80
AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) [email protected] 734-647-3530 Derek Posselt (Room 2517D, SRB) [email protected] 734-936-0502

AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) [email protected] 734-647-3530 Derek Posselt (Room 2517D, SRB) [email protected]

Embed Size (px)

Citation preview

Page 1: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

AOSS 401, Fall 2007Lecture 2

September 7, 2007

Richard B. Rood (Room 2525, SRB)[email protected]

734-647-3530Derek Posselt (Room 2517D, SRB)

[email protected]

Page 2: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Class News

• Ctools site (AOSS 401 001 F07)– Calendar (completed for whole semester)– Syllabus– Lectures

• Posted on day of

– Homework (and solutions)

• Homework has been posted– Under “resources” in homework folder

• Due next Wednesday (September 12, 2007)

Page 3: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Class news: Schedule issues

• Currently 4.5 hours are scheduled for a 4.0 hour course. (So we have some flexibility; we can “cancel” 4 classes)– There will be no class on September 14– There will be no class on October 12– There will be no class on November 21– When to schedule final exam?

Page 4: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Weather

• National Weather Service– http://www.nws.noaa.gov/– Model forecasts:

http://www.hpc.ncep.noaa.gov/basicwx/day0-7loop.html

• Weather Underground– http://www.wunderground.com/cgi-bin/findweather/getForecast?

query=ann+arbor

– Model forecasts:

http://www.wunderground.com/modelmaps/maps.asp?model=NAM&domain=US

Page 5: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Outline

• Pressure gradient force

• Gravitational Force

• Viscous force

• Centrifugal Force

• Coriolis ForceShould be review. So we are going fast.

You have the power to slow us down.

Page 6: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Some basics of the atmosphere

Earth: radius ≡ a = 6.37 x 106 m

atmosphere: depth ~ 1.0 x 105 m

Mountain: height ~ 5.0 x 103 m

Ocean Land Biosphere

Page 7: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Some basics of the atmosphere

Troposphere: depth ~ 1.0 x 104 m

Troposphere------------------ ~ 2Mountain

Troposphere------------------ ~ 1.6 x 10-3

Earth radius

This scale analysis tells us that the troposphere is thin relative to the size of the Earth and that mountains extend half way through the troposphere.

Page 8: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Newton’s Law of Motion

F = ma Force = mass x acceleration

In general we will work with force per unit mass; hence,

a = F/m

And with the definition of acceleration

Bold will represent vectors.

Page 9: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Newton’s Law of Motion

mdt

d/F

v

Which is the vector form of the momentum equation.(Conservation of momentum)

Page 10: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

What are the forces?

• Pressure gradient force• Gravitational force• Viscous force• Apparent forces• Can you think of other classical forces and

would they be important in the Earth’s atmosphere?

• Total Force is the sum of all of these forces.

Page 11: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Newton’s Law of Motion

i

imdt

dF

v 1

Where i represents the different types of forces.

Page 12: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

How do we express the forces?

• In general, we assume the existence of an idealized parcel or “particle” of fluid.

• We calculate the forces on this idealized parcel.• We take the limit of this parcel being

infinitesimally small.– This yields a continuous, as opposed to discrete,

expression of the force.

• Use the concept of the continuum to extend this notion to the entire fluid domain.

Page 13: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

An intrinsic assumption

• There is an equation of state that describes the thermodynamic properties of the fluid, the air.

Page 14: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

A particle of atmosphere

x

y

z

≡ density = mass per unit volume (V)

V = xyz

m = xyz

-------------------------------------

p ≡ pressure = force per unit area acting on the particle of atmosphere

xy

z

ij

k

Page 15: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Pressure gradient force (1)

x

y

z

p0 = pressure at (x0, y0, z0)

.

(x0, y0, z0)

x axis

p = p0 + (∂p/∂x)x/2 + higher order terms

Page 16: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Pressure gradient force (2)

x

y

z

.

x axis

p = p0 + (∂p/∂x)x/2 + higher order terms

p = p0 - (∂p/∂x)x/2 + higher order terms

Page 17: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Pressure gradient force (3)(ignore higher order terms)

x

y

z

.

x axis

FBx = (p0 - (∂p/∂x)x/2) (yz)

FAx = - (p0 + (∂p/∂x)x/2) (yz)

AB

Page 18: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Pressure gradient force (4) Total x force

= (p0 - (∂p/∂x)x/2) (yz) - (p0 + (∂p/∂x)x/2) (yz)

Fx = FBx + FAx

= - (∂p/∂x)(xyz)

We want force per unit mass

Fx/m = - 1/ (∂p/∂x)

Page 19: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Vector pressure gradient force

pm

z

p

y

p

x

pm

1/

)(1

/

F

kjiF

xy

z

ij

k

Page 20: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (1)

• There is in a fluid friction, which resists the flow. It is dissipative, and if the fluid is not otherwise forced, It will slow the fluid and bring it to rest. Away from boundaries in the atmosphere this frictional force is often small, and it is often ignored. (We will revisit this as we learn more.)

• Close to the boundaries, however, we have to consider friction.

Derivation is at end of lecture or in the text.

Page 21: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (2)

Ocean Land Biosphere

velocity ≡ u m/sec

velocity must be 0 at surface

Page 22: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (3)

Ocean Land Biosphere

velocity ≡ u m/sec

Velocity is zero at the surface; hence, there is some velocity profile.

Page 23: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (4)(How do we think about this?)

The drag on the moving plate is the same as the force required to keep the plate moving. It is proportional to the area (A), proportional to the velocity of the plate, and inversely proportional to the

distance between the plates; hence,

Proportional usually means we assume linear relationship. This is a model based on observation, and it is an approximation. This is often said to be “Newtonian.” The constant of proportionality assumes some physical units. What are they?

u(0) = 0

u(z)

u(h) = u0

h F = μAu0/h

Page 24: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (5)

)(2 uF

m

Where Laplacian is operating on velocity vector ≡ u = (u, v, w)

≡ /kinematic viscosity coefficient

Page 25: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Surface forces

• Pressure gradient force and the viscous force are examples of a surface force.

• Surface forces are proportional to the area of the surface of our particle of atmosphere.

• Surface forces are independent of the mass of the particle of atmosphere.

• They depend on characteristics of the particle of atmosphere; characteristics of the flow.

Page 26: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Highs and Lows

Motion initiated by pressure gradient

Opposed by viscosity

Page 27: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Where’s the low pressure?

Page 28: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Geostrophic and observed wind 1000 mb (ocean)

Page 29: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Body forces

• Body forces act on the center of mass of the parcel of fluid.

• Magnitude of the force is proportional to the mass of the parcel.

• The body force of interest to dynamic meteorology is gravity.

Page 30: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Newton’s Law of Gravitation

rr

mGm rF

221

Newton’s Law of Gravitation: The force between any two particles having masses m1 and m2 separated by distance r is an attraction acting along the line joining the particles and has the magnitude proportional to G, the universal gravitation constant.

Page 31: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Gravitational Force

Page 32: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Gravitational force for dynamic meteorology

rr

GMm rF

2

Newton’s Law of Gravitation: M = mass of Earth m = mass of air parcel r = distance from center (of mass) of Earth directed down, towards Earth, hence - sign

Page 33: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Adaptation to dynamical meteorology

zara

GMg

20

a is radius of the Earthz is height above the Earth’s surface

Can we ignore z, the height above the surface? How would you make that argument?

Page 34: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Gravity for Earth

a2

=g0

a

mg0

a

Page 35: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Gravitational force per unit mass

rza

ag

m

rF2

2

0 )(

Page 36: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Our momentum equation

rza

agp

dt

d ru

u2

2

02

)()(

1

+ other forces

Now using the text’s convention that the velocity is u = (u, v, w).

Page 37: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Apparent forces

Page 38: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Back to Basics:Newton’s Laws of Motion

• Law 1: Bodies in motion remain in motion with the same velocity, and bodies at rest remain at rest, unless acted upon by unbalanced forces.

• Law 2: The rate of change of momentum of a body with time is equal to the vector sum of all forces acting upon the body and is the same direction.

• Law 3: For every action (force) there is and equal and opposite reaction.

Page 39: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Back to basics:A couple of definitions

• Newton’s laws assume we have an “inertial” coordinate system; that is, and absolute frame of reference – fixed, absolutely, in space.

• Velocity is the change in position of a particle (or parcel). It is a vector and can vary either by a change in magnitude (speed) or direction.

Page 40: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Apparent forces:A mathematical approach

• Non-inertial, non-absolute coordinate system

Page 41: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Two coordinate systems

xy

z

x’

y’

z’

Can describe the velocity and forces (acceleration) in either coordinate system.

dt

dor

dt

d 'xx

Page 42: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

One coordinate system related to another by:

ztCytBxtAz

ztCytBxtAy

ztCytBxtAx

zzz

yyy

xxx

)()()('

)()()('

)()()('

Page 43: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Velocity (x’ direction)

zdt

tCdy

dt

tBdx

dt

tAd

dt

dztC

dt

dytB

dt

dxtA

dt

dx

ztCytBxtAx

xxxxxx

xxx

))(())(())(()()()(

'

)()()('

So we have the velocity relative to the coordinate system and the velocity of one coordinate system relative to the other.

This velocity of one coordinate system relative to the other leads to apparent forces. They are real, observable forces to the observer in the moving coordinate system.

Page 44: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Two coordinate systems

y

zz’ axis is the same as z, and there is rotation of the x’ and y’ axis

z’

y’

x’

x

Page 45: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

One coordinate system related to another by:

T

zz

tytxy

tytxx

2

'

)cos()sin('

)sin()cos('

T is time needed to complete rotation.

Page 46: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Acceleration (force) in rotating coordinate system

0'

))cos()sin(())sin()cos((2'

))sin()cos(())cos()sin((2'

2

2

22

2

22

2

dt

zd

tytxtdt

dyt

dt

dx

dt

yd

tytxtdt

dyt

dt

dx

dt

xd

The apparent forces that are proportional to rotation and the velocities in the inertial system (x,y,z) are called the Coriolis forces.

The apparent forces that are proportional to the square of the rotation and position are called centrifugal forces.

Page 47: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Apparent forces:A physical approach

Page 48: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Circle Basics

ω

θ

s = rθ

r (radius)

Arc length ≡ s = rθ

dt

dsv

dt

ddt

dr

dt

ds

... Magnitude

Page 49: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Centrifugal force:Treatment from Holton

rdt

d

dt

d rv

v

ω

ΔθΔv

... Magnitude

r (radius)

Page 50: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Centrifugal force: for our purposes

rv

v

rv

v

2

dt

d

rdt

drdt

d

dt

d

Page 51: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Now we are going to think about the Earth

• The preceding was a schematic to think about the centrifugal acceleration problem. Note that the r vector above and below are not the same!

Page 52: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

What direction does the Earth’s centrifugal force point?

Ω

Ω2RR

Earth

Page 53: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

What direction does gravity point?

Ω

R

Earth

a

rza

ag

m

rF2

2

0 )(

Page 54: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

What direction does the Earth’s centrifugal force point?

Ω

Ω2RR

Earth

So there is a component that is in the same coordinate direction as gravity (and local vertical).

And there is a component pointing towards the equator

We are now explicitly considering a coordinate system tangent to the Earth’s surface.

Page 55: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

What direction does the Earth’s centrifugal force point?

Ω

Ω2RR

Earth

So there is a component that is in the same coordinate direction as gravity:

~ aΩ2cos2()

And there is a component pointing towards the equator

~ - aΩ2cos()sin()

Φ = latitude

Page 56: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

So we re-define gravity as

rg

m

ra

za

ag

m

rF

rF

))(cos)(

( 222

2

0

Page 57: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

What direction does the Earth’s centrifugal force point?

Ω

Ω2R

R

Earth

And there is a component pointing towards the equator.

The Earth has bulged to compensate for the equatorward component.

Hence we don’t have to consider the horizontal component explicitly.

Page 58: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Centrifugal force of Earth

• Vertical component incorporated into re-definition of gravity.

• Horizontal component does not need to be considered when we consider a coordinate system tangent to the Earth’s surface, because the Earth has bulged to compensate for this force.

• Hence, centrifugal force does not appear EXPLICITLY in the equations.

Page 59: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Apparent forces:A physical approach

• Coriolis Force

• http://climateknowledge.org/figures/AOSS401_coriolis.mov

Page 60: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Next time

• Coriolis Force– Read and re-read the section in the text.

• Pressure as a vertical coordinate– Geopotential

Page 61: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Weather

• National Weather Service– http://www.nws.noaa.gov/– Model forecasts:

http://www.hpc.ncep.noaa.gov/basicwx/day0-7loop.html

• Weather Underground– http://www.wunderground.com/cgi-bin/findweather/getForecast?

query=ann+arbor

– Model forecasts:

http://www.wunderground.com/modelmaps/maps.asp?model=NAM&domain=US

Page 62: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Derivation of viscous force

Return to lecture body.

Page 63: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (1)

• There is in a fluid friction, which resists the flow. It is dissipative, and if the fluid is not otherwise forced, It will slow the fluid and bring it to rest. Away from boundaries in the atmosphere this frictional force is often small, and it is often ignored. (We will revisit this as we learn more.)

• Close to the boundaries, however, we have to consider friction.

Return to lecture body.

Page 64: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (2)

Ocean Land Biosphere

velocity ≡ u m/sec

velocity must be 0 at surface

Page 65: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (3)

Ocean Land Biosphere

velocity ≡ u m/sec

Velocity is zero at the surface; hence, there is some velocity profile.

Page 66: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (4)(How do we think about this?)

Moving plate with velocity u0

Linear velocity profile

u(0) = 0

u(z)

u(h) = u0

h u(z) = (u0-u(0))/h × z

Page 67: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (5)(How do we think about this?)

The drag on the moving plate is the same of as the force required to keep the plate moving. It is proportional to the area (A), proportional to the velocity of the plate, and inversely proportional

to the distance between the plates; hence,

Proportional usually means we assume linear relationship. This is a model based on observation, and it is an approximation. The constant of proportionality assumes some physical units. What are they?

u(0) = 0

u(z)

u(h) = u0

h F = μAu0/h

Page 68: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (6)(How do we think about this?)

Recognize the u0/h can be represented by ∂u/∂z

Force per unit area is F/A is defined as shearing stress (). Like pressure the shearing stress is proportional to area.

u(0) = 0

u(z)

u(h) = u0

h F = μA(∂u/∂z)

Page 69: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (7)(How do we think about this?)

zx = μ(∂u/∂z), which is the viscous force per unit area in the x direction, due to the variation of velocity in the z direction

Force per unit area; hence, like pressure.

u(0) = 0

u(z)

u(h) = u0

h Fzx/A = μ(∂u/∂z) ≡ zx

Page 70: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (8)(Do the same thing we did for pressure)

x

y

z

zx0 = stress at (x0, y0, z0)

.(x0, y0, z0)

zx = zx0 + (∂zx/∂z)z/2

zx = -(zx0 - (∂zx/∂z)z/2)

Page 71: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (9)

x

y

z

.

C

D

FCzx = (zx0 + (∂zx/∂z)z/2)yx

FDzx = -(zx0 - (∂zx/∂z)z/2)yx

Page 72: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (10)

= (∂zx/∂z)zyx

Fzx = FCzx + FDzx

We want force per unit mass

Fzx/m = 1/ ∂zx/∂z

Page 73: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (11)(using definition of )

)(1

z

u

zm

Fzx

Page 74: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (12)

2

2

2

2

z

u

z

u

m

Fzx

Assume μ constant

≡ /kinematic viscosity coefficient

Page 75: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (13)

)(2

2

2

2

2

2

z

u

y

u

x

u

m

Frx

Do same for other directions of shear (variation of velocity)

Page 76: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (14)

)(

)vvv

(

2

2

2

2

2

2

2

2

2

2

2

2

z

w

y

w

x

w

m

F

zyxm

F

rz

ry

Do same for other directions of force

velocity vector ≡ u = (u,v,w)

Page 77: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Viscous force (15)

)(2 uF

m

Where Laplacian is operating on velocity vector ≡ u = (u, v, w)

Return to lecture body.

Page 78: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Summary

• Pressure gradient force and viscous force are examples of surface forces.

• They were proportional to the area of the surface of our particle of atmosphere.

• They are independent of the mass of the particle of atmosphere.

• They depend on characteristics of the particle of atmosphere; characteristics of the flow.

Return to lecture body.

Page 79: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Our surface forces

)(1 2 u

u p

dt

d

other forces

Now using the text’s convention that the velocity is u = (u, v, w).

Return to lecture body.

Page 80: AOSS 401, Fall 2007 Lecture 2 September 7, 2007 Richard B. Rood (Room 2525, SRB) rbrood@umich.edu 734-647-3530 Derek Posselt (Room 2517D, SRB) dposselt@umich.edu

Highs and Lows

Motion initiated by pressure gradient

Opposed by viscosity

Return to lecture body.