explain sonw rcprc:sentations of cOilltllUtative C*-algebras. The fact that A is commutative allCI 1 E A implies A= C(O) with 0. = Sp (A). So, for any r.p E A+.t = C(H)+.t, there exists a. Baire measure JL such that

r.p (A) = j~ A (w) djt (w)

by the Riesz-Ma.rkov-l(a.kllt.a.ni theorem.

Moreovet·, put 7-l'P = 1l11 = L2 (0., p) aml ( rr1, (.f)g)(t) = f(t)g(t) for any g E 1lw Then

THEOREM A.2.20. Let 1l uc a separalJ/e llilberl space and rot be a commutative \'on Nettmann algcum. Then ther·e exists a locally compact Hausdorff space 0. satisfying the second countable axiom (i.e., it has a countable basis of open sd.c;) and a pmbabilily measure JL such that rot = L=(n, JL).

From these facts, we rt'cognize t.hat the forn11dation of QPT (quantum probability theory) by Von Nc~tllll<lllll algebras or c~-a.lgPbra.<.; is indeed an extension of CPT ( cla.s:;ical probability theory).

As explained above, there exist various Von Neu111ann algebras, and purely infinite Von Neumann algebras are Heeded in some special situations. Although it is sufficient to treat semifinite Von Neumann algebras over separable Hilbert spaces, such as B(7-l), a. purely infinite Vo11 Neumann algebraic (C'"-a.lgebraic) description is fundamental for the case when a physical system has infi11il<' 11111nber of degrees of freedom and some kind of symmetry breaking.

We summarize the description of quantlltll systems by Von Neumann algebras and C* -algebras.

Page 22: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

.\PPENDI.\ '1 285

(1) Description by Von Neumann algebras: The Von N0urna.nn algebraic description of quantum systerns is given by 4-tuplc (1i, P, 9.Jl, <p):

CPT QPT n {::} 1l F {::} PH f {::} A JL {::} <pE6

£= (f2) {::} 9J1

(2) Description by C*-a.lgebras: The C*-algcbra.ic description of quantum systems is given by (A,<p):

CPT QPT n {::} Does not exist F {::} Does not exist p {::} <pE6

ex (n) ¢::? A

Once <pis given, we ca11 construct the llilbert space 1l.., through theGNS construction thPOr<'lll. TIH•rpfor<' th<• dPsniption (1) is essentially the same as that of (2).

Finally, we briefly disclJss the l~l\1S (Kubo-l\1artin-Schwinger) state and the Tomita- Takesal.:i theory.

Let (A, 6, a) be a C'"-dynarnica.l system. A state <p E 6 is a IO..JS state with respect to a constant /3 and a 1 if for any .4, B E A, there exists a complex function FA.a(z) such that (1) FA.a(z) is analytic for any z E D{3 = {z E C; -{3 < lm :: < 0} (if /3 < 0, De:={:: E C; 0 < lm z < -/3}), (2) FA,B(z) is bounded and continuous for any z E IJr1 = {z E C; -/3:::; Im z:::; 0}, (3) FA,B(z) satisfies the following boundary conditions: (i) l~,B(t) = <p( a 1 (A) B) a.nd (ii) C.1,B (l- i;3) = <p( Bo·t( A)). The Kl\1S state with respect to the constant ;3 and o 1 is calkd (/3, o·1)-ld1S state. \Ve denote the set of all (/3, nt)-KMS states by ](J3(Cl').

One ca.n easily provP the following two propositions:

1° <pis (0, ot)-KMS stale {=:::> <p is a tracial state. 2° <pis (/3, nt)-I\:MS state {=:::> rp is ( -1, o/3t)-l\:i\'IS state.

THEOREM A.2.21. (13, nt)-1\"J\IS :,;late <p is n-hwariant.

THEOREM A.2.22. The following slatcJnf"nls ore equivolent: (1) <p E ]{ fj ( n) · {2} <p(AB) = rp(/3nta(il)), \f/1, 13 E A, 1 •

{3) For any I wfw.w l'ottf'i(/' /mnsfor/11 is in c;jx'(IR.) and for any A, 13 E A, the followill.rJ Ufttal ion is sol is.fiu/:

j'f(t.)<.p(nt(.t1)13)dl = l f(t- i:J)<.p(/3n 1(A))dt,

Page 23: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

286 APPENDIX 2

where f(t- i/3) = J /ciw(t-ifi)dw.

THEOREIVI A.2.:n. If 'P is faithful, then for a cedain ;3, there uniquely exists a one-pammclcr r111iowmphism group n 1 such that 'P is ({3, a.t)-1\JvfS state.

Let {7i<P, Jr<P, :r,.p, uf} be theGNS represPntation of'{) E 6. r.p is defined by lj)(Q) = (x<P, Q:r,.;) for any Q E 1r<P(A)", which is called the natural extension of'{) to 1r"'(A)". The natuml c.rlcnc;ion l'V1 of n 1 is defined by iit(Q) = u'fQu':.t for any Q E 7rcp(A)".

3° For any 'P E J(ll(n), a1.(Q) = Q, VQ E Z"'. 4° K13 (a:) = {'P} :=::;. Z<.p = CI. 5° <.p E ex /(n) :=::;. Jr . .p(A)' n u'f(IR.)' = CI. 6° <.p E Ka(o:) n ex l(n) :=::;. 'P E ex f(;1 (o) {=:::::} 2..p =Ct. 7° Since Ko(o) is cotnpact. in wPa.k*-topology and convex /\'13(n) = w *

coex Ko(n).

Let us consider a Von N<'IJ Jli<Utn algebra 91 having a cyclic and separating vector x in a Hilbert space 7{. Define conjugate linear operators 50 and F0

by 5. \ 1* . o-' :r = .' :r (VAE91),

t>l':z: = :·\''":r (V.il' E 91).

Their domains contain ':ll.r and 91':r, rr'sjwctivc•ly, and tl1e~~ are closable operators: So = s·, f.;, = r ( 1) s; = F, r:; = s·. (2) S = Jt1 112 polar dl'CDillposit.ion.

t1 is called the modular OfH m.lor w.r.t {91, :r }, \\'liicli is unbounded positive selfadjoint. J is call<•d the rnodular conju.r~alc opuolor, which is conjugate unitary (i.e., (J:c, Jy) = (y. a:), J2 = 1 for any :r, y E 1£).

(3) Ll = FS. C:l.- 1 =SF. ( 4) p = J S J = C:l.t /2./ = ./ t::,. -I /'2.

Remark: These OjH'rators dc'IH'Ild 011 :c, so that til<'~' should he dcHoted by Sx, Fx, etc., but W<' OIIIitt<•d :r h<'l'<'.

THEORElVI A.2.2l (To111ita). (I} .191.! = ')1' . .J9l'.J = 91. (2) J AJ =A', (V:\ E 91 n ')1' ). (3} Lli191C:l.-i1 = 91. VIE IR..

Take ¢(A)= (:t,.l:l:), A E 91 and defin<' aj'(.'1) = _6.i 1.'\.6.-i1 , A E 91.

THEORE~11 A.2.2.1. (Ta/,·csaki) (!J satisfies the I\'AfS-crmdilioll w.1·.t. af at !3=-l.

Page 24: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

Bibliography

1. Abragam, A. ( 1961) The pri11cip/e of twclwr nw_qnctism, Clarendon Press, Oxford. 2. Abramowitz, M., and Stq~;tHI, A. (1984) 1/fwrlbool.: of Mathematical Functions,

abridged ed.: l\1. Danos and J. Hafdski ( cds.) Pocl.:clbool.: of Mathematical Functions, Deutsd1, Thun.

3. Acca1·di, L. (197,1) Noncommut.at.ive IVIarkov chains, in fnlcnwliorwl School of Mathematical Ph y8ic.~, Camerino, pp. 268- 20.'i.

4. Accardi, L. ( 1976) Non-relativistic quantu111 mechauics as a non-commutative Markov process, Adv. Math. 20, 329-366.

5. Accardi, L., Frigerio, A., Lewis, J. (1982): Qmmfum stochastic processes, Publications of the Research institute for Mathematical Sciences Kyoto University, 18, pp. 97-.

6. Accardi, L. and Ohya, M. ( 1 092) Compound dmnuels, transition expectations and liftings, J. Multiua riafc A rwly.~is, to appear.

7. Accardi, L., Ohya, l\1., and Snyari, H. (1mH) Computation of mutual entropy in quantum l\Iarkov chairrs, Opt'n Sys. lnfomwliott Dy11. 2, J;H-354.

8. Accardi, L., Ohya. l\1. and vVatanabe, N. ( UmG) 1\olmogorov-Sinai entropy t.hrough quantum Marko\' drain, Opc11 Sy.~. lnformafiutt /Jy11., Lo appear.

9. Accardi, L., Ohya, !\I., \'Vatcurabc, N.: Dymouicalcnlropy lhroii[J!t quantum Markov chain, to appear i11 Open System and Information Dyuamics.

10. Accardi, L., Ohya, !\.1., VVat.anabe, N. : Note ou (jll(lrt/.11111 dyn(llllical' entropies, to appear in Rep. l\.lat h. Ph~·s.

11. Aczel, J. ( 19GD) On different draract.erizations of entropies, Lectm·e Notes Math. 80, 1-11.

12. Aczel, J., and D;m'Jczy, Z. ( JD75) On Atcawrcs of lnfonnation and their Chamcle,·izaliotts, Academic Press, New York.

13. Adler, R. L., l\ordrcim, A.C. and McAdrew, l\1.11. (1965) Topological entropy, TmrH. AmLT. Math .. 'ioc. 114, 309·31!).

14. Akashi, S. ( 1 !)!)2) A relation bc:tween 1\olmogorov-Prokhorov 's condition and Ohya's fractal dinl<!nsions, //;Fl~: Trrm.~. !11/ornwliou T!teory 38, 1567-1570.

15. Almshi, H. : ·'Snpcrpositiou rcprescntahilit.~· prohlcrns of qw\llt.llm infonnation channels", to il(JJWill' in Oper1 System and lnform;ltion Dynamics.

16. Alberli, M.A., Cotta-Harnllsio, P .. ami Harndla. C. ( H)75) Preliminary results in the Banach space formulat.ion of mast.cr equal ion and s11hd.nlilrnics theory in quantum st.atist.ics, .!. Math. Pltys. Hl, I:U--HG.

17. Alicki, R. (1976) On the detailed balance condition for non-llamilt.onian systems, Rep. Math. Phy-5. 10, 249-21'i8.

18. Alicki, R. ( 1982) Pat.h integrals and stationary phase approximation for quantum dynamical sernigrmrps. Qwulrat.ic systems, J. Mr1tlt. Phys. 23, 1370-1375.

19. Alicki, R., and Le11di, K. ( ID90) Quantum Dynamical Semigmups and Applications, Lect. Notes in Phys. 286, Springer, Berlin.

20. Alicki, L. and Famres, M. ( 10fH) Defining quantum dynamical entropy, Lett. Math. Phys. 32, 75-82.

21. Allen, A.B .. ami I( am iya, N. ( eds.) ( 106,1) Pri milivc motile systems in cell biology,

287

Page 25: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

288 BIBLIOGRAPHY

Academic Press, New York. 22. Amari, S. ( 1985 ), Diffcrentiai-G'eometrical M clhod.s in Statistics, Springer, Berlin

(Lecture Notes in Statistics 28). 23. Antoniewicz, R. (1975) The chaotic state of the electromagnetic field coherent in

the second order, Rep. Math. Phys. 7, 289-301. 24. Antonelli, P.L., lng;ardcn, H.S., and Matsumoto, M. (1993) The Theor·y of Sprays

and Finsler Spaces wilh Applications in Physics and lliology, Kluwer Academic Publishers, Dordrecht.

25. Appel, P., and Kampe de Feriet (192G) Functions hypegeomell·iques et

hyperspheer·iques. Po/yrwruomes d 'lfcr·mite, Gaut!Jiers-Villars, Pads. 26. Araki, H. ( 1976) Relative entmpy for states of Yon Neumann algebras, Pub/. RIMS

/(yoto Univ. 11, 809-833. 27. Araki, H, (1977) Relative entropy of states of Yon Neumann algebras II, Publ.

RIMS Kyoto Univ. 13, 173-192. 28. Arverson, W.B. (1969) Subalgebras of C"-algebras, Acta Math. 123, 141-224.

29. Baker, C.R. (1978) Capacity of the Gaussain channel without feedback, Information [4 Co11lrol 37, 70-89.

30. Bateman, H., and Erd~lyi, A. ( 1953) Higher Tmrtscendcnlal Functions, vol.l, McGraw-Hill, New York ( Huss. trans!. Nauka, l\'loscow, 19G5).

31. Bayer, Vv., aud Ochs, W. ( ID73) Qnant.nm stat.es wit.la maximum information I, Z. NaltiTjorsch. 28a, G~H 70 I.

32. Bar-Hillel, Y. ( 196,1) Lrmywtyc 11.1td lnformat11m .. 'idccled E.ss"ys 011 lhei1· Theory and A pplica/irm, Addison- Wcsle.v, Heading;, Mass.

33. Belavkin, V.P. ( Hl0:q: "Qw111t.um diffusion, their nH!asurement and filtering, I", Probability Theory and its Applicat.ions, 38, pp. 7·12-757.

34. Bellman, R. (1961) Adaptive Control Proce . .;scs: "1 r:uided Tour, Princeton Univ. Press, Princeton, N. J.

35. Delis, M., and Guia~u, S. ( 1968) A quantitative-qualitative measure of information in cybernetic systems, IEEE Trans. Inform. Theory IT-14, 593-5911.

36. Benatti, F. (1993) Deterministic Chaos in Infinite Quanlttrtl Systems, Trieste Notes in Phys., Springer, Berlin.

37. Berezin, F. A. (108G) Me/hods of Second Quantization (in Hussain), Nauka, Moscow.

38. Bergmann, P. G. ( 1951 ), Generalized statistical mechanics, Phys. Rev. 84, 1026-

1033. 39. Bert.halanffy, L. von ( 1971) GciJCHII Syslcm Theory. Fozmdalioas Development

Applications, Penguin Rooks, Harmondsworth, l\1iddlesex. 40. Billingsley, P. ( 19G5) Er-godic Theor·y and lnfomwtion, Wiley, New York. 41. Boltzmann. L. (192:~) Vor/e.nmgen iiber Caslheorie, vol.l, 3rd eel., Barth, Leipzig.

(1st ed. 1895). 42. Bongard, M. (1963) On the notion of useful information, Problemy Kibernet. 9,

71-102. 43. Bratelli, 0. and Robinson, D.W. (1979), Operator Algebras and Quantum

Statistical M echonic8 /, Springer, Berlin. 44. Bratelli, 0. and Robinson, D.\<\1. (1981), Opcmlo1· Algebms and Quantum

Statisticnl M eclwn ir~ II, Springer, Berlin. 45. Brillouin, L. (l95G) .'icinuT and lnformalioll Theory, Ac:ndemic Press, New York,

2nd ed. 1962. 46. Brillouin, L. ( 19G,t) Scienlijic lll!ccl'lainly, and lnfomwlion, Academic Press, New

York. 47. Brown, L.tvl., Pnis, A., and Pippard, B. Sir (eds.) ( 1995) Twentieth Century

Physics, vol.l, lnst. Phys. Publ., Bristol. .

48. Callen, I-1. B. ( 198.'i), Thermodynamics and all lrtlroduction I o Thermostatistics,

2nd ed., Wiley, New York. 49. Campbell, L.L. (1965) A coding theorem and Rcnyi's entropy, Information and

Page 26: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

BIBLIOGRAPHY 289

Contml 8, 42~{-,12D. 50. CaraLbcodory, C. (190!>) .M(I/h . .-11111.67,355. 51. Chaitin, G. ( WGG), On t.he length of programs for computing finite binary

sequences, J. As.wc. Comput. AI11Chines 13, 5'17-5G!J. 52. Chaitin, G.J. ( 1087): ,:\lgorilhmic lnfonnatiou 7'/wory, Cambridge Uni. Press. 53. Choi, M.D. (1972) Positive linear maps on c•-atgchms, Can. J. Malh. 24,520-526. 54. Choi, M.D. ( 1975) Positive semidefinite biquadratic forms, Linear Algebra and

Appl. 12, 95--100. 55. Choquet, G. (1969) Lectw·e Analysis 1,1/,!11, Benjamin, New York. 56. Clausius, R. {1876) Die mechanisclie Warmetheorie, 3 vols., Vieweg, Braunschweig

{3rd val. 1891 ). 57. Coleman, A. J. (1963) Structure of fermion density matrices, Rev. Mod. Phys. 35,

668-689. 58. Cannes, A. and Stormer, E. ( 1975) Entropy for automorphisms of I h Von

Neumann algebras, Acta Math. 134, 289-306. 59. Cannes, A., Namhofer, H. and Thirring, W. (1987) Dynamical entropy of c•­

algebras and Yon Neumann algebras, Comnnm. Jllath. Phys. 112, 691-719. 60. Cannes, A., Naruhofer, ]f. all(l Thirring, W. ( 1987) The dynamical entropy of

quantum systems, in H. Mitt.cr and L. Pittner (eds.) Recent Developments an Mathemaical Physics, Springer, New York, pp. 102-136.

61. Czajkowski, C.Z. {1971) An information-theon:tical approach to the problem of polymoleculariLy of polymers (in Polish), Doctor Thesis, Preprint No. 140, Inst. Phys., N. Copernicus Univ., TorUli, 101 pp.

62. Czajkowski, C.Z. (1972) An Approximation method of calculating of Lagrange coefficients in classical information thermodynamics, Preplint No. 177, Inst. Phys., N. Copernicus Univ., Torurl, 13 pp.

63. Czajkowski, G.Z. ( 1973) Generalized gamma functions and tlacir application in classical information t.lwrmod.vniltnics, Bull. Acari. Polort. Sci. Ser·. mCith. astr. phy,~. 21, 759-76:L

64. Davies, C. ( ID61) Opct·;tt.or-valued entropy of a l(lliUII.Illll mechanical measurement, Pmc. Japcw. Acnd. 37, .'l:U--5Jt5.

65. Davies, E. B. ( 1970) Quanl.uan sl.oda;<st.ic pron,ss('S II, Comm 1111. A!ath. Phys. 19, 83-105.

66. Davies, E. B. (I 972) Dirfusion for weakly cotiplc-cl qwmtum oscillators, Commun. Math. Phy$., :mD<f25.

67. Davies, E.B. (1973) The harmonic oscillator i11 a heat. bath, Conmnm. Mnth. Phys. 33, 171-186.

68. Davies, E.B. {197-1) Dynamics of a multilevel Wigner-Weisskopf atom, J. Math. Phys. 15, 2036-2041.

69. Davies, E.B. (197Ll) Markovian master equations, Comnum. lila/h. Phys. 39, 91-110.

70. Davies, E. B. ( 1975) Mat.kovian master equat.ions, A rw. lnst. /lenr·i Poincare 11, 265-273.

71. Davies, E.B. (197G) l'vfarkovian master equations, Math. Ann. 219, 147-158. 72. Davies, E. B. ( 1976) Qurwlum Theory of Open Systems, Academic Press, New York. 73. DeLuca, A., Termini, S. ( 1!)72): A definition of a nonprobabili.~tic entropy in the

setting of fuzzy set theory, Inform. Control., 20, pp. 301-312. 74. Domotor, Z. {1970) Q1ialitat.ive information and entropy structures, in J. Hintikka

and P. Suppes ( eds.) Information and lllfermce, Heidel, Dordrecht, 148-194. 75. Donald, M.J. (1985) On the relative entropy, C'ommtm. Math. Phys. 105, 13-34. 76. Dubikajtis, L., lngarden, res., and Kossakowski, A. (19G8) On regularity of

information, Bull. !lead. Polon. Sci. Ser·. math. a.~tr. phys. 1G, 55-56. 77. Ebanks, B.R. (1983): On measures of fuzzine.~s am/their representations, J. Math.

Anal. Appl., 94, pp. 24-37. 78. Eddington, A.S ( I!H7) Thr Xalun' of the Phy.~ical World, Dent., London.

Page 27: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

290 BIBLIOGRAPHY

79. Edwards, M. (1D85) Dictionary of 1\ey ll'onls, ·Macmillan, London. 80. Eggleston, H.G. (1!>58) Convexity, Cambridge Univ. Press, London.

81. Ehrenfest, P., and Ehrenfest, T. ( 1906), Uber zwei bclmnnte Einwande gegen das Boltzmannsche H-theorem, Z. Phys. 8, 311-31,1.

82. Ehrenfest, P., and Ehrenfest, T. (1959) The Conceptual Foundations of the Statistical Aproach in Mechanics, Cornell University Press, Ithaca, N.Y. (first published in German in Encyklopiiclie der math. Wissensclwften, Vol. IV 2 II, No. 6, Teubner, Leipzig 1912).

83. Emch, G. G. (1972) Algebmic Methods in Statistical!lfeclwnics and Quantum Field Theory, Wiley-lnterscience, New York.

84. Emch, G.G. (197,1) Positivity of t.he 1\-ent.ropy on non-abelian K-flows, Z. Wahrscheinlicltkeit.~llteorie venv. Gebiete 29, :H J -252.

85. Emch, G.G., and Sewell, G.L. ( 1968) Nonequilibriutn stat.ist.ical mechanics of open systems, J. Math. Pltys. !), 946-958.

86. Evans, D.E. (1977) Irreducible quantum dynamical semigroups, Commun. Matk. Phys. 54, 293-297.

87. Faddeev, D.K. (1956) On the concept. of entropy of a finite probabilistic scheme (in Russian), Uspeklti Mat. Nauk 11, no.1(G7), 227-231 (German trans!. in Math. For·sclumgberichte IV, Ad;eiten zur Informaticmst!.eorie I, 3rd ed. DVW, Berlin 1967, 86-90).

88. Favre, C., and Marlin, P. (19G8) Approach to cq1rilibrium in an explicit quantum model, lldv. Phy.~ . .4c/n41, 33;~-351.

89. Favre, C., and 1\'lart.in, P. ( 19G8) Dynamique quant.ique des syst.cmes amm·tis "non mar·koviens", J/elv. Phy.~. Acta 41, 333-3Gl.

90. Feinstein, A. (1958) Formdations of Information Them·y, McGmw-Hill, New York. 91. Feller, W. ( 1950) A rr Iutroduclion lo Probability cruel it.>~ Applications, 2 vols., Wiley,

New York (2nd vol. 1DGG). 92. Fey, P.t1963) lllfomwtiontht·orie, Almdemic- Verlag, Berlin. 93. Fichtner, •K.H., Freudenberg, W., Liebscher. V.: "13cam splitting and time

evolutions df Boson systems", preprint. 94. Fikus, M. (1995) DNA, gens and p<llents (in Polish), l'Fif'dza i Zycie no.1, 10-11. 95. Fisher, R.A. ( 1922) On lite! mat.hcmalical foumlalions of theoretical statistics, Phil.

Trans. Roy. Soc. ( Londcm} A222, 309-368 (also in H.A. Fisher, Contr·ibutions tp Mathematical Statistics, Wiley, New York 1950, paper 10).

96. Fisher, R. A. ( W25), Tlteory of statistical est.imatio11, Pmc. Camb. Phil. Soc. 22, 700-725, (also in R.A. Fisher, Cont.rilHtticms to Matheuwticnl Statistics, Wiley, New Ym·k l!J!j(), paper 11).

97. Fisz, M. (19G;i) l'rolmf,ilily '/'lu:·or·y cmd A/athcruatiml Stritistics, ~kd ed., Wiley, New York.

98. Fock, V. A. ( HJ:!O) Niiltc~nu•gsmcthode zur Losung des quantenmechanischen Mehrkorperproblc~ms, Z. fJfly~. G 11, 126- H15.

99. Frigerio, A. ( 1977) Quantum dynamical semigroups and approach to equilibrium, Lett. Math. Phys. 2, 79-87.

100. Frigerio, A. Novellone, C., and Verri, l\1. ( 1977) l\1asler equation treatment of the singular reservoir limit, Rep. M11fh. Phys. 12, 279-284.

101. Frigerio, A. (1978) St.at.ionary st.ates of qnant.nm dynamical semigroups, Commun. Math. Phys. 63, 26!>-276.

102. Gallager, R. G. ( 1968) lnfor·mation Theor·y and Reliable Communicotion, Wiley, New York.

103. Gelfand, I.M., and Jaglour (Yaglom), A.M. ( 1958) lJber die Berechnung der Menge an Information iiber cine zufiillige Funkt.ion, die in einer anderen zufiilligen Funkt.ion ent.halt.en ist, Math. For.~clwngberichte \'/, Ar·beiten zur lnfonnationstheoric II, DVW, Berlin, 7-56 (Huss. original Usp. l\Ialh. Nauk 11 No. 73, 1957, 3-52).

Page 28: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

BIBLIOGHAPIIY 291

104. Gelfand, I.M. and Yaglom, A.M. ( 1 959) Calculation of the amouut of infonnation about a random function contained in auotlter such fuuction, Amet·. Afath. Soc. Trans. 12, 1!)9-2·16.

105. Gibbs, J. W. (190:2) Elemculat·y Pt·ici]Jie.s iu Sioli.~tical Mechaaics, Yale Univ. Press, New Haven, Con11.; Dove1·, New York 1960.

106. Gleason, A.l\1. ( ID5i"), 1\'lea ... 'ittres on the closed suhspaces of a Hilbert space, J. Math. Mech. G, 885-893.

107. Gnedenko, 11. W., and 1\olmog,orov, A.N. ( H)GO) Grcn::uedeilurtgcn von Sum men unabl,iingigcr Zuj]allsyrii.s.1ett, Akademie- Verlag, Berlin (except of the Russian original there is an English trans!. Poli!ih trans!. PvVJ'\, \-Varszawa, 1957).

108. Gorini, V., 1\ossilkowski, A., Sudarshau, E.C.G. (197G) Completely positive dynamical semigrot1ps of r!-lcvd systems, J. Math. Pltys. 17, 821-825.

109. Gorini, V. and 1\ossakowski, A. (1976) N-level system in coutact with a singular reservoir, J. Math. Phys. 17, 1298-1305.

110. Gorini, V., Frigerio, A., Verri, M., Kossakowski, A., aud Sudarshan (1978) Properties of quant.um tvlarkovian master equatious, Rep. Math. Phys. 13, 149-172.

111. Grabowski, M., and Staszewski, P. ( 1977) Ou cont.inuit.y properties of the ent.l'Opy Of an ObSCJ'\'iliJie, J?ep .. \111/h. eftljS. 11. :!;!] ·2:17.

112. Grabowski, l\1. ( I !l78) il-<·nt ropy for spectrally ahsoltltcly continuous observables, Rep. Mal/1. PhyH. 14, :177 :11q,

113. Grenlande1·. V. ( l!l(d) /Jrofmbilili1·~ 011 11(qdnmc s/rudurc.~, \Viley, New York. 114. Grzegorczyk. :\. ( I!)D:l). J>l,ilosopllical aspects of mat.lwtnatics (in Polish), in

M. Skwarczy1'1ski cl fll. (c~ds.) Lcbyko11 :\111/t 11111iyc.:II!J {:\latllcllwlical Lexicon}, Wiedza Powszecllllil. \Varszawa, :206-217.

115. Guddcr, S. and Mcrchand, J.-P. ( EJ7:2) Noncotnlllltt.ativc probability on Von Neurnaun algebras, J. Math. Phy.s. 13, 799-80G.

116. Guia!lu, S. (1971), \Vcightecl enlropy, Rep. Malh. Phys. 2, JG.'i-179. 117. Guia!)u, S. (1977), f,jormafio11 Tlwor·y with App/icafio1ts, 1\'lcCraw-Hill, New York. 118. Gupta, H. C. and Sh<ll'lllil, S.D. (1975) Noiseless coding thc~orem for non-additive

measures of entropy and inacuJracy, J. Muth. ScicTtce.~ 10, 8G-95. 119. Gupta, II. C. ( 1~)77) A .'-itudy ou S'ub-culdilivl' am/ Non-additive Measures of

lnfonnalicm, Ph. D. Thesis, tJ ni v. of Delhi (typescript, :280 pp., unpublished). 120. Haake, F. (197:3) in Sprinqf'r Tmct.s in Modur1 Physics, GG, Springer, Bcdin. 121. Haken, H. ( 1970) Laser t.lu:ory, in Fliigc (eel.), Jlrlllrlbuclt dct· Pity.~ .• vol. XXV /2c,

Springer, Berlin. 122. Haken, II. ( 1!>8:·1) Syltci~<Jd.ics, An lntmductirm, 3rd cd., Springer, Berlin. 123. Haken, II. ( 1 D87) .'\rh•mtn·d Sy~tcructics, Springer. Berlin. 124. Haken, II. ( 1988). /nfonnrd irm r111d Sdf- Orurllli::alilm, Springer, Berlin. 125. Halrnos, P.H. ( l!l50), Mm.~ure Theory, Van Nost.rand, New York. 126. Hardy, G.H., Littlewood, J.E., and Polya, G. ( 1%2) luequalilies Cambridge Univ.

Press, Cambridge. 127. Hartley, R.V.L. ( 1!>28), Tr;uJslllission of information, /ld/ Sy.~tcm Techn. J. 7, 535-

563. 128. Hartree, D. H. ( 1~)2.':) The wave nH~chanics of an atom with a non-Coulomb central

field, Pmc. Gamin·. !'hi/. Soc. 24, 8!), 111. 129. liermann, A. ( Fl72), l.c·.rinm Ur·.5chichtc de,· J>hy.d.: .1-Z, Deubncr, SLuttgart. 130. Hiai, F., Ohya, 1\1. and Tsukuda. ivl. ( Hl81) Sulfici(:ru:y, ~~~lS condition and relative

entropy in Von ~CIIIIl<IILII illgchra>-. Pacific .J. Malh. bf!J6, 9!)-109. 131. I-liai, F., Oh.\'il. i\1. illld Tsnk11da, l\1. ( J!).':::-1) Sulficicm:y and relative entropy in

·-algebms with application to qu;utl.lllll systerus, Pacific J. llfath. 107, 117-140. 132. I-lolcvo, A .S. ( 1 !J7:·n Stat is tical problems in qu;tnl.lllll physics, in Proc. 2nd Japan­

USSR Sympo.~. Pm/m/;i/ily Theory, Lcct.nrc Notc~s i11 1\lath. 330, pp. 104-119. 133. Holevo, A.S. ( J!)n) Some esti1nates for the illllOllnt of information transmittable by

a quantum comnlllllicat.ion channel (in Russia11), Pr·ublemy Peredachi lnfor·macii

Page 29: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

292 BIBLIOGRAPHY

9, 3-11. 134. Holevo, A.S. ( l!l!J I) Quant.11111 probability and qu;ml.um st.at.1st.1Cs (in Russian),

ltogi N,1.wki i Tec/111iki St'l'. Modem Probh·111s of Mal h., Ftmdcuuenllll T1·ends 83, 5-132, ~66-270.

135. lhara;) S. ( 1979) On I he capacity of the discrete t.ime Gaussian channel with feed9ack, in Tran.s. 8/lt Prn!JIIC Co11f. C, Czechoslovak Acad. Sci., Prague, pp. 175-186.

136. Ingatden, R.S., and Urbanik, K. (1961) lnformiltion ils a fumdamental notion of stAtistical physics, Bull. Amd. Polan. Sci., Sb·. math. aslr. pltys. 9, 313-316.

137. Ingarden, R.S., allCl Urbanik, K. ( 1962), Information witiJOul. probability, CoiL. Math, 9, 131-150.

138. Ingarden, R.S., and Urbanik, I\. ( 1962) Quantum informational Lhennodynamics, Acta Phys. Polon. 21, 281-304.

139. Ingarden, H..S. ( 19G;~) A simplified axiomatic definition of information, Bull. A cad. Polan. Sci., Ser. math. astr. phys. 11, 209-211.

140. Ingarden, R.S. ( 1963), Information theory and variat.ional principles in statistical theories, Bull. ;\cad. Polotl. Sci., Sir. mallt. (Js/r. phys. 11, 541-5,17.

141. Inganlen, R.S. ( 1 9G4) Theoretical investigal ions into fundamentals of thermodynamics in Wmdaw, in J. Kaczer Ph!J.Sics lind Techniques of Low Tempemlurcs, Proc . .'/rcl llf'!Jiorwl Co11f. Pm!JUC 19()3, Czechoslov. Acad. Sci., Prague, •15-52.

142. lngardcn, RS. ( I!JG .. J) Informal ion theory and thcnnodynamics of light. Part I. Foundations of information theory, Fortsch1·. Pity.~. 12, 567-591.

143. lngarclen, R.S. ( 1965) The Iligher Order Temperatures and the Zeroth Principle of Thermodynamics, !Ju/1. Auul. Polon. Sci. Sh. math. a.~lr. pity.~. 13. G9-72, errata 532.

144. lngarden. R .S. ( I DG.'i) I nfonnat ion t.heor,r and I hc:rmodynamics of light. Part I I. Principles of inforniill ion t.hc:rniodynmnics, Forl.~c!tr. Plty.s. 13, 755·-805.

145. Ingan.len, H.S. and 1\ossako\\'ski, A. (1965) Statisticalt.hennodymunics with higher order temperatun:s for ideal gases of bosons and fcrmions, Acta Pltys. Polon. 28, 499·-511.

146. lngarden, H.S. { l!)(i'J) Si1nplificd axio111s for infonnatiou witho111. probability, Pmce Mat. 9, 273--:282.

147. Ingarden, R.S., and 1\ossakowski. A. (19G8), An axiomatic definition of information in quantum mechanics, /Ju/1. Acad. Pohm. Sci. S't:,.. mrllh. aslr. 7;hys. 10, 61-65.

148. lngarden, R.S. (1968) Notion de temperature (:l pompage opt.ique', Arm. /nst. J/em·i Poincm·e, Ser:t. A, Phy.'l. Theor·. 8, 1·--2:3, :!nd eel.: Amd. Polon. Sci., Centre Sci. d Paris, Conferences 71, 3·-20.

149. Ingarden, R.S. ( 1969) Generalized thermodynamics of t.he electromagnetic radiation in a cm·ity. Part I. A 5-tc!rnpcrature llwrmodynamics of one mode, Acta Phys. Polotl 30, 855-88.).

150. Inganlen, R.S. ( 1971) An i11fonnation-t.heoretical approach to the theory of lasers, Bull. Acad. Polor1. Sci., Sc.~r. sci. malh. a.slr. pity.~. 19, 77-82.

151. lngarc..len, H .S. (I 973) Generalized irreversible tlwrmodynamics and its application to lasers. Part I. General theory, Acta Phy.~. Polo11. A43, 3-H.

152. lngarden, R.S. (ID7;1) Generalized irreversible t hcrmodynamics and its application to lasers. Part II. T!JCnnodyllillllics of a laser, Ada P!tys. Polan. A43, 15-35.

153. Inganicn, R.S. ( 1974) Information Theory a11rl Thcnuodynamics, vol.l: Part I. Information Theory, Chap.l. Classical Theory, l~n~print No. 270, lnst. Phys., N. Copernir.us Univ .. Tonu1.

154. Ingarclen, R.S. ( 1!)7 .. 1) l11fomwtion Theory aud Thcnt~oclyrwmic.~. vol.2: Part I. Information Thcor.v, Chard I. Qwmt.um Theory, Prcprint. No. 275, lust. Phys., N. Copernicus llniv., Tonu't.

155. luganlen, H .S., and 1\ossakowski. :\. ( 1975) On t.hc connection of noneqnilibrium inforlllat.ion t.llcnnod.l'lli\111 ics ll'it.h non- J I illlilt 011 ian CJIIillllUIII nwchanics of open

Page 30: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

13113LIOG IlA PIIY 293

systems, Arm. Phy8. (N.Y.) 89, 451-485. 156. lngarden, R.S. (1976) Quantum information theory, Rep. Math. Phys. 10, 43-72. 157. lngarden, R.S., Janyszek, H., I<ossakowski, A. and 1\awaguchi, T. (1979} Tensor

33, 347-353. 158. lngarden, R.S. ( Hl80) An information-thermodynamical model of the primitive

motile system in cell biology, Bull. Acad. Polon. Sci., Ser. phys. astron. 28, 125-131.

159. Ingarden, R.S. ( 1987) Geometry of thcrmodynam ics, iu H.D. Doelmer and J.D. Hennig ( eds.) Dij]cn,rllial G'eomcl ric Alc/lwd8 iu Theoretical Physics (XV DGM Conference Claus! h;-\1 1086}, World Scientific, Singapore, pp. 455-465.

160. lngardcn, R.S. ( 1987) SP.If-organization of t.he visual information channel and solitons, in H. Haken (e(l.), Computational Sys/.cm8 --Natural and Artificial, Proc. Intern. Symp. ott Synerget.ics, Schloss Elmau, Bamria, !\lay 4-9, 1987, Sp1·inger, Berlin, 5G-64.

161. lngarden, R.S., and G6rniewicz, L. ( HJDO) Shape as an information-thermodynamical concept and the pattern recognition problem, Math. Nachr. 145, 97-109.

162. lngarden, R.S. ( 1993) Towards mesoscopic thermodynamics: small systems in higher-order states, Open Sys. Information Dyn. 1, 75-102, errata 309.

163. Ingarden, R.S., and Nakagomi, T. (1992) The second order extension of the Gibbs state, Open Sys. lnforlllalion /Jyn. 1, 259-:268.

164. lngarden, H.S., and l\1cllct·, J. ( 199,1) Temperal.llrcs in linguistics as a model of thermodynamics, Open Sy.s. lnfonnution IJyn. 2, :211-:2JO.

165. Izumi, S., el (1{. ( 1017) 1\yori/..su Malht·,wtirul Forrrwlae and Tables of Functions (in Japanese), 'llh eel., 1\yoritsu, Tokyo.

166. Jaworski, VV., and lnganlcn, H.S. ( 1980) On tl1e pm·tition function in information thermodynamics with higlter order t.cmperat nrcs, IJu/1. :lead. Polon. Sci. Ser. phys. astr. 28, 119- I :n.

167. Jaworski, W. (I D81) On information thennodyuamics with tP.mpcratures of the second order (in Polish, tntpublished), Master Thesis, lnst. Phys., N. Copernicus Univ., Tonn).

168. Jaworski, W. (1981) Information thermodynamics with the second order temperatures for t.he simplest cla .. ..,sical systems, ;\eta Phys. Polon. AGO, 645-659.

169. Jaworski, W. (198J) On the thennodynamic limit in information thet·modynamics with higher-order t.emperatnres, Acta Phys. Polotl. AG3, 3-19.

170. Jaworski, W. (19K!i) lnvcsl.igation of t.hf~ tltcrmodymunicr\l limit for the states maximizing entropy nndcr ;wxiliar.v conditions for higher-order statistical moments (in Polish, lllllllthlishcd ). Doctor Thesis. lnst. Phys., N. Copernicus Univ., Torun.

171. Jaworski, \V. ( 19/·t')) Ott t.ll(, microcanonical CIIS<'tnblc of a spin system interacting with one-mode clcctronlrtgllct ic riel d. /.. Ph.vs. n Condensed !\latter 59, 483-491.

172. Jaworski, \·V. ( 1!>81) lliglwr-ordc:r ntotnent.s at1d the maximum entropy inference: the thermodynamical li111il approach, J. Pltys. A: Mrllh. Gen. 20, 915-926.

173. Jaynes, E.T. ( 1957) lnfonnation l.hcory and st.atislicalmcchanics, Phys. Rev. 106, 620-630.

174. Jeffreys, H. (1946), An invariant form for the prior probability in estimation problems, Proc. Roy. Soc. (London) A18G, 453-461.

175. Jeffreys, H. ( 1948) Theory of Probability, 2nd ccl., Oxford Univ. Press, Oxford. 176. Jensen, J.L.W.V. ( 190G) Sur lcs fonctions convexes et lcs inegaliles entre les valeurs

moyennes, Acta /l[(l/lt. 30, 175-193. 177. Jumarie, G. (1986) Subjcr:livity, lnfomwt.ion, Systems. fut.roduction to a Theory

of Relativi.~tic CyiH:mElics, Gordon and Breach, New York. 178. Jumaric, G. ( 1 990) Rdalivc lnfornwlicm. Thcoric.~ and Applicatious, Springer,

Berlin. 179. Kadison, R. V. ( 1952) A generalized Schwartz i1tcqualit.y aud algebraic invariants

for operator algebras. A1111. of Math. 5G, 49+50:t

Page 31: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

294 BIBLIOGRAPHY

180. Kampe de Fcrict, .J. ( 195 7) Functioru de ]Jhy.~iquc: molhematique, CNRF, Paris. 181. Kendall, D .G. ( 19G4), Functional equations m inf ornliltiou theory, Z.

Wahrscheinlichkcilslheorie 2. 225-229. 182. Khinchin, A.J. (1957) llfathcmatical Foundation.~ uf /nforlllalion Theory, Dover,

New York (Russ. originals 1953 and 1956). 183. Klein, 0. ( 19:n) Zur quantcnmechanischen Bcgriindung des zweiten Hauptsatzes

der Wannelehre, Z. P!tys. 72 767-775. 184. Kohnogorov, A.N. (1D31} l!ber die analytische Methoden m der

Wahrschciulichkeitsredumng, Math. Aun. 104, 415-436. 185. Kolmogorov, A.N. ( 1933) Gnmdbegriffe cler Wahrsclteinlichkeilst·echnung,

Springer, Berlin. 186. Kolmogorov, A.N., Gelfand, I.M., and Yaglom, A.!Vl. (1956) On the general

definition of amount of information (in Russian), Dokl. Akad. N. SSSR 111, 745-748.

187. Kolmogorov, A.N., Gelfand, I.M., and Yaglom, A.M. (1958), Amount of information and entropy of continuous distributions (in Hussian), Proc. 3rd Allunion Moth. Cu11qrcss, Academy Press, Moscow, val. 3, 300--320.

188. Kolmogorov, A.N. ( ID58): il new metric i11vurianl of tnmsilivc dynamic systems and attl.omm·phisms in LdJc:HJUC 8pace.s, Dold. Akad. Nauk, SSSH 119, pp. 861-869.

189. I<olmogorov, A.N. ( 1 !JGJ) Theory of transmission of information, A mer·. Mal h. Soc. Tmn.~l. Ser.2, 33. 291.

190. Kolmogorov. A.N. (l!JG'i): Tl11·ir apprnadw~ to /he quanlilive definition of information, Prol>. of Inform. Trans. 1, pp.:i-11.

191. I<olmogorov, A.N. (lDGR), Three approaches to the q11antit.at.ive definition of infom1at.ion, lntem. J. Co111puler 11/ath. 2, 157--lGR ( H11ss. original 19G5).

192. Kolmogorov, A.N. ( 19G8) Logical basis for information theory ami probability theory, IEEE Trans. 111/orm. Theor·y IT-14, 778-782.

193. Kolakowski, L. ( 1 99·'1), Prese11ct: of Jlfytlt (in Polish), Wydawnictwo Dolnosll}skie, Wroclaw (Germ. t.ransl. Die Gege11wiil"ligkcil des Mythos, 197:!, Polish 1st edition, Paris, 1973).

194. Kossakowski, A. {I !JG8) On a modification of the 1\:ullhack information, Bull. A cad. Polan. Sci. Ser. math. aslr. phy:s. 16, 349-352.

195. Kossakowski, A. (I !JG!J) On t.hl' quantum informational thermodynamics, Bull. Acad. Polrm. Sci. Sr.:,._ nwfh. a:str. phys. 17, 2G:3--2G7.

196. 1\ossakowski, A. (I 970) lnfonnat ion-thcoret.ic:al decision scheme in quantum statistical mechanics (in Polish), Preprint No. 122. Habilitation Dissertation, Inst. Phys., N. Copernicus llniv., Tonui.

197. Kossakowski, A. ( 1972) On quantum stat.ist.ical mechanics of non-Hamiltonian systems, Rep. Math. Phys. 3, 247-274.

198. I<ossakowski, A. (I D72) On n!'ces~;ary and ~;uflicient. conditions for a generator of a quantum dynamical semi-group, Bull. Acad. Polan. Sci., S{r math. astr. phys. 20, 1021·-1025.

199. 1\ossakowski, A. ( 1 !J7:q On the ~eneral form of the generator of a dynamical semi group for the spin 1/1. sysl.crn, Bull. i1 carl. Polo11. S"ci., S 'er. math. aslr. phys. 21, 6,19--653.

200. 1\ossakowski, A. and Sudershan, E. C. G. ( 1 D7G) Cornpletd.v positive dynamical semigroup of N -level sysl.c111. J. Mallt. l'lty.~. 17 821- 825.

201. Kossakowski, A., 1-'ri!!,<orio, A., Corini. V., and Vc~rri, !\1. ( 1977) Quantum detailed balance and [\!\IS coralilion. ('o/111111111. il!afh. l'hy.s. G7, D7·110.

202. I<raus, K. (1971) General state changes in quantum theory, Jl111t. Phys. (N.Y.) 64, 311-333.

203. Kraus, I<. ( 198;J) State.s, Effects and Operations. Springer, Berlin. 204. Krilov, V.I. (1967) Appro:rimate Evaluatio11 of /nfcgml:s (in Russian), 2nd ed.,

Nauka, Moscow.

Page 32: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

BIBLIOGHA Pll Y 295

205. Kullbac:k. S., and Lcihlcr. B.A. ( 1951) On inforu1;1l.ion and sullic:iency, .4un. Afath. Statist. 22, 79-:-:Ci.

206. I<ullback, S. ( 19.59) lllfonuatioll Theory awl Statz.sti('s, Wiley, New York. 207. Kummer, II. ( 19G7) 11-rcpresentability problc111 for reduced density matrices, J.

Math. Phys. 8, :.!OG:.l 2081. 208. Kuratowski, C. ( 19.58) Topologic, vol.l, ,tth cd., P\'VN, YVarszawa, (Engl. ed.

Academic Press, New York 19GG, Huss. ed. !\·1ii·, Moscow 1966). 209. Landau, L. D. and Lifshitz, E. M. (198·1) Fluid Mcclwnics, Pergamon Press, Oxford. 210. Lanz, L., Lugiato, L., and Ramella, G. (1971) On the existence of independent

subdynarnics in quantum statistics, Physica 54, 94-136. 211. LaUJ·ikainen, K.V. ( 1988) Beyond the Atom. Tltc Philosophical Thought of

Wolfgang Pauli, Springer, Berlin. 212. Lavenda, B.I-1. ( ID!H) Stat is ileal Physics. A Slali.~lical !1ppmach, Wiley, New York. 213. Lawson, J.L., all(l Uhlcnbeck, G.E. (1950) Threshold Signals, MCGraw-Hill, New

York. 214. Lee, P.M. ( 196,1), On the axionts of information theory, Ann. Math. Statist. 35,

415-418. 215. Lehmann, E.L. ( 1950), Some p1·inciples of the t.l1eory of testing hypotheses, Ann.

Math. Statist. 21, 1-.?G. 216. Levin, R.D. ( HJKX) Patterns of maximal entropy, in W. Giittinger and G.

Dangemeyr (eels.), The PhyHics of Structure Fomwtioa, Springer, Ikdin, 78-86. 217. Licb, E.H., Hu~kai. M.B. ( 10/a) Proof of t.lte ~trong subaddit.ivit.y of quantum

mechanical entropy, J. Math. Phys. 14, 19a8-l!Hl. 218. Lindblad, C. ( Hl7J) l·:ntropy, information and quantum measttrcment, Commun.

Ma/11. Phys. 33, JO!i :L~:.!. 219. Lindblad, C:. ( 1!1/:i) Contplc,td.'· po~it.ive maps and cnt rop_v itwqttalities, Cornmun.

Math.Phys.40,1·17 1:>1. 220. Lindblad. G. ( \D/7) On tlw 1-!,C'lwralors of qttilllllllll dynamical ~ctnigroup. Commun.

Math. Phy.~. 48, ll~l l:lO. 221. Louisell, W.ll. ( l!l/:1) (juuutlllll .'-,'Jutistiml f>r"twrlic.~ of /((lr/i(lticm, Wiley, New

York. 222. Lornnicki, A. ( 1~)2:l) l\ouvc:aux fondcments du calcul des probabilit.cs, Fund. Math.

4, 3tJ-71. 223. Los, Z.M. ( 1970) Clas~ical information thennodynamics of conformation of

polymers (in Polish), J\lastcr Thesis, lnst. Phy~ .. N. Copernicus Univ., Tomi unpublished).

224. Majewicz, A.F. (1D85), The Gmmrrwlicrtl Cotcqury of Aspect ill Japanese and Polish in rl ComJmmtit•e Pn·spcctivc. A. l\1ickicwicz Univ. Press, Pozna{!.

225. Manclelbrot, B. B. ( IDX:!) The Fmc/a[ Ceomclry of i\'(lturc, Freeman, San Francisco. Linguistic Series 2, Poznar'L

226. Martin, S.E. ( 10~~) .-1 Rt}Cn!U't' Gra11mwr of ltttHIIw~e. '2nd cd., Tuttle, Rutland, Vermont, Tokyo.

227. Matsuoka, T. and Oh_l'it, l\1. ( 1095) Fractal dirrl!:tlsions of states and its application to Ising model, Rc:p. Math. Pltys. 3G, 27-,11.

228. Maurin, I\. ( Hl7:1) !llet.!tods of lli/IJert Spacc.s, 2nd eel., PWN, Warszawa. 229. Maurin, K. ( 1993) lVIill.lwmatics and physics (in Polish), in J\1. Skwarczy1l.ski et.

a/. (eels.) Lel.:.~yl.:o11 ill a/emolyczny ( /1/athenwtic(ll Le:ricon}, Wicdza Powszechna, Warszawa, 781-%,1.

230. Michalski, M. ( 1992) Henyi entropies, Lyapunov exponents ami dimension spectra for analytically perturbed piecewise linear maps, Open Syst. Inform. Dyn. 1, 409-422.

231. Morrison, D.F. (197G) Multivariate Stalistiml Methods, 2nd eel., McGraw-Hill, New York.

232. Mm·se, P. !\1, and 1-'cslrllilch. II. (I DS:q Mctlwrl.s of Thcorclical Phy.~ics, McGraw­Hill, New York (H11ss. trans!. lzd. lnostr. Lit., ~loscow, lst vol. 1958, 2nd val.

Page 33: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

296 BIBLIOGRAPHY

1960). 233. Muraki, N., Oh_va, M. and Pctz, D. (1092) Note on entropy of general quantum

systems, Open Sy.s. !11/ormalion Dyn. 1, 43-5G. 234. Muraki, N. and Ohya M. ( 1996) Entropy funct.ionals of 1\olmogorov-Sinai type and

their limit theorems, Lett. Math. Phys., t.o appear. 235. Murti, T.R.V. (19~7) Tht: Centml Philosophy of Bzuldltism. A Study of the

Madhyamil.:a Sy.~tc:m, Unwin Paperbacks, Loudou. 236. Nagao, G. ( 1!)89) The Fourulatiorwl Stanclpoittt of Afadhyamil.:a Philosophy, transl.

by J. P. T<eemm, St.at.e Uuiv. of New York Press, Albany, N. Y. 237. Nakagomi, T. ( 1981) l\1csoscopic t.hennodynilmics of uonequilib1·ium open

systems. I. Negent.ropy COJISIIlnption and residual c111 ropy, J. Statist. Phys. 26, 567-611.

238. Nakagomi, T. (I D!Jl) ;'l·ksoscopic version of tlu~nnod,\·nainic equilibrium condition. Another approach t.o higher order temperat.un:s. OfWII Sys. lrzfo,.,wtion Dyn. 1, 233-2·11.

239. Nakamura, M. and Umegaki, H. ( 19G2) On Von Neiiiil<mn theory of measurements in quantum st.at.ist.ics, Ma/11. lop. 7, 151-157.

240. Nettleton, R.E., and Sobolev, S.L. ( 19!)5) Appliutt.ions of Extended thermodynamics t.o chemical, rheological, and transport processes: a special survey Part I. Approaches and scalar rate processes, J. Non- Equilib. Thcrmodyn. 20, 205-229.

241. Nicolis, G. and Prigogine, I. ( l9i7) SdforrJcmzzalion in No~t-Equililn·ium Systems, Wiley-lnt.erscience, New '{ork.

242. Nicolis, G. ( 1989) }~Jploriny Co111plcri/y, Freellli\11, New York. 243. Ochs, 'vV. and Bayer, W. ( 197:S) QIIantulll states with maximum information

entropy II, Z. Naltuforsch. 28a, 1571-1585. 244. Ochs, VV. ( 1975) A H<·w axiomiltic characterizatio11 of t.he Von Neumann entropy,

Rep. Math. Phys. 8, 10!)- 120. 245. Ochs, W. ( 1970) Basic propcrti<:s of the gc!lcralizcd Boltzniilfiii-Gibbs-Shannon

entmpy, Rep. !lfatlt. Phy.~. 9, n5-155. 246. Ohya, M. ( 1981) Quantum ergodic channels in operator algebra, J. Math. Anal.

Appl. 84, 318-32~. 247. Ohya, M. ( 1983) On conipoimd state and mutual infonnation in quantum

information theory, n-;J-,'E '1/·ariS. !lljormatioll Theory 29, 770-777. 248. Ohya, tvt. (I ~)8:{) Note 011 quaniiiiii probability, II N11ovo Cime11/o 38, ,102--406. 249. Ohya, l\·L (191·q) l~nlropy tr<uisntission in c•-dyuamical systems, J. llfalh. Anal.

A ppl. 1 oo, 222 2:{!"i. 250. Ohya, .M. (1985) St.al.c ciiallge aud cntropi<·s in CJIIilllllltll dynamic<ll systems, in L.

Accardin and 'W. \'on VVr~ldcnfc:ls (eds.), (Jww/um l'm/)(1/Jilily a11d Applic(l/ions II, Lect.ure Notes in i\latl1. 113G. Spriiiger. Herli11, pp. :.197 ,101-).

251. Ohya, M. <md \Vat.anahr:, N. ( 198G) A new treat nH:nl of COilllllllllicat.ion processes with Gaussian cliilllllels, .Jal'· J .. ·\ppl. Mallt. 3, I!Ji lOG.

252. Ohya, M. ( 198~>) Some aspects of quantunt information 1 heory and their applications to irrew~rsihlc pmcesses, Rep. Mallt. Phys 27, 19-'17.

253. Ohya, M. ( 1989) Fractal dimensions of general quantum stat.cs, Proc. Symp. Appl. Func. Anal. 11, 4G-57.

254. Ohya, l\1. ( 19D I ) lnformntion dynamics and its applicat.ion to optical communication processes, in Lcclure Noles ill Phy.s. 378, Springer, Bcdin, pp. 81-92.

255. Ohya, rvt. ( 19D1) Fract.al dimension of states, in Quantum Probability and Related Topics \lJ, \'Vorld Scientific, Singapore, pp. 359--3G9.

256. Ohya, f\1. and Pet.z, D. ( I!J!U) Qua11/um Entmpy ami its Use, Springer, Berlin. 257. Ohya, .M. ( 1095) Stat.(: dti\IIge, complexity and fractal in quantum systems, in

V. P. Belad\in, 0. Hirota and H.L. l111dson (eds.), (Juantum Communication and !vfeasurcment, Plclllllll Press, New York, pp. :W9· :120.

Page 34: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

BIBLIOGHAPJIY 297

258. Ohya, M., Suyari, H. ( 1!1!l5): "An application of lifting theory to optical communiation processc~s", Hep. J\·1at.h. Ph~·s. 3G, pp. '10:1 ·120.

259. Ohya, M. ( l9DG) Foundation on entropy, con1plc,xi t.y and fractal in quantum systems, in Probability 1'owarcls /he Vear :!000, t.o appear

260. Ohya, M. and \Vat.anabe, N. (199G), Note ou irreversible dynamics and quantum information, in Proc. A. Frigcrio Con/., to appear.

261. Ohya, M. and Mat.suoka, T. ( 199G) Analysis of complexity of craters and rivers by fractal dimensions of stal.es (iu Japanese), Tmns. /nsf. Elcclrcmics, Information t1 Communication, to appear.

262. Ohya, M., Matsuoka, T. ami Inoue, I\. (109G) New appmach to ~-entropy and its comparison with 1\olmogorov's !-entropy, preprint.

263. Ohya, M.: Foundation of entropy, comple:rit.y and fmctal in quantum systems, to be published in International Congress of Probability Towards the Year 2000.

264. Ohya, M. : "Fundamentals of mutual entropy and capacity in classical and quantum systems", SUT preprint.

265. Ohya,M., Pctz, D., \Vatanabe, N. : "On capacities on qnanturn channels", SUT preprint..

266. Ojirna, 1.. llascga\\'a. II. and ld.iy;uJa~i. :\1. (IDS.'.() Entropy production and its positivit.y in nonlint:ar n:spcllls<: 1 heory of quanl.11111 d.\·n;tmical syst.ems, J. Statist. Phy.<~. 50. G:n ():;;,

267. Ojinlil, I. ( JC)){D) t·:11tropy prochu:lion and IIOIIcquilihrilllll stationarity in quantum dyanmical systc111s. l'h.vsical lllt!i'llling of Van I love' li111it, J. Strrli.~l. Phys. 50, 203-226.

268. Onicescu, 0. ( l!lGG) Em:rg;ia informat.ionala (in Humanian), Stud. Cercet. Matern. 18, 1419-1420.

269. Organ, T. W. ( 1975) II' cslcm Approaches to Ea.~tcrn Philosophy, Ohio Univ. Press, Athens, Ohio.

270. Pale, J. V. (HJ7,1) Tl1e Bloch equations, Comrll/171. Math. Plrys. 38, 2111-256. 271. Palmer, F. H. ( I!)~G) Mood rmd Modality, Camhridge Uni,·. Press, Cambridge. 272. Parthasilmthy, 1\.lt ( I!!Gi") Prolmbilify nrnr.mn·8 on me/ric 8fWcc.s, Academic Press,

New York. 273. Peters, E.E. ( l!)kk) ('/trw8 aiHI Onlcr in fhr Capital !\lru-l.:cts, Springer, New York. 274. Petz, D. ( HlkG) Suflicivnl suhall!,dmts and the rdativ1' e11l.ropy of states 011 a Von

Nemnann algebra, Coillllltllt. ,1/allt. Phys. 105, I :n--1] I. 275. Petz, D. (1990) The .-llyc/;m of Crumoniml Collllllllllimlioll Rt>lation, Leuven Univ.

Press, Lcuvcu. 276. Pinsker, M.S. ( 19GJ) Gaus:o;iau sonrces (in Hussian ), Pmblcms lnfor·mation

Transmis.~ion 14, 5!1·-1 00. 277. Pippard, A.B. (1057) Eh·mcnt.~ of Classical 1'1trrlllorlyrwmzc.s, Cambridge Univ.

Press, Cambridge•. 278. Pot.schke, D., and Sohik. F. (IDXO) :\1(1/hcow/isclrc lnfomwtionslhcorie, Akademie­

Verlag, Berlin. 279. Powles, J .G., and Ciu iiZZil, n. ( 1 q{)!)) All informal iou t llmry of line shape in nuclear

magnetic resonaiiCP, Paplor I 12. lnlcm. Conf. u11 l'dagnct.ic Hesonancc, Monash, Australia, !\ ugust I !lfll.

280. Presutti, E .. Scan:iat,.Jii, E .. S<:\1'1'11, C:.L .. and \V;IIlddingh. F. ( 1972) Studies in the ('*-algebra ( hcor.\' of nCJIJCqllifif>rilllll Sl<tl ist icill lll<·chanics, d,YIIillllics of open and mcchanicall.r dri,·,·11 sysl t:111s, J. ;\/!1/lt. J>lur~. 13. I OKS ·IO!l.~.

281. Prigogine, 1., George, C .. I louin. F., and Ho~cnldd, L. ( ID/:{) C'ltcmical Scripta 4, 5-32.

282. Prigogine, I. ( 1080) From 1Jei11y to Becominq, Time !I lid Complc.rily intire Physical Sciences, freeman, San Francisco.

283. Prigogine, 1., and Stcngers, I. (108 .. 1) Or·der out of Chaos, Mrm's New Dialogue with Natur·e, Bantam Books, Toronto.

284. Primas, H. (1!)81) Clremi8fry. Qufmlum Mechnrrics rmd Reductionism, Springer,

Page 35: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

298 BIBLIOGRAPHY

Berlin, 2nd ed. 19l-\:J. 285. Prima:;, II. ( l!l~L!) Tirnc-as.vmnu:t ric plrcnomcllil in biology, Opcrt Sy.~. lrtfonnation

Dyn. 1, 3-3'1. 286. Prosser, H.T. and l{.oot, W. L. ( 1968) The ~-entropy and c:-capacity of time­

invariant channels, ./. :\fa/h. Anal. Appl. 21. :!:l:t 287. Pruski, S. (19G7) A many-state extension of the Har·tree-Fock-Slat.er method,

Physica 37, 246-251. 288. Radin, C. (1971) Non-connutative mean ergodic theory, Commun. Math. Phys. 21,

291-302. 289. Ralston, A. (1965) A Fin; I Course in Numer·ical A rwlysis, McGraw-Hill, New York. 290. Renyi, A. (1961) On measures of ent.ropy and information, Proc. Fourth Berkeley

Symp. Math. Stali.~l. Probab. 1, 5-17-561. 291. Renyi, A. (1970) Probability Theory, Akadcmiai l\iad6, Budapest, North-Holland,

Amsterdam. 292. Renyi, A. ( HJ8·1) ;\ Diary on lnfomw/.iort Theory, Ak«dcmiai I\iad6, Budapest. 293. Renyi, A., and Balat.oui, J. (1967) Uber den Bcgrifr dcr Entropie, Math.

Forsdnmgsbericlrt.e l V, Arheit.eu zur lnformationst.hcoric I 3rd ed., DVvV, Berlin, 117-134, (Hung. original 1%6).

294. Reza, F. M. (19Gl) An lnlroduclion lo lnfomwliou Theory, t\1cGraw-Hill, New York.

295. Riesz, F., and Nagy, B.Sz. ( 1952) Le~·o11s d '(11wlyse fouct.iormc/lc, A cad. Kiado, Budapest.

296. Ruelle, D. ( 1 DW). S/alislical Mechanics, Ri_qorou.s Rcsulls, Benjamin, New York (Russ. trans!. Mir, !'VIoscow 1971).

297. Schneider, I. (eel.) ( ]!),')!!) /Jic Enlll•ic/.:lullfJ rlc.T ll'ahnchcinlich/.:citstlworie von den Anfangen bis 1 !J:J.'I. l~'i11jiihrurtyn1 uwl Tcrlc, Akadl~rnic, Berlin.

298. Sclrrodingcr, E. ( I~HS} 11"/rrtl i8 lift'"?. Carubrid~c Univ. Prc::;s, New York. 299. Schweber. S. S. ( l~)Gl) :\11 lrtlroducl.ioll loi Hdrtlivi.~lic Qunnturtl Field Theory,

Row, Peterson .\:. Co., 1-: l"illiSI.OII, Ill. 300. Slrannou. C.l~. ( I'J-IX) :\ urarlwrnat.ical l.lwur.v of cOII\IIIIIIIicat.ion, Bell System

Teclm. J. 27, 37D _,, 2J, G:.!:l- G.'",G. 301. Shannon, C. E. ( 19·1~1) Comlllllllicat.ion in the prcscllce of 11oisc, Proc. IRE 37,

10-21. 302. Shohat, J .A., and Tamarkin, J.D. ( 19G3} The ProiJiem of !lforrwrtl s, 3nl printing.

of rev. ed., Amer. Mat.h. Soc., Providence HI. 303. Sinai, Ya. G. (19.)9) On t.he concept of entropy for dy11amical systems (in Hussian),

Dokl. Aknd. Ncmk SSSR 124, 7G8-771. 304. Sobczyk, l\. ( 19Dl) .'ilodwslic DifJerenlial Equalirms wil!t Applications to Physics

and Enginccriny, 1\hrwer Acadernic Pnblishers, Donlrcdrt.. 305. Solomonofr, H.L. ( l!lCi11) A formal theory or indnct.ive infe•·cncc, lnfom,. Control

7, 1-22. 306. Spohn, H. ( I 97G) !\ pproaclr to cquili bri 11111 for completely positive dynamical

semigmups of n-level s.vstcms, Rep. Math. Pity.~. 10, 189-194. 307. Spohn, H. ( 1978) Entropy product.iou for qnant.11111 dynamical semigroups, J. Math.

Phys. HI, 1227 -11:l0. 308. Staszewski, P. ( 1978) On tire characterization of the Von Neumann entropy via the

entropies of measun!IIH~nts, Rep. llfath. Phys. 13 G7--71. 309. Sta..'>zewski, P. ( 19!):{) (Jurmtum Mechanics of Con lin uously OIJ.servcd Systems, N.

Copernicus Uni\'. Press, Torur'r. 310. Steinhaus, II. (I D23) Les proh<thilit cs denombrablcs ct. leur rapport. a Ia theorie de

la mesure, Ftmd. Mrtth. 4. 286-:.'!10. 311. St.inespring, W.F. ( l~lSS) Posili1·e functions on C*-algchras, Proc. Am. Math. Soc.

6, 211-216. 312. Stormer, E. ( l~JGJ) Positive li11ci\r maps of operator algebras, Acta Math. 110,

Page 36: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

BIBLIOGRAPHY 299

233-278. 313. St~Jrmer, E. (1980) Decomposition of positive projections on C'*-algebras, Math.

Ann. 27, 21-41. 314. Stormer, E. (1982) Decomposable positive maps on C*-algcbras, Proc. Am. Afath.

Soc. SG, 402-,10-1. 315. Szafnicki, B. (19G9) On the entropy of s.vst.e111s of operators, Bull. Acad. Polon.

Sci., Ser. rtwllt.phy.~.aslr. 17, 405--,10!). 316. Szent-Cyorgyi, /\. ( 1%1) Chemistry of Mu.H.·ular Contmclio11, 2nd ed., Academic

Press, New York. 317. Szilard, L. (1929) (Tber die Entropievcnn indcmng in cincm thcrmodynamischen

System bei Eingn~ifen int.dligente1· Wescn, Z. Plty.s. 53, 8•10-85G (Engl. trans!. 19G4, On the decrease of Cllt.ropy iu a thermodynamic system by the intervention of intelligent beings, Brdwuioml Science 9, 301--310).

318. Titchmarsh, E. C. ( 1951) The Theory of the RiertHIIl11 zeta-function, Clarendon Press, Oxford.

319. Toda, M. (1983) Nonlinear IVaves and Solitons (iu Japanese), Nihon Hyoron-sha, Tokyo.

320. Tverberg, H. ( 195R) A new derivation of t.he information funct.ion, Ala/h. Scand. G, 297-298.

321. Uhlmann, /\.. ( 1910) On t.l1e Shannon entropy and rclatc,d functionals on convex sets, Rep. Math. Pltys. 1, 1•17--1SD.

322. Uhlmann, A. ( 1977) Hclat.ive entropy <tliCI the Wigner-Yanase-Dyson-Lieb concavity in an interpolation tl1eory, Comlltllll. Matlt. Phys. 54, 21-32.

323. Umegaki, 1-1. ( 1959) Conditional expeclatious 111 an operator algebra Ill, Kodai Math. Scm. Rep. 11, f.i 1-G'l.

324. Umegaki, H. ( 1 DG2) Conditional expectations HI an operator algebra IV, /( odai Math. Scm. Rep. 14, 5!J·-85.

325. Umegaki, H. ( 19G2) Concit ional expectations 111 an operator algebra IV, /( odai Math. Sem. Rep. 14, 59--85.

326. Urbanik, 1\. ( 19G1) Joint probability dist.rihut.ions of obscrvahles iu quantum mechanics, S/udia .llrtlh. 21, Jl7-323.

327. Urbanik, I\. ( 1 !lG-1) The principle of increase of cnt.ropy in quantum mechanics Tmns. 3nl Pmyut· Co11.f. lnfoml(lfion Tlzcrii'!J, S'tatistical Decision Functions, Rando 111 Pr'IJccs.ow~. Prai!:IIC. I'H.

328. Urbanik, 1\. ( 1912) On the concept. of infor111ation. Null .. '\carl. Polon. S'ci., Ser. nwstlt, aslr. pity.~. 20. X.'l/ ·S~lO.

329. Urbanik, 1\. ( ID/:!) 011 t.hc ddinit.ion of informal icm, /frp. Math. Pity.~. 4, 289-301. 330. Van Hove, L. ( l <)r,.s) Q•tant 11111-nwchanical (l(!l'l.llrl>at ious gi \'ing rise ro a statistical

transport equation, Pltysu·rt 21. !) 17 -5'10. 331. Van ]-love. L. ( 1!)57) Th(: approach to equilihri11111 in quant11111 statistics, Physica

23, 441-480. 332. Varadarajan, V.S. ( 1970) Geometry of Quanl1111t Theory, vol. 2, Van Nostrand,

New York. 333. Von Neumann, .I. ( 1932) !lfathertwti.~chc Grundlagen der Quantenmechanik,

Springer, Berlin (Engl. t.J·ansl. Princeton U niv. Press, Princeton 1955, Huss. transl. Nauka, rvfo:scow 1%·1).

334. Von Wright., G.ll. (I ~)'i 7) Lo.qical .'iludic.~. Hout.blgc and Kegan Paul, London. 335. Watanabe, N .. ( 1 !)!) l ): "Efficiency of optical modulations for photon number

states", Quantum Probability and Helated Topic:s G, pp. 489-498. 336. Wehrl, A. (1!>77) Hemarks of ;\-ent.ropy, Hl'p. Math. Phys. 12, 385-39<1. 337. Wehrl, /\.. (I 978) C:eneral properties of entropy, /{cv. Mod. Phy.~. GO, '221-260. 338. Wehrl, A. (1991) The many facets of entropy, Hcp. Mallt. Phys. 30,119-129. 339. Weiss, P. ( 1967) Der Satz von cler Eindeutigkeit. dcr Unbestimmtheit., Eim Beitrag

zum Begriff "niitzlichc Information", 1\'ybemctiJ.: 4, G.'i-G7.

Page 37: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

300 BIBLIOGRAPHY

340. Whittaker, E. T. ( lfl15) On t.he functions which are represented by the expansions of the iuterpolatory theory, Pmc. Roy. Soc. 1:-'dibm:qh 35, 181- Hl4.

341. Wichmann, E. H. (1963) Density matrices arising from incomplete measurement, J. Math. Phys. 4, 88-1-896.

342. Wiene1·, N. ( 1948) Cybernetics o1· Control and Comm1mication in the Animal and the Machine, Hermann, Paris (2nd ed.: MIT Press, Cambridge, Mass. 1961).

343. Wilcox. R. M. ( l!)G7) Exponential operators and parameter differentiation 111

quantum physics, J. Math. Phys. 8, 962-982. 344. Wilson, A. (19G5) Lalin Dictionary, Hodder and Stoughton, London. 345. Wolfowitz, J. ( 196,1) Coding 111eorems in lnfonnalion Theory, Springer, Berlin. 346. Woodward, P.M. ( 1953) Probability and Information The01·y, with Applications to

Radar, McGraw-Hill, New York, 2nd eel. Pergamon Press, London 1955, Polish trans!. PWN, vVarszawa 19.'59.

347. Woronowicz, S.L. ( 1976) Positive maps of low-dimeusional matrix algebras, Rep. Math. Phys., 10, 165-183.

348. Yockey, H. P. ( 1!)!)2) h1jonnalion Theory ami Molecular Biology, Cambridge University Press, Ci!mhridgc.

349. Yanagi, K ( 1!)82) On so111c propt~rt.ies of Gaussian dmnncls, J. l\·1ath. Anal. Appl. 88, 3611-377.

350. Yosida, K. ( 1~171) Fulll'lionrtl .:lt~rdy.~iH, :kd c~d., Sprin,£?;er, Rerlin. 351. Zadc:h, L.A. ( 19G.':(): J>rolmliilil.y lltfCI$1ll't'S of fu::::y CN'rtls, J. l\1nth. Anal. Appl., 23,

pp. 421-427. 352. Zvonkin, A. I\., and Levin, L.A. ( 19i0) Complc!xit.y of finite objects and foundation

of the concepts of information and complexity by means of theory of algorithms' (in Russian), Usp. Afath. Nauk 25 No.6, 85-127.

353. Zurek, W .H. ( 198!)) Thermodynamic cost of computation, algm·ithmic complexity and the information metric, Nature 341, 119-121.

354. Zurek, W .l I. ( 198!1) Algorithmic information and physical eut.ropy, Phys. Rev. A40, 4731-4751.

355. Zwanzig, H. ( 1960) E11scmblc method in theory ot' irreversibility, J. Chem. Phys. 33 I 1338-1 ;~'II.

Page 38: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

Index

(m, V)-Markov process, 210 B"-algebra, 277 c" -algebra, 277 c" -system containing all above, 107 F-equivalent rings, 27 F-homogeneous rings, 27 K-multiplier, 209 L*-space, 26 N-representability problem, 176 Q-entropy, 96 Q-entropy =A-entropy, 135 S-entropy, 68 a-finite, 282 a-( A·. A)-topology, 279 £-entropy in GQDS, 245 £-entropy of a state, 244 d-dimensional entropy, 31 m-representation, 209 n-positive map, 198 A-measurement, 129 A-iliermodynamics, 129 • -algebra, 277 *-isometry, 278 "dressed" state, 106 "naked" state, 106

abelian algebra, 278 absolute continuity of distribution

function, 31 absolute value of an operator, 269 adjoint operator, 268 algebra, 277 algebra, B*, 277 algebra, c*, 277

301

algebra, * -, 277 algebra, abelian, 278 algebra, Banach, 277 algebra, Banach • -, 277 algebra, dual, 279 algebra, norm, 277 algebra, Von Neumann (VN-), 278 amount of information, 16 amplification (lifting), 220 amplitude of probability, 134 approximate spectral point, 270 Araki relative entropy, 71

Baire measure, 12 Baire subsets, 12 Banach • -algebra, 277 Banach algebra, 277 Banach space, 264 Bessel's inequality, 265 big system, 9 bit, 16 Boltzmann's constant, 15 Boolean ladder, 26 Borel a-algebra, 205 Borel measure, 12 Borel subsets, 12 bounded operator, 268 Brownian motion, 205

canonical distribution, 133 canonical state, 133 canonical transformation, 187 Cantor set, 243 capacity dimension, 239

Page 39: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

302

capacity dimension of a continuous state in CDS, 252

causal system, 106 CD entropy, 23 CDS, 65 channel capacity, 49 channel, chaotic, 76 channel, chaotic for a subset, 76 channel, deterministic, 76 channel, ergodic, 76 channel, normal, 78 channel, orthogonal, 76 channel, quantum, 73 channel, stationary, 76 chaotic channel, 76 chaotic for a subset, 76 character, 278 character space, 278 Choquet simplex, 66 classical KS-entropy, 114 closable operator, 268 closed operator, 267 closed subset, 265 closure of an operator, 268 CNT-entropy, 68 coarse graining, 42 communication channel, 48 communication theory, 16 commutant, 278 compact operator, 272 complete set of observables, 124 completely continuous operator, 272 completely positive (CP) channel, 73 completely positive map, 198 completely positive maps, 197 complex system, 6 complexities of entropy type, 113 complexity C (f), 110 complexity H1 (a), 112 complexity of description, 112 complexity of state, 107 compound state, 74, 77 computable fuction, 112 conditional entropy, 23 conditional probabilities, 23

INDEX

conjugate bilinear functional, 267 CONS, complete orthonormal system,

265 contimuous system, 107 continuous dependence of CD entropy

on probabilities, 24 continuous spectrum, 269 contraction, 196 convergence, norm, 272 convergence, strong, 272 convergence, uniform, 272 convergence, weak, 272 convolution, 205 cosmoscopic domain, 9 CPT, classical probability theory, 284 cyclic vector, 282

de dicto, 4 de re, 4 decomposable linear map, 227 decomposable maps, 197 degree of chaos, 108 density operator, 13, 274 density operator, regular, 179 det, 16 detailed balance (classical), 216 detailed balkance condition (quantum),

217 deterministic channel, 76 diffusion process, 205 dimension of information, 30 dimension of probability distribution,

31 discrete observable, 23 discrete random variable, 23 discrete system, 107 dissipative part, 199 distribution function (distribuant), 31 divergence, 41 domain of a linear operator, 267 domination, 279, 282 double commutant, 278 dual algebra, 279 dual time evolution, 195 dynamical entropy, 115

Page 40: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

dynamical entropy by the complexities, 115

dynamical entropy through quantum Markov chain, 117

egenvector (proper vector), 270 eigenvalue (proper value), 270 eigenvalue expansion theorem, 273 eignespace (proper space), 270 elementary events, 12 entropy, 14 entropy defect, 17 entropy gain, 18 entropy of a general state, 66 entropy of measurement, 136 entropy production, 37, 100, 101 equilibrium A-macrostate, 132 equilibrium state, 204 equivalence, 282 equivalent w.r.t. an operator, 127 ergodic channel, 76 essentially selfadjoint operator, 268 estimated Hamiltonian, 193 estimated operator, 169 estimated value, 128 estimation of an operator, 169 estimator, 6 events, 12 extreme point, 279

faithful KMS state, 96 faithful linear functional, 279 faithful trace, 283 final space, 269 finite poartition, 85 finite projection, 282 finite rank operator, 272 finite trace, 283 finite VN-algebra, 283 Fourier coefficients, 265 Fourier's expansion formula, 265 fractal, 229 free energy, 17

Gaussian channel, 253 Gaussian convolution semigroup, 207

INDEX

Gaussian measure, 253 Gelfand representation, 278

303

general linear group GL(n, C), 208 general quantum communication

process, 75 general quantum dynamical system

(GQDS), 279 generalized E-entropy, 245 generalized exponential distribution

(semi-Gaussian or Laplace), 154 generalized gamma functions, 144 generalized Gauss function, 46 generalized Gauss function of order n,

153 generalized Hilbert space, 136 generalized inverse temperatures, 132 generalized Markov chain, 82 generalized measurement, 136 generalized scaling dimension, 234 generalized semi-Gaussian densities,

46 generalized temperatures, 126 genetic sequences, 246 genome, 8 Gibbs state, 133 GNS (Gelfand-Naimark-Segal)

theorem, 279 GNS cyclic vector, 280 GNS Hilbert space, 280 GNS representaton, 280 GQDS, 65 graph of a linear operator, 267 great canonical distribution (state,

ensemble), 133 group, general linear GL(n, C), 208 group, special unitary SU(n), 206

Hamiltonian part, 199 hartley, 16 Hartree-Fock type macrostate, 174 Hausdorff dimension, 235 Hausdorff measure, 235 hierarchical observable, 24 higher-order thermodynamics, 138 higher-order thermometers, 138 Hilbert space, 264

Page 41: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

304

Hilbert-Schmidt norm, 274 Hilbert-Schmidt operator, 274 homogeneous state, 83

inclusion of operators, 268 indistinguishibility of information, 28 infinite projection, 282 infinite VN-algebra, 283 information, 16, 28 information A-thermodynamics, 130 information dimension of a state, 246 information dynamics (ID), 105, 108 information energy, 57 information gain, 34 information gain (relative

information), 34 information theory, 16 information without probability, 25 information-theoretic decision rule,

128 Ingarden-Urbanik (IU)-entropy, 135 initial space, 289 inner product, 263 inner product space, 263 input system, 106 invariant (stationary) state, 204 invertible operator, 269 involution, 277 isoentropic motion, 169 isolated system, 195 isometric lifting, 74 isometric operator, 272 isometry, 269 isomorphic Hilbert spaces, 266

Jensen's inequality, 57 joint entropy, 23 joint probabilities, 23

kernel of a linear operator, 268 Klein's inequality, 63

INDEX

KMS (Kubo-Martin-Schwinger) state, 285

KMS states, 66 Koch curve, 231 Kolmogorov conditions, 197

Kolmogorov's £-entropy, 244, 249 Kullback information (entropy), 41

lattice sphere, 239 law of the broken choice, 24, 28 least distance theorem, 266 lifting, 73, 220 lifting, linear, 73 lifting, nondemolition, 73 linear channel, 73 linear functional, 278 linear functional, faithful, 279 linear functional, positive, 278 linear lifting, 73 linear operator, 267 linear response perturbed state, 97 linear response state, 97 local character of information, 28

macroscopic measurement, 129 macrostate, 127 macrostate invariant in time, 131 macrostate, reglar, 188 macrostate, regular, 180, 189 Markov kernel, 251 Markovian evolution, 222 master equation, 221 maximum mutual entropy, 252 measure, probability, 204 measure-preserving transformation,

114 measurement, 74 mesoscopic case, 152 mesoscopic domain, 8 microscopic measurement, 129 middle state, 124 mini-max theorem, 273 minimum programme, 112 mixed state, 279 mixing entropy, 68 modalities, 2 modular conjugate operator, 286 modular operator, 286 modulo A., 42 monotonicity of information, 28 multiplicity, 270

Page 42: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

multiplier, 209 multivariate distribution, 49 mutual entropy, 77 mutual information, 35

nat, 15 natural extension of a one-parameter

automorphism group, 286 natural extension of a state, 286 negentropy, 17 noise power, 49 non-trivial Boolean ring, 26 nondemolition lifting, 73 norm, 263,277 norm convergence, 272

INDEX

norm of a linear functional, 278 norm, Schmidt (Hilbert-Schmidt), 274 norm, trace, 275 normal channel, 78 normal linear map, 196 normal operator, 269 normal trace, 283 normed algebra, 277

objective-subjective entropy, 57 Ohya E-entropy, 252 one-parameter convolution semigroup,

205 one-particle observable, 177 ONS, orthonormal system, 265 open system, 74, 195 operator (uniform) norm, 272 operator of finite rank, 272 operator, adjoint, 268 operator, bounded, 268 operator, closable, 268 operator, closed, 267 operator, compact, 272 operator, completely continuous, 272 operator, density, 274 operator, essentially selfadjoint, 268 operator, estimated, 169 operator, invertible, 269 operator, isometric, 272 operator, modular, 286 operator, modular conjugate, 286

305

operator, normal, 269 operator, positive bounded, 268 operator, projection, 269, 272 operator, Schmidt (Hilbert-Schmidt),

274 operator, selfadjoint, 268 operator, semi-isometric, 272 operator, symmetric, 268 operator, trace class, 274 operator, unitary, 269, 272 optical fiber communication, 118 orthogonal channel, 76 orthogonal states, 78 orthogonal subspace of a subspace,

265 orthogonalsubspaces, 266 orthogonal system, 265 outer measure, 234, 235 output system, 106

pair of strong complexity, 108 parallelogram law, 264 Parse val's equality, 265 partial function, 112 partial isometry, 269 Peierls' inequality, 63 point spectrum, 269 polar identity, 264 positive bounded operator, 268 positive cone, 195 positive dynamical semigroup, 195,

196 positive linear functional, 278 positive linear map, 196 power set, 234 principle of maximum entropy, 126 probability measure, 204 probability space, 12 projection, 266 projection operator, 269, 272 projection theorem, 266 projection, finite, 282 projection, infinite, 282 projection, purely infinite, 282 projection, semifinite, 282 proper space (eigenspace), 270

Page 43: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

306

proper value (eigenvalue), 270 proper vector (eigenvector), 270 pulse amplitude modulation, 119 pulse position modulation, 119 pure state, 279 purely infinite projection, 282 purely infinite VN-algebra, 283

QDS, 61 QMC, quantum Markov chain, 81 QPT, quantum probability theory, 284 quantum channel, 73 quantum Markovian master equations,

196 quantum relative entropy, 70 quantum system, 107 quantum system, 107 quasicompound state, 77 quasimutual entropy, 78, 245

Renyi entropies, 51 Renyi entropy of order a, 54 Renyi information gain of order a, 54 random variable, 12 random variable norm, 254 range of a linear operator, 267 reduced p-fermion density operator,

176 reduced dynamics, 220 regular (invertible) element, 278 regular density operator, 179 regular macrostate, 180, 188, 189 relative entropy, 18 relative entropy functional, 71 relative information (information

gain), 34 relaxing state, 204 rescaling time, 223 resolvent set, 278 resolvents, 269 Riesz's theorem, 266

sample, 6 scaling dimension, 232 scaling invariant set, 231 Schatten decomposition, 62

INDEX

Schmidt norm, 274 Schmidt operator, 274 Schwarz inequality, 263 Schwarz's inequality, 279 Second Principle of Thermodynamics,

14 self-similar set, 231, 237 selfadjoint opretator, 268 semantic space, 22 semi-isometric operator, 272 sernifinite projection, 282 sernifinite trace, 283 sernifinite VN-algebra, 283 sernigroup evolution, 74 semigroup, Gaussian convolution, 207 separable Hilbert space, 265 separating, 282 sesquilinear functional, 267 Sierpinski gasket, 231 sigleton, 66 signal power, 49 signal transmission, 107 similar contractive mapping, 237 singular reservoir, 226 small system, 9 special unitary group SU(n), 206 spectral decomposition theorem, 271 spectral measure, 121, 270 spectral set, 278 spectral space, 278 spectrum, 269 square root of a positive operator, 269 squeezed states, 135 standard deviation, 43 state, 279 state, equilibrium, 204 state, invariant (stationary), 204 state, mixed, 279 state, pure, 279 state, relaxing, 204 stationary (invariant) state, 204 stationary channel, 76 statistic, 6, 42 statistical hypotheses, 19 stochastically independent, 24 strong continuity, 279

Page 44: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

strong (operator) topology, 280 strong • (operator) topology, 280 strong continuity, 195 strong convergence, 272 sufficient family of traces, 283 sufficient partitioning( sufficient

statistic), 42 sufficient transformations, 43 support, 78 symmetric operator, 268

temperature coefficients, 126 tensor product Hilbert space, 267 theorem, GNS

(Gelfand-Naimark-Segal), 279 theorem, Von Neumann density, 282 thermodynamically regular, 127 Third Principle of Thermodynamics,

18 Tomita-Takesaki theory, 285 topological dimension, 239 topology, strong (operator), 280 topology, strong • (operator), 280 topology, ultrastrong (operator), 280 topology, ultrastrong • (operator), 280 topology, ultraweak (operator), 280 topology, uniform (operator), 280 topology, weak (operator), 280 trace, 274 trace class operator, 274 trace norm, 275 trace over a VN-algebra, 283 trace, faithful, 283 trace, finite, 283 trace, normal, 283 trace, semifinite, 283 transformation (channel) system, 106 transinformation, 35 transition expectation, 82 transmitted complexity, 107

INDEX 307

Uhlmann relative entropy, 71 ultrastrong (operator) topology, 280 ultrastrong • (operator) topology, 280 ultraweak (operator) topology, 280 ultraweak continuity, 196 uncertainty, 16 uniform (operator) topology, 280 uniform convergence, 272 uniform topology, 279 unit element of a Boolean ring, 26 unitary evolution, 74 unitary implemented transformation,

187 unitary operator, 269, 272 universal computer, 113

value of an observable, 127 variance, 43 variation of information, 41 Vlasov-type equations, 183 VN-algebra, finite, 283 VN-algebra, infinite, 283 VN-algebra, purely infinite, 283 VN-algebra, semifinite, 283 Von Neumann (VN-) algebra, 278 Von Neumann density theorem, 282 Von Neumann entropy, 61

weak (operator) topology, 280 weak ·-topology, 279 weak convergence, 272 weak coupling limit, 223 weight, 56 weighted entropy, 56 weighted entropy of a random

variable, 57

Page 45: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

Fundamental Theories of Physics

22. A.O. Barut and A. van der Merwe (eds.): Selected Scientific Papers of Alfred Lande. [1888-1975]. 1988 ISBN 90-277-2594-2

23. W.T. Grandy, Jr.: Foundations of Statistical Mechanics. Vol. II: Nonequilibrium Phenomena. 1988 ISBN 90-277-2649-3

24. E.l. Bitsakis and C.A. Nicolaides (eds.): The Concept of Probability. Proceedings of the Delphi Conference (Delphi, Greece, 1987). 1989 ISBN 90-277-2679-5

25. A. van der Merwe, F. Selleri and G. Tarozzi (eds.): Microphysical Reality and Quantum Formalism, Vol. 1. Proceedings of the International Conference (Urbino, Italy, 1985). 1988 ISBN 90-277-2683-3

26. A. van der Merwe, F. Selleri and G. Tarozzi (eds.): Microphysical Reality and Quantum Formalism, Vol. 2. Proceedings of the International Conference (Urbino, Italy, 1985). 1988 ISBN 90-277-2684-1

27. I.D. Novikov and V.P. Frolov: Physics of Black Holes. 1989 ISBN 90-277-2685-X 28. G. Tarozzi and A. van der Merwe (eds.): The Nature of Quantum Paradoxes. Italian

Studies in the Foundations and Philosophy of Modem Physics. 1988 ISBN 90-277-2703-1

29. B.R. lyer, N. Mukunda and C.V. Vishveshwara (eds.): Gravitation, Gauge Theories and the Early Universe. 1989 ISBN 90-277-2710-4

30. H. Mark and L. Wood (eds.): Energy in Physics, War and Peace. A Festschrift celebrating Edward Teller's 80th Birthday. 1988 ISBN 90-277-2775-9

31. G.J. Erickson and C.R. Smith (eds.): Maximum-Entropy and Bayesian Methods in Science and Engineering. Vol. 1: Foundations. 1988 ISBN 90-277-2793-7

32. G.J. Erickson and C.R. Smith (eds.): Maximum-Entropy and Bayesian Methods in Science and Engineering. Vol. II: Applications. 1988 ISBN 90-277-2794-5

33. M.E. Noz and Y.S. Kim (eds.): Special Relativity and Quantum Theory. A Collection of Papers on the Poincare Group. 1988 ISBN 90-277-2799-6

34. I.Yu. Kobzarev and Yu.I. Manin: Elementary Particles. Mathematics, Physics and Philosophy. 1989 ISBN 0-7923-0098-X

35. F. Selleri: Quantum Paradoxes and Physical Reality. 1990 ISBN 0-7923-0253-2 36. J. Skilling (ed.): Maximum-Entropy and Bayesian Methods. Proceedings of the 8th

International Workshop (Cambridge, UK, 1988). 1989 ISBN 0-7923-0224-9 37. M. Kafatos (ed.): Bell's Theorem, Quantum Theory and Conceptions of the Universe.

1989 ISBN 0-7923-0496-9 38. Yu.A. Izyumov and V.N. Syromyatnikov: Phase Transitions and Crystal Symmetry.

1990 ISBN 0-7923-0542-6 39. P.F. Fougere (ed.): Maximum-Entropy and Bayesian Methods. Proceedings of the 9th

International Workshop (Dartmouth, Massachusetts, USA, 1989). 1990 ISBN 0-7923-0928-6

40. L. de Broglie: Heisenberg's Uncertainties and the Probabilistic Interpretation ofWave Mechanics. With Critical Notes of the Author. 1990 ISBN 0-7923-0929-4

41. W.T. Grandy, Jr.: Relativistic Quantum Mechanics of Leptons and Fields. 1991 ISBN 0-7923-1049-7

42. Yu.L. Klimontovich: Turbulent Motion and the Structure of Chaos. A New Approach to the Statistical Theory of Open Systems. 1991 ISBN 0-7923-1114-0

Page 46: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

Fundamental Theories of Physics

43. W.T. Grandy, Jr. and L.H. Schick (eds.): Maximum-Entropy and Bayesian Methods. Proceedings of the lOth International Workshop (Laramie, Wyoming, USA, 1990). 1991 ISBN 0-7923-1140-X

44. P.Ptak and S. Pulmannova: Orthomodular Structures as Quantum Logics. Intrinsic Properties, State Space and Probabilistic Topics. 1991 ISBN 0-7923-1207-4

45. D. Hestenes and A. Weingartshofer (eds.): The Electron. New Theory and Experiment. 1991 ISBN 0-7923-1356-9

46. P.P.J.M. Schram: Kinetic Theory of Gases and Plasmas. 1991 ISBN 0-7923-1392-5 47. A. Micali, R. Boudet and J. Helmstetter (eds.): Clifford Algebras and their Applications

in Mathematical Physics. 1992 ISBN 0-7923-1623-1 48. E. PrugoveCki: Quantum Geometry. A Framework for Quantum General Relativity.

1992 ISBN 0-7923-1640-1 49. M.H. Mac Gregor: The Enigmatic Electron. 1992 ISBN 0-7923-1982-6 50. C.R. Smith, G.J. Erickson and P.O. Neudorfer (eds.): Maximum Entropy and Bayesian

Methods. Proceedings of the lith International Workshop (Seattle, 1991). 1993 ISBN 0-7923-2031-X

51. D.J. Hoekzema: The Quantum Labyrinth. 1993 ISBN 0-7923-2066-2 52. Z. Oziewicz, B. Jancewicz and A. Borowiec (eds.): Spinors, Twistors, Clifford Algebras

and Quantum Deformations. Proceedings of the Second Max Born Symposium (Wroclaw, Poland, 1992). 1993 ISBN 0-7923-2251-7

53. A. Mohammad-Djafari and G. Demoment (eds.): Maximum Entropy and Bayesian Methods. Proceedings of the 12th International Workshop (Paris, France, 1992). 1993

ISBN 0-7923-2280-0 54. M. Riesz: Clifford Numbers and Spinors with Riesz' Private Lectures to E. Folke

Bolinder and a Historical Review by Pertti Lounesto. E.F. Bolinder and P. Lounesto (eds.). 1993 ISBN 0-7923-2299-1

55. F. Brackx, R. Delanghe and H. Serras (eds.): Clifford Algebras and their Applications in Mathematical Physics. Proceedings of the Third Conference (Deinze, 1993) 1993

ISBN 0-7923-2347-5 56. J .R. Fanchi: Parametrized Relativistic Quantum Theory. 1993 ISBN 0-7923-2376-9 57. A. Peres: Quantum Theory: Concepts and Methods. 1993 ISBN 0-7923-2549-4 58. P.L. Antonelli, R.S. Ingarden and M. Matsumoto: The Theory of Sprays and Finsler

Spaces with Applications in Physics and Biology. 1993 ISBN 0-7923-2577-X 59. R. Miron and M. Anastasiei: The Geometry of Lagrange Spaces: Theory and Applica-

tions. 1994 ISBN 0-7923-2591-5 60. G. Adomian: Solving Frontier Problems of Physics: The Decomposition Method. 1994

ISBN 0-7923-2644-X 61 B.S. Kerner and V.V. Osipov: Autosolitons. A New Approach to Problems of Self-

Organization and Turbulence. 1994 ISBN 0-7923-2816-7 62. G.R. Heidbreder (ed.): Maximum Entropy and Bayesian Methods. Proceedings of the

13th International Workshop (Santa Barbara, USA, 1993) 1996 ISBN 0-7923-2851-5 63. J. Pefina, Z. Hradil and B. Juito: Quantum Optics and Fundamentals of Physics. 1994

ISBN 0-7923-3000-5

Page 47: Appendix 1 - Springer978-94-017-1882-0/1.pdf · Appendix 1 A.l Elements of Hilbert Spaces In this Section we explain the fundamental facts about Hilbert spaces to facilitate the understanding

Fundamental Theories of Physics

64. M. Evans and J.-P. Vigier: The Enigmatic Photon. Volume 1: The Field B(3>. 1994 ISBN 0-7923-3049-8

65. C.K. Raju: Time: Towards a Constistent Theory. 1994 ISBN 0-7923-3103-6 66. A.K.T. Assis: Weber's Electrodynamics. 1994 ISBN 0-7923-3137-0 67. Yu. L. Klimontovich: Statistical Theory of Open Systems. Volume 1: A Unified

Approach to Kinetic Description of Processes in Active Systems. 1995 ISBN 0-7923-3199-0; Pb: ISBN 0-7923-3242-3

68. M. Evans and J.-P. Vigier: The Enigmatic Photon. Volume 2: Non-Abelian Electro-dynamics. 1995 ISBN 0-7923-3288-1

69. G. Esposito: Complex General Relativity. 1995 ISBN 0-7923-3340-3 70. J. Sld1ling and S. Sibisi (eds.): Maximum Entropy and Bayesian Methods. Proceedings

of the Fourteenth International Workshop on Maximum Entropy and Bayesian Methods. 1996 ISBN 0-7923-3452-3

71. C. Garola and A. Rossi (eds.): The Foundations of Quantum Mechanics - Historical Analysis and Open Questions. 1995 ISBN 0-7923-3480-9

72. A. Peres: Quantum Theory: Concepts and Methods. 1995 (see for hardback edition, Vol. 57) ISBN Pb 0-7923-3632-1

73. M. Ferrero and A. van der Merwe (eds.): Fundamental Problems in Quantum Physics. 1995 ISBN 0-7923-3670-4

74. F.E. Schroeck, Jr.: Quantum Mechanics on Phase Space. 1996 ISBN 0-7923-3794-8 75. L. de Ia Pefla and A.M. Cetto: The Quantum Dice. An Introduction to Stochastic

Electrodynamics. 1996 ISBN 0-7923-3818-9 76. P.L. Antonelli and R. Miron (eds.): Lagrange and Finsler Geometry. Applications to

Physics and Biology. 1996 ISBN 0-7923-3873-1 77. M.W. Evans, J.-P. Vigier, S. Roy and S. Jeffers: The Enigmatic Photon. Volume 3:

Theory and Practice of the B(3) Field. 1996 ISBN 0-7923-4044-2 78. W.G.V. Rosser: Interpretation ofClassical Electromagnetism. 1996

ISBN 0-7923-4187-2 79. K.M. Hanson and R.N. Silver (eds.): Maximum Entropy and Bayesian Methods. 1996

ISBN 0-7923-4311-5 80. S. Jeffers, S. Roy, J.-P. Vigier and G. Hunter (eds.): The Present Status of the Quantum

Theory of Light. Proceedings of a Symposium in Honour of Jean-Pierre Vigier. 1997 ISBN 0-7923-4337-9

81. Still to be published 82. R. Miron: The Geometry of Higher-Order Lagrange Spaces. Applications to Mechanics

and Physics. 1997 ISBN 0-7923-4393-X 83. T. Haldoglu and A.S. Shumovsky (eds.): Quantum Optics and the Spectroscopy of

Solids. Concepts and Advances. 1997 ISBN 0-7923-4414-6 84. A. Sitenko and V. Tartakovskii: Theory of Nucleus. Nuclear Structure and Nuclear

Interaction. 1997 ISBM 0-7923-4423-5 85. G. Esposito, A.Yu. Kamenshchik and G. Pollifrone: Euclidean Quantum Gravity on

Manifolds with Boundary. 1997 ISBN 0-7923-4472-3 86. R.S. lngarden, A. Kossakowsld and M. Ohya: Information Dynamics and Open

Systems. Classical and Quantum Approach. 1997 ISBN 0-7923-4473-1

KLUWER ACADEMIC PUBLISHERS- DORDRECHT I BOSTON I LONDON