78
AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) [email protected] 734-647-3530 Derek Posselt (Room 2517D, SRB) [email protected] 734-936-0502

AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Embed Size (px)

DESCRIPTION

Weather National Weather Service –http://www.nws.noaa.gov/http://www.nws.noaa.gov/ –Model forecasts: 7loop.html 7loop.html Weather Underground –http://www.wunderground.com/cgi- bin/findweather/getForecast?query=ann+arborhttp://www.wunderground.com/cgi- bin/findweather/getForecast?query=ann+arbor –Model forecasts: ?model=NAM&domain=US ?model=NAM&domain=US

Citation preview

Page 1: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

AOSS 401, Fall 2007Lecture 3

September 10, 2007Richard B. Rood (Room 2525, SRB)

[email protected]

Derek Posselt (Room 2517D, SRB)[email protected]

734-936-0502

Page 2: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Class News

• Ctools site (AOSS 401 001 F07)– A PDF of my Meeting Maker Calendar is Posted.

• It has when I am in and out of town.• It has my cell phone number.• When I am out of town, I plan to be available for my Tues-

Thursday office hours.• Write or call

• Homework has been posted– Under “resources” in homework folder

• Due Wednesday (September 12, 2007)

Page 4: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Outline

• Review

• Coriolis Force

• Vertical structure and vertical coordinate

Should be review. So we are going fast.You have the power to slow us down.

Page 5: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

From last time

Page 6: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Our momentum equation

rzaagp

dtd ruu

2

2

02

)()(1

+ other forces

Now using the text’s convention that the velocity is u = (u, v, w).

Page 7: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Apparent forces

Page 8: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Two coordinate systems

xy

z

x’

y’

z’

Can describe the velocity and forces (acceleration) in either coordinate system.

dtdor

dtd 'xx

Page 9: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Two coordinate systems

y

zz’ axis is the same as z, and there is rotation of the x’ and y’ axis

z’

y’

x’

x

Page 10: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Apparent forces• With one coordinate system moving relative to the other,

we have the velocity of a particle relative to the coordinate system and the velocity of one coordinate system relative to the other.

• This velocity of one coordinate system relative to the other leads to apparent forces. They are real, observable forces to the observer in the moving coordinate system.– The apparent forces that are proportional to rotation and the

velocities in the inertial system (x,y,z) are called the Coriolis forces.

– The apparent forces that are proportional to the square of the rotation and position are called centrifugal forces.

Page 11: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Centrifugal force of Earth

• Vertical component incorporated into re-definition of gravity.

• Horizontal component does not need to be considered when we consider a coordinate system tangent to the Earth’s surface, because the Earth has bulged to compensate for this force.

• Hence, centrifugal force does not appear EXPLICITLY in the equations.

Page 12: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Apparent forces:A physical approach

• Coriolis Force• http://climateknowledge.org/figures/AOSS

401_coriolis.mov

Page 13: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Two coordinate systems

y

zz’ axis is the same as z, and there is rotation of the x’ and y’ axis

z’

y’

x’

x

Page 14: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

One coordinate system related to another by:

T

zztytxytytxx

2

')cos()sin(')sin()cos('

T is time needed to complete rotation.

Page 15: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Circle Basics

ω

θ

s = rθ

r (radius)

Arc length ≡ s = rθ

dtdsv

dtddtdr

dtds

... Magnitude

Page 16: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Angular momentum

• Like momentum, angular momentum is conserved in the absence of torques (forces) which change the angular momentum.

• This comes from considering the conservation of momentum of a body in constant body rotation in the polar coordinate system.

• If this seems obscure or is cloudy, need to review a introductory physics text.

Page 17: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Angular speed

rvω

ΔθΔvr (radius)

v

v

Page 18: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

What direction does the Earth’s centrifugal force point?

Ω

R

Earth

R Direction away from axis of rotation

Page 19: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Magnitude of R the axis of rotation

Ω

R

Earth

R=acos()

Φ = latitudea

Page 20: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Tangential coordinate system

Ω

R

Earth

Place a coordinate system on the surface.

x = east – west (longitude)y = north – south (latitude)z = local vertical

Φa

Page 21: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Angle between R and axes

Ω

R

Earth

Φ = latitudea

Φ

Page 22: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Assume magnitude of vector in direction R

Ω

R

Earth

Φ = latitudea

Vector of magnitude B

Page 23: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Vertical component

Ω

R

Earth

Φ = latitudea

z component = Bcos()

Page 24: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Meridional component

Ω

R

Earth

Φ = latitudea y component = Bsin()

Page 25: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Earth’s angular momentum (1)

Ω

R

Earth

Φ = latitudea

What is the speed of this point due only to the rotation of the Earth?

Rv

Page 26: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Earth’s angular momentum (2)

Ω

R

Earth

Φ = latitudea

Angular momentum is

RL v

Page 27: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Earth’s angular momentum (3)

Ω

R

Earth

Φ = latitudea

Angular momentum due only to rotation of Earth is

2RL

RL

v

Page 28: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Earth’s angular momentum (4)

Ω

R

Earth

Φ = latitudea

Angular momentum due only to rotation of Earth is

)(cos22

2

aL

RL

Page 29: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Angular momentum of parcel (1)

Ω

R

Earth

Φ = latitudea

Assume there is some x velocity, u. Angular momentum associated with this velocity is

uRLu

Page 30: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Total angular momentum

Ω

R

Earth

Φ = latitudea

Angular momentum due both to rotation of Earth and relative velocity u is

)(

))cos()(cos()cos()(cos

2

22

2

RuRL

uaaLuaaL

uRRL

Page 31: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel south (1)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Let’s imagine we move our parcel of air south (or north). What happens? Δy

Page 32: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel south (2)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

We get some change ΔR

Page 33: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel south (3)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

But if angular momentum is conserved, then u must change.

)()(

)(

2

2

RRuuRR

RuRL

Page 34: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel south (4)(Conservation of angular momentum)

)()()( 22

RRuuRR

RuR

Expand right hand side, ignore squares and higher of difference terms.

RRuRu 2

Page 35: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel south (5)(Conservation of angular momentum)

yR )sin(

yRuyu )sin()sin(2

For our southward displacement

yauyu )sin()cos(

)sin(2

Page 36: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel south (6)(Conservation of angular momentum)

dtdy

au

dtdu ))sin(

)cos()sin(2(

Divide by Δt and take the limit

)tan(v)sin(v2 au

dtdu

Coriolis term (check with previous mathematical derivation … what is the same? What is different?

Page 37: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel south (7)(Conservation of angular momentum)

)tan(v)sin(v2 au

dtdu

What’s this? “Curvature or metric term.” It takes into account that y curves, it is defined on the surface of the Earth. More later.

Remember this is ONLY FOR a NORTH-SOUTH displacement.

Page 38: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Coriolis Force in Three Dimensions(link to explicit derivation)

• Do a similar analysis displacing a parcel upwards and displacing a parcel east and west.

• This approach of making a small displacement of a parcel, using conversation, and exploring the behavior of the parcel is a common method of analysis.

• This usually relies on some sort of series approximation; hence, is implicitly linear. Works when we are looking at continuous limits.

Page 39: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Coriolis Force in 3-D

So let’s collect together today’s apparent forces.

auu

dtdw

auu

dtd

auww

au

dtdu

2

2

)cos(2

)tan()sin(2v

)cos(2)tan(v)sin(v2

Page 40: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Definition of Coriolis parameter (f)

)tan()sin(2

)tan(v)sin(v2

2

auu

dtdv

au

dtdu

Consider only the horizontal equations (assume w small)

For synoptic-scale systems in middle latitudes (weather) first terms are much larger than the second terms and we have

)sin(2

)sin(2v

v)sin(v2

f

fuudtd

fdtdu

Page 41: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Our momentum equation

jikuu fufvgpdtd

)(1 2

+ other forces that are, more often than not, ignored

Page 42: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Highs and Lows

Motion initiated by pressure gradient

Opposed by viscosity

In Northern Hemisphere velocity is deflected to the right by the Coriolis force

Page 43: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

The importance of rotation

• Non-rotating fluid– http://climateknowledge.org/figures/AOSS401

_nonrot_MIT.mpg• Rotating fluid

– http://climateknowledge.org/figures/AOSS401_rotating_MIT.mpg

Page 44: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Vertical StructurePressure as a vertical coordinate

Page 45: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Some basics of the atmosphere

Troposphere: depth ~ 1.0 x 104 m

Troposphere------------------ ~ 2Mountain

Troposphere------------------ ~ 1.6 x 10-3

Earth radius

This scale analysis tells us that the troposphere is thin relative to the size of the Earth and that mountains extend half way through the troposphere.

Page 46: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Pressure altitude

Under virtually all conditions pressure (and density) decreases with height. ∂p/∂z < 0. That’s why it is a good vertical coordinate. If ∂p/∂z = 0, then utility as a vertical coordinate falls apart.

Page 47: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Use pressure as a vertical coordinate?

• What do we need.– Pressure gradient force in pressure

coordinates.– Way to express derivatives in pressure

coordinates.– Way to express vertical velocity in pressure

coordinates.

Page 48: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Expressing pressure gradient force

Page 49: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Integrate in altitude

gzp

z

z

gdzzp

gdzzpp

)(

)()(

Pressure at height z is force (weight) of air above height z.

Page 50: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Concept of geopotential

kF g

gdzd

Define a variable

such that the gradient of is equal to g. This is called a potential function.

We have assumed here that is a function of only z.

Page 51: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Integrating with height

gdzd

z

z

gdzz

gdzz

gdzd

0

0

)(

0)0(

)0()(

Page 52: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

What is geopotential?

• Potential energy that a parcel would have if it was lifted from surface to the height z.

• It is analogous to the height of a pressure surface.– We seek to have an analogue for pressure on

a height surface, which will be height on a pressure surface.

Page 53: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Linking geopotential to pressure

pRTdpdgdz

pRT

dpdpgdz

dgdz

/1Definition of specific volume

Ideal gas law

Page 54: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Remembering some calculus

pdTRpTdRzz

pRTdd

dpp

pd

p

p

p

p

lnln)()(

ln

1ln

2

1

1

2

12

Page 55: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Define geopotential height(assumption of constant g = g0)

1

2

ln

)(

012

0

p

ppTd

gRZZ

gzZ

Z2-Z1 = ZT ≡ Thickness - is proportional to temperature is often used in weather forecasting to determine, for instance, the rain-snow transition. (We will return to this.)

Note link of thermodynamic variables, and similarity to scale heights calculated in idealized atmospheres above.

Page 56: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Getting pressure gradient in pressure coordinates

x

z

Constant pressure p0

Constant pressure p0+Δp

Page 57: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Getting pressure gradient in pressure coordinates

x

z

Constant pressure p0

Constant pressure p0+Δp

Δx

We have, for instance, ∂p/∂x on a constant z surface in our derivation of the momentum equation.((p0+Δp)-p0)/Δx

Page 58: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Getting pressure gradient in pressure coordinates

x

z

Constant pressure p0

Constant pressure p0+Δp

Δz

We can also calculate how pressure changes on on a z surface as we hold x constant.

(p0-(p0 +Δp))/Δz

Page 59: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Getting pressure gradient in pressure coordinates

x

z

Constant pressure p0

Constant pressure p0+Δp

Δz

Which we project onto the x direction by how much z changes with x on the pressure surface. Δz/Δx

(p0-(p0 + Δp))/Δz

Page 60: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Getting pressure gradient in pressure coordinates

x

z

Constant pressure p0

Constant pressure p0+Δp

ΔzΔx

xzg

xp

xzg

xp

xz

zp

xp

1

Page 61: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

xxzg

xp

xzg

xp

1

1

Implicit that this is on a constant z surface

Implicit that this is on a constant p surface

Page 62: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Horizontal pressure gradient force in pressure coordinate is the gradient of geopotential

pz

pz

yyp

xxp

1

1

Page 63: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Our momentum equation(height (z) coordinates)

jikuu fufvgpdtd

)(1 2

fuyp

dtdv

fvxp

dtdu

zz

zz

)1()(

)1()(

Horizontal momentum equations (u, v), no viscosity

Page 64: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Our horizontal momentum equation(pressure coordinate)

p

pp

pp

fDtD

fuydt

d

fxdt

du

uku

)()v(

v)()(

Assume no viscosity

Page 65: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Next time

• The material derivative.

Page 67: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Derivation of Coriolis Force (conclusion)

return to body of lecture

Page 68: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel up (1)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Let’s imagine we move our parcel of air up (or down). What happens? Δz

Page 69: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel up (2)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

We get some change ΔR

Page 70: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel up (3)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

We get some change ΔR

zR )cos(

For our upward displacement

Page 71: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel up (4)(Conservation of angular momentum)

auww

dtdu

)cos(2

Remember this is ONLY FOR a VERTICAL displacement.

Do the same form of derivation

return to body of lecture

Page 72: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel east (1)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Let’s imagine we move our parcel of air east (or west). What happens? Δx

Page 73: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel east (2)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Well, there is no change of ΔR.

But remember

)(2RuRL

Page 74: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel east (3)(Conservation of angular momentum)

• So, we have changed u (=dx/dt). Hence again we have a question of conservation of angular momentum.

• We will think about this as an excess (or deficit) of centrifugal force relative to that from the Earth alone.

Page 75: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel east (4)(Conservation of angular momentum)

This excess FORCE is defined as

RR

RR

2

2

22

2

)(

Ru

Ru

RuF lcentrifuga

excess

Page 76: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel east (5)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

Vector with component in north-south and vertical direction

Page 77: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel east (6)(Conservation of angular momentum)

Ω

R

Earth

Φ

a

For the Coriolis component magnitude is 2Ωu. For the curvature (or metric) term the magnitude is u2/(acos())

Page 78: AOSS 401, Fall 2007 Lecture 3 September 10, 2007 Richard B. Rood (Room 2525, SRB) 734-647-3530 Derek Posselt (Room 2517D, SRB)

Displace parcel east (7)(Conservation of angular momentum)

These forces in their appropriate component directions are

auu

dtdw

auu

dtd

2

2

)cos(2

)tan()sin(2v

return to body of lecture