51
Antenna Fundamentals Prof. Ryszard Struzak ICTP School on Applica0ons of Open Spectrum and White Spaces Technologies ICTP, TriesteMiramare, 3 14 March 2014

AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

Antenna  Fundamentals  

Prof.  Ryszard  Struzak  

ICTP  School  on  Applica0ons  of  Open  Spectrum  and  White  Spaces  Technologies    ICTP,  Trieste-­‐Miramare,  3  -­‐    14  March  2014    

Page 2: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)    R  Struzak  <r.struzakATieee.org>   2  

• Beware  of  misprints!      These  materials  are  preliminary  notes  intended  for  my  lectures  only  and  may  contain  misprints.      

• Feedback  is  welcome:  if  you  noIce  faults,  or  you  have  improvement  suggesIons,  please  let  me  know.    

• This  work  is  licensed  under  the  CreaIve  Commons  ALribuIon  License  (hLp://creaIvecommons.org/  licenbses/by/1.0)  and  may  be  used  freely  for  individual  study,  research,  and  educaIon  in  not-­‐for-­‐profit  applicaIons.  Any  other  use  requires  the  wriLen  author’s  permission.    

• These  materials  and  any  part  of  them  may  not  be  published,  copied  to  or  issued  from  another  Web  server  without  the  author's  wriLen  permission.        

• If  you  cite  these  materials,  please  credit  the  author  and  ICTP.    • Copyright  ©  2012  Ryszard  Struzak.    

Page 3: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

•  ObjecIve:    to  refresh  basic  concepts  related  to  the  antenna  physics    –  needed  to  understand  beLer  the  operaIon  of  wireless  (radio)  links/  networks  

•  Topics  for  discussion:  1.  Antenna  funcIons  2.  Antenna  matching  3.  Antenna  polarizaIon  4.  Antenna  direcIvity  5.  Antenna  arrays  

(CC)  R  Struzak     3  

Page 4: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     4  

Antennas  for  laptop  applicaIons  

Source:  D.  Liu  et  al.:  Developing  integrated  antenna  subsystems  for  laptop  computers;  IBM  J.  RES.  &  DEV.  VOL.  47  NO.  2/3  MARCH/MAY  2003  p.  355-­‐367  

 

Linksys  

Page 5: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna
Page 6: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna
Page 7: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna
Page 8: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna
Page 9: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     9  

Antenna  funcIons  

•  TransformaIon  of  a  guided  EM  wave  into  an  unguided  wave  freely  propagaIng  in  space  (or  the  opposite)    –  a  Ime-­‐funcIon  in  1-­‐D  space    à  a  Ime-­‐funcIon  in  3-­‐D  space    

–  The  specific  form  of  the  radiated  wave  is  defined  by  the  antenna  structure  and  the  environment    

Space wave

Guided wave

Page 10: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

TEM  -­‐  simplest  EM  wave  

Linearly-­‐polarized  plane  wave  traveling  in  vacuum  with  the  speed  of  light:      (x,  t)  =  A  sin[ω(t  -­‐  x/c)  +  ϕ];        ω  =  2πF;      c  ~3.108m  At  large  distances  spherical  wave-­‐front  ~  plane    

R.  Struzak   10

Java  applet  plane  wave:  hLp://www.amanogawa.com/archive/wavesA.html    

Page 11: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     11  

Power  Flow  

•  In  free  space,  the  radiated  energy  streams  from  the  antenna  in  radial  lines,  i.e.  the  PoynIng  vector    has  only  the  radial  component    

•  A  source  that  radiates  uniformly  in  all  direcIons  is  an  isotropic  source  (radiator,  antenna).  For  such  a  source  the  radial  component  of  the  PoynIng  vector  is  independent  of  θ  and  ϕ.  

Page 12: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

Topics  for  discussion  

1.  Antenna  funcIons  2.  Antenna  matching  3.  Antenna  polarizaIon  4.  Antenna  direcIvity  5.  Antenna  arrays  

(CC)  R  Struzak     12  

Page 13: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

13  

Basic  transmiLer/  receiver  parts  

•  The  transmission  line  •  The  juncIon    •  The  antenna  radiator  (size  comparable  with  λ/2)    •  The  EM  wave    

•  Notes:    –  Possible  power  reflecIons  (impedance  matching)  –  Possible  resonaces  (for  broadband  applicaIons  must  be  aLenuated)    

Page 14: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     14  

Transmisng  antenna  equivalent  circuit    

TransmiLer   Transm.  line  

Antenna  

Gen

erat

or

RG

jXG

VG

jXA

Rr

Rl

The  transmiLer  with  the  transmission  line  is  represented  by  an  (Thevenin)  equivalent  generator  

 The  antenna  is  represented  by  its  input  

impedance  (which  is  frequency-­‐dependent  and  is  influenced  by  objects  nearby)  as  seem  from  the  generator  

 jXA  represents  energy  stored  in  electric  (Ee)  and  magneIc  (Em)  near-­‐field  components;  if  |

Ee|  =  |Em|  then  XA  =  0  (antenna  resonance)  Can  be  approximated  by  the  impedance  of  a  transmission  line    

 Rr  represents  energy  radiated  into  space  (far-­‐field  components)  Rl  represents  energy  lost,  i.e.  transformed  into  

heat  in  the  antenna  structure    

Radio  wave  

Page 15: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     15  

Power  transfer  

•  The  maximum  power  is  delivered  to  (or  from)  the  antenna  when  the  antenna    impedance  and  the  impedance  of  the  equivalent  generator  (or  load)  are  matched  

0

0.5

1

0.1 1 10

PA /

PAm

ax

RA / RG; (XA+XG = 0)

Page 16: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     16  

•  When  the  antenna  impedance  is  not  matched  to  the  transmiLer  output  impedance  (or  to  the  receiver  input  impedance)  or  to  the  transmission  line  between  them,  impedance-­‐matching  devices  must  be  used  for  maximum  power  transfer  

•  Inexpensive  impedance-­‐matching  devices  are  usually  narrow-­‐band    

•  Transmission  lines  oven  have  significant  losses      

Page 17: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     17  

•  When  the  impedances  are  matched  –  Half  of  the  source  power  is  delivered  to  the  load  and  half  is  dissipated  within  the  (equivalent)  generator  (as  heat)  

–  In  the  case  of  receiving  antenna,  a  part  (Pl)  of  the  power  captured  is  lost  as  heat  in  the  antenna  elements,  the  other  part  being  re-­‐radiated  (scaLered)  back  into  space    

•  Even  when  the  antenna  losses  tend  to  zero,  sIll  only  half  of  the  power  captured  is  delivered  to  the  load  (in  the  case  of  conjugate  matching),  the  other  half  being  scaLered  back  into  space  

Page 18: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     18  

Receiving  antenna  equivalent  circuit  

The  antenna  with  the  transmission  line  is  represented  by  an  (Thevenin)  equivalent  generator    The  receiver  is  represented  by  its  input  impedance  as  seen  from  the  antenna  terminals  (i.e.  transformed  by  the  transmission  line)    VA  is  the  (induced  by  the  incident  wave)  voltage  at  the  antenna  terminals  determined  when  the  antenna  is  open  circuited      Note:  The  antenna  impedance  is  the  same  when  the  antenna  is  used  to  radiate  and  when  it  is  used  to  receive  energy  

Radio  wave   Receiver  Transm.line  

Antenna  

Ant

enna

Rr

jXA

VA

jXL

RL Rl

Thevenin  equivalent  

Page 19: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     19  

RadiaIon  efficiency  

•  The  radiaIon  efficiency  e  indicates  how  efficiently  the  antenna  uses  the  RF  power    

•  It  is  the  raIo  of  the  power  radiated  by  the  antenna  into  the  space  and  the  total  power  delivered  to  the  antenna  terminals  (in  transmisng  mode).  In  terms  of  equivalent  circuit  parameters:  

e = RrRr + Rl

Page 20: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

Topics  for  discussion  

1.  Antenna  funcIons  2.  Antenna  matching  3.  Antenna  polarizaIon  4.  Antenna  direcIvity  5.  Antenna  arrays  

(CC)  R  Struzak     20  

Page 21: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     21  

Antenna  polarizaIon  

•  The  polarizaIon  of  an  antenna  in  a  specific  direcIon  is  defined  to  be  the  polarizaIon  of  the  wave  produced  by  the  antenna  at  this  direcIon  at  a  great  distance    

•  By  convenIon  the  "polarizaIon"  of  an  EM  wave  refers  to  the  polarizaIon  (direcIon)  of  oscillaIons  of  the  electric  field  vector.    

•  The  oscillaIon  may  be  in  a  single  direcIon  (linear  polarizaIon),  or  the  field  may  rotate  (circular  or  ellipIcal  polarizaIon).    

Page 22: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     22  

PolarizaIon  filters/  reflectors  

•  At  the  surface  of  ideal  conductor  the  tangenIal  electrical  field  component  =  0  

|E1|>0 |E2| = 0

Vector E ⊥ wires Vector E || wires

|E1|>0 |E2| ~ |E2|

Wall of thin parallel wires (conductors)

Wire distance ~ 0.1λ

Page 23: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     23  

PolarizaIon  states  

450  LINEAR  

UPPER  HEMISPHERE:  ELLIPTIC  POLARIZATION  LEFT_HANDED  SENSE  

LOWER  HEMISPHERE:  ELLIPTIC  POLARIZATION    RIGHT_HANDED  SENSE  

EQUATOR:  LINEAR  POLARIZATION  

LATTITUDE:  REPRESENTS  AXIAL  RATIO  

LONGITUDE:  REPRESENTS  TILT  ANGLE  

POLES  REPRESENT  CIRCULAR  POLARIZATIONS  

LHC  

RHC  

(Poincaré sphere)

Page 24: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

Topics  for  discussion  

1.  Antenna  funcIons  2.  Antenna  matching  3.  Antenna  polarizaIon  4.  Antenna  direcIvity  5.  Antenna  arrays  

(CC)  R  Struzak     24  

Page 25: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     25  

Point  Source  

•  For  many  purposes,  it  is  sufficient  to  know  the  direcIon  (angle)  variaIon  of  the  power  radiated  by  antenna  at  large  distances.    

•  For  that  purpose,  any  pracIcal  antenna,  regardless  of  its  size  and  complexity,  can  be  represented  as  a  (distant)  point-­‐source.    

•  The  actual  field  near  the  antenna  is  then  disregarded.    

Page 26: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     26  

•  The  EM  field  at  large  distances  from  an  antenna  can  be  treated  as  originated  at  a  point  source  -­‐  ficIIous  volume-­‐less  emiLer.  

•  The  EM  field  in  a  homogenous  unlimited  medium  at  large  distances  from  an  antenna  can  be  approximated  by  an  uniform  plane  TEM  wave        

Page 27: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

15  Feb  2001   Property  of  R.  Struzak   27  

PFD:  Isotropic  Radiator  

•  Loss-­‐less  propagaIon  medium  assumed  

•  Isotropic  radiator  cannot  be  physically  realized  

•  PFD  does  not  depend  on  frequency/  wavelength  

24 rPPFD T

π=

r  

Power  Flux  Density  (PFD)  

Page 28: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

15  Feb  2001   Property  of  R.  Struzak   28  

PFD:  Example  1  

•  What is the PFD from TV broadcast GEO satellite at ICTP?

•  EIRP = 180 kW (52.5 dB(W))

•  Distance: ~38'000 km •  Free space  

PFD =1.8•102 •103

4•! •(38•106 )2

!1.8•105

1.8•1016 ![Wm-2 ]

=1•10"11 [Wm-2 ]= "100 [dB(Wm"2 )]

Page 29: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

15  Feb  2001   Property  of  R.  Struzak   29  

PFD:  Example  2  

•  What is the PFD from a hand-held phone at the head?

•  EIRP = 1.8 W •  Distance = ~3.8 cm •  Free space

PFD =1.8

4•! •(3.8•10!2 )2

"1.8

1.8•10!2 ![Wm-2 ]

=100 [Wm-2 ]= 100•103

104 [mWcm-2 ]

=10![mWcm-2 ]

Page 30: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     30  

Short  dipole  antenna:  summary  •  Eθ  &  Hθ  are  maximal  in  the  equatorial  plane,  zero  along  the  antenna  axis  

•  Er  is  maximal  along  the  antenna  axis  dz,  zero  in  the  equatorial  plane    

•  All  show  axial  symmetry    •  All  are  proporIonal  to  the  current  moment  Idz  •  Have  3  components  that  decrease  with  the  distance-­‐to-­‐wavelength  raIo  as    –  (r/λ)-­‐2  &  (r/λ)-­‐3:  near-­‐field,  or  inducIon  field.  The  energy  oscillates  from  enIrely  electric  to  enIrely  magneIc  and  back,  twice  per  cycle.  Modeled  as  a  resonant  LC  circuit  or  a  transmission-­‐line  resonator;      

–  (r/λ)-­‐1:  far-­‐field  or  radiaIon  field    –  These  3  component  are  all  equal  at  (r/λ)  =  1/(2π)    

Page 31: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     31  

Field  components    

0.001

0.01

0.1

1

10

100

1000

0.1 1 10

Relative distance, Br

Rela

tive

field

stre

ngth

FF

FF

Q

Q

C

C

FF: Radiation field

C, Q: Induction fields

Page 32: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     32  

EM  field  intrinsic  impedance  

Field  impedance  Z  =  E/H  depends    on  the  antenna  type  and  on  distance  

0.01

0.1

1

10

100

0.01 0.1 1 10 100

Distance / (lambda/ 2Pi)

Z / 3

77

Short dipole

Small loop

Page 33: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     33  

Far-­‐Field,  Near-­‐Field    

•  Near-­‐field  region:    –  ReacIve  field  components  dominate  (L,  C)  –  The  resultant  EM  field  highly  non-­‐uniform  –  Angular  distribuIon  of  energy  depends  on  

distance  from  the  antenna;    •  Far-­‐field  region:    

–  RadiaIng  field  component  dominates  (R)  –  The  resultant  EM  field  can  locally  be  treated  as  

uniform  (TEM)  –  Angular  distribuIon  of  energy  is  independent  on  

distance;      

Page 34: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

•  For  a  60  cm  diameter  satellite  TV  antenna  operaIng  at  a  frequency  of  12GHz,    (a  wavelength  of  25mm),  R1  =  0.85m  and    R2  =  29m.  

Page 35: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

Example  

•  The  power  density  in  the  beam  exceeds  that  from  isotropic  antenna  by  the  raIo  of  the  area  of  a  sphere  of  radius  equal  to  the  antenna  to  spot  distance  to  the  area  of  the  spot.  This  is  the  ‘Gain’  of  the  antenna  system:  =  4(r/ra)2.    

•  With  the  satellite  alItude  r  =  35786  km,  earth  radius  R  =  6371  km  and  the  rectenna  radius  ra  =  5  km,  the  gain  is  ~2.84  million  or  84dB.  

•   This  would  require  antenna  about  5000  wavelengths  across  (600m  at  2.4GHz),  or  in  wavelength  terms  about  the  same  as  the  human  eyeball!  Source:  A.  Marvin:  IntroducIon  to  ElectromagneIc  Fields  and  Waves  (slides)    

A  Solar  Power  Satellite  beams  RF  energy  from  a  geostaIonary  satellite  down  to    a  receiving  site  on  the  ground  of  10  km  diameter.    

Page 36: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     36  

Short  antenna  radiaIon  paLern  

Page 37: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     37  

Linear  Antennas  •  SummaIon  of  all  vector    

components  E  (or  H)    produced  by  each  antenna  element  

•  In  the  far-­‐field  region,    the  vector  components  are  parallel  to  each  other  

•  Phase  difference  due  to    –  ExcitaIon  phase  difference  –  Path  distance  difference  

•  Method  of  moments  -­‐  NEC  

...

...

321

321

+++=

+++=

HHHH

EEEE!!!!

!!!"

O

Page 38: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

15  Feb  2001   Property  of  R.  Struzak   38  

Reference  Antennas  

•  Isotropic  radiator    – isolated  in  space  (Gi,  absolute  gain,  or  isotropic  gain)  

•  Half-­‐wave  dipole  – isolated  in  space,  (Gd,  gain  relaIve  to  λ/2  dipole)    

Page 39: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

15  Feb  2001   Property  of  R.  Struzak   39  

Satellite  antenna  mask  (example)  

-50

-40

-30

-20

-10

0

0.1 1 10 100

Phi/Phi0

Rela

tive

gain

(dB)

RR/1998 APS30 Fig.9

COPOLAR

CROSSPOLAR

Reference  paLern  for  co-­‐polar  and  cross-­‐polar  components  for  satellite  transmisng  antennas  in  Regions  1  and  3  (BroadcasIng  ~12  GHz)    

0dB  

-­‐3dB  

Phi0/2  

Phi  

Page 40: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     40  

Typical  Gain  and  Beamwidth  

Type of antenna Gi [dB] BeamW.

Isotropic 0 3600x3600

Half-wave Dipole 2 3600x1200

Helix (10 turn) 14 350x350

Small dish 16 300x300

Large dish 45 10x10

Page 41: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

Topics  for  discussion  

1.  Antenna  funcIons  2.  Antenna  matching  3.  Antenna  polarizaIon  4.  Antenna  gain  5.  Antenna  arrays  

(CC)  R  Struzak     41  

Page 42: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     42  

Antenna  arrays  •  MulIple    antennas  collaboraIng’  to  synthesize  radiaIon  characterisIcs  not  available  with  a  single  antenna,  able  –  to  match  the  radiaIon  paLern  to  the  desired  coverage  area    –  to  change  the  radiaIon  paLern  electronically  (scanning)  through  the  

control  of  the  phase  &  amplitude  of  the  signals  in  each  element  –  to  dynamically  adapt  to  changing  signal  condiIons  –  to  increase  transmission  capacity  by  beLer  use  of  the  radio  resources  

and  reducing  interference    

•  Complex  &  costly  –  Intensive  research  related  to  military,  space,  etc.  acIviIes  

»  Smart  antennas,  signal-­‐processing  antennas,  tracking  antennas,  phased  arrays,  MIMO  anternnas,  etc.    

•  Passive  &  unintenIonal  antennas  Source:  adapted  from  N  Gregorieva  

Page 43: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     43  

Antenna  Arrays:  posibiliIes  

•  PossibiliIes  to  control  electronically    –  DirecIon  of  maximum  radiaIon  –  DirecIons  (posiIons)  of  nulls  –  Beam-­‐width  –  DirecIvity  –  Levels  of  sidelobes  

 using  standard  antennas  (or  antenna  collecIons)  independently  of  their  radiaIon  paLerns  

•  Antenna  elements  can  be  distributed  along  straight  lines,  arcs,  surfaces,  squares,  circles,  etc.    

Page 44: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     44  

Switched  arrays  •  Switched  beam  antennas    

–  Based  on  switching  funcIon  between  separate  direcIve  antennas  or  predefined  beams  of  an  array  

•  Space  Division  Mul0ple  Access  (SDMA)  =  allocaIng  an  angle  direcIon  sector  to  each  user    –  In  a  TDMA  system,  two  users  will  be  

allocated  to  the  same  Ime  slot  and  the  same  carrier  frequency    

–  They  will  be  differenIated  by  different  direcIon  angles  

Page 45: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     45  

Phased  Arrays  

•  Array  of  N  antennas  in  a  linear  or  two-­‐dimensional  configuraIon  +  beam-­‐forming    &  control  device  

•  The  amplitude  and  phase  excitaIon  of  each  individual  antenna  controlled  electronically  (“sovware-­‐defined”)  –  Diode    phase  shivers    –  Ferrite  phase  shivers    

•  InerIa-­‐less  beam-­‐forming  and  scanning  (µsec)  with  fixed  physical  structure    

Page 46: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

2  GHz  adapIve  antenna  

(CC)  R  Struzak     46  

An  array  of  48  2.4  GHz  antennas    Source:  Arraycomm  

The  Square  Kilometre  Array  (SKA).    A  radio  telescope  in  development  in  Australia/New  Zealand/Africa.    Radius:  3000  km;  Budget:  €1.5  billion  

Page 47: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

15  Feb  2001   Property  of  R.  Struzak   47  

AdapIve  (“Intelligent”)Antennas  

•  Array  of  N  antennas  in  a  linear  or  spaIal  configuraIon  

•  Used  for  receiving  signals  from  desired  sources  and  suppress  incident  signals  from  undesired  sources  

•  The  amplitude  and  phase  excitaIon  of  each  individual  antenna  controlled  electronically  (“sovware-­‐defined”)    

•  The  weight-­‐determining  algorithm  uses  a-­‐priori  and/  or  measured  informaIon  

•  The  weight  and  summing  circuits  can  operate  at  the  RF  or  at  an  intermediate  frequency  

w1  

wN  

Σ  

Weight-­‐determining    algorithm  

1  

N  

Page 48: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     48  

2  omnidirecIonal  antennas  

Run  simulaIon  program:  Array2ant_Demo1.xlsm  

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

D = 0.5λ, θ= 900

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

D = 0.5λ, θ= 00 D = 0.5λ, θ= 1800

Page 49: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

What  we  have  learned  

•  Symmetrical  role  of  transmisng  and  receiving  antennas  

•  CriIcal  elements  of  transmission  chain  – Power  matching  between  transmission-­‐line  and  antenna    

– PolarizaIon  matching  between  antennas  – DirecIon  matching  of    transmisng  and  receiving  antennas    

– UnintenIonal  antennas  

Page 50: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     50  

Antenna  simulators  •  PolarizaIon:    

–  hLp://www.amanogawa.com/archive/wavesA.html    •  Linear  dipole  antennas:    

–  hLp://www.amanogawa.com/archive/DipoleAnt/DipoleAnt-­‐2.html    –  hLp://www.amanogawa.com/archive/Antenna1/Antenna1-­‐2.html    

•  2  antennas:    –  hLp://www.amanogawa.com/archive/TwoDipole/Antenna2-­‐2.html  

•  Antenna  design  using  MiniNEC  –  hLp://www.sovpedia.com/get/Science-­‐CAD/Expert-­‐MININEC-­‐

Classic.shtml    

Page 51: AntennaFundamentals&wireless.ictp.it/school_2014/Lectures/Day2/Antenna_Fundamentals.pdf · (CC)&RStruzak&& 14 Transming&antennaequivalentcircuit& TransmiLer& Transm.line& Antenna

(CC)  R  Struzak     51  

 

Thank  you  for  your  aLenIon