13
Supporting Information   Wiley-VCH 2011 69451 Weinheim, Germany A Dimer of Silaisonitrile with Two-Coordinate Silicon Atoms** Rajendra S. Ghadwal, Herbert W. Roesky,* Kevin Pröpper, Birger Dittrich, Susanne Klein, and Gernot Frenking* anie_2011013 20_sm_miscellaneous_infor mation.pdf 

Anie 201101320 Sm Miscellaneous Information

Embed Size (px)

Citation preview

Page 1: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 113

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 213

Supporting Information

For

A Dimer of Silaisonitrile with Two-Coordinate Silicon Atoms

Rajendra S Ghadwal Herbert W Roesky Kevin Proumlpper Birger Dittrich Susanne Klein

and Gernot Frenking

Institut fuumlr Anorganische Chemie Georg-August-Universitaumlt Goumlttingen Tammannstrasse 4 37077 Goumlttingen (Germany) and Fachbereich Chemie Philipps-Universitaumlt Marburg Hans-Meerwein-

Straszlige 35032 Marburg (Germany)

To whom correspondence should be addressed Fax (+49) 551-393-373 (+49) 6421-282-5566

E-mail hroeskygwdgde frenkingchemieuni-marburgde

Contents

(1) Experimental details and physical data

(2) X-ray crystallography

(3) Tables T1 T2 and T3

(4) Theoretical details

(5) References

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 313

2

(1) Experimental details and physical data

All syntheses and manipulations were carried out under an inert atmosphere of dry nitrogen

gas using glove-box or Schlenk-line techniques The starting materials IPrCl2Si=NAr (1)[S1]

(Ar = 26-bis(246-triisopropylphenyl)phenyl) and IPr middotSiCl2[S2]

(IPr = 13-bis(26-diisopropylphenyl)imidazol-2-ylidene) were prepared according to the reported methods

Me3SiN3 (Aldrich) was used as received C6D6 and THF-d8 were dried over Na or K metal

and distilled under dry nitrogen prior to use All other solvents were dried and purified by a

MBRAUN solvent purification system (MB SPS 800)1H 13C and 29Si NMR spectra were

recorded using a Bruker Avance DPX 200 or a Bruker Avance DRX 500 spectrometer The

chemical shifts δ are given relative to SiMe4 EI-MS spectrum of 3 was obtained using a

Finnigan MAT 8230 instrument Elemental analyses were performed by the Institut fuumlr Anorganische Chemie Universitaumlt Goumlttingen

Synthesis of (ArNSi) 2 (3) To a Schlenk-flask containing IPrCl2Si=NAr (1) (990 g1006

mmol) (Ar = 26-bis(246-triisopropylphenyl)phenyl)and KC8 (345 g 2552 mmol) was

added pre-cooled (minus78degC) toluene (100 mL) The reaction mixture was allowed to warm to

room temperature and continued to stir overnight Removal of the volatiles under vacuum

afforded a brown solid Silaisonitrile (ArNSi)2 (3) was obtained as yellow crystalline blocks

in 21 (111 g) yield on storage of a saturated toluene solution at minus30 degC for 7 daysSuitable single crystals for X-ray crystallographic studies were grown from a C6D6 solution

in a NMR tube at room temperature Elemental analysis () calcd for C72H98 N2Si2 C 8254

H 943 N 267 found C 8261 H 951 N 2521H NMR (200 MHz C6D6 25 degC) δ 109 (d

24H J = 660 Hz CH Me2) 124 (d 24H J = 680 Hz CH Me2) 136 (d 24H J = 680 Hz

CH Me2) 276 (m 8 H C H Me2) 291 (m 4 H C H Me2) 660-724 (m 14H C6 H 3 C6 H 2) ppm13C NMR (125 MHz C6D6 25 degC) δ 2360 2437 2571(CH Me2) 3157 3466 (C HMe2)

12060 12200 12365 13139 13293 13985 14190 14664 14836(C 6H3 C 6H2) ppm29Si NMR ( 99 MHz C6D6 25degC) δ 18329 ppm EI-MSmz ()1046 [(M)+] (90) 1003

[(M minus C3H7)+] (100)

Synthesis of bis-silaimine (ArNSi=NSiMe 3 )2 (4) To a 20 mL yellow toluene solution of 3

(035 g033 mmol) was added a 20 mL toluene solution of Me3SiN3 (01 mL 075 mmol)

The resulting yellow solution was stirred at room temperature which turned to a colorless

solution after 2h Removal of all the volatiles under reduced pressure gave a white solid

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 413

3

which was re-dissolved in toluene (5 mL) and stored in a freezer at 4 degC for 10 days

Compound4 was isolated as colorless crystals in 62 (025 g) yield Elemental analysis ()

calcd for C78H116 N4Si2 C 7666 H 957 N 458 found C 7654 H 944 N 4471H NMR

(200 MHz C6D6 25 degC)δ 007 (s 18H Si Me3) 105 (d 24H J = 660 Hz CH Me2) 128 (d

24H J = 680 Hz CH Me2) 135 (d 24H J = 680 Hz CH Me2) 280-311 (m 12 H C H Me2)

655-710 (m 14H C6 H 3 C6 H 2) ppm 13C NMR (125 MHz C6D6 25 degC) δ 136 (Si Me3)

2398 2456 2547(CH Me2) 3091 3480 (C HMe2) 11770 12145 12564 12965 13380

13782 14290 14801 14880 (C 6H3 C 6H2) ppm 29Si NMR ( 99 MHz C6D6 25degC)

δ 276 (SiMe3) minus5683 (NSi=N) ppm

(2) X-ray crystallography

Crystal data are summarized in Tables T1 and T2 For compounds3 and 4 single crystals

were measured on a Bruker three-circle diffractometer equipped with a SMART 6000 CCD

area detector and a CuKα rotation anode Integrations were performed with SAINT[S3]

Intensity data for compounds3 and 4 were corrected for absorption and scaled with

SADABS[S4] Both structures were solved by direct methods and subsequently refined on F 2

by full-matrix least-squares methods with the program SHELXL-97[S5] utilizing anisotropic

displacement parameters for non-hydrogen atoms Hydrogen atoms were included in themodel by constraintsvia a riding model after they have been located in difference Fourier

maps The asymmetric unit of 4 contains half a molecule and crystallizes in space group P ī

After initial independent atom model (IAM) refinement with SHELXL-97 parameter

values of compound3 were used to initiate an Invariom refinement[S6] The scattering-factor

model used in Invariom refinement is based on the Hansen and Coppens multipole

formalism[S7] Rather than adjusting the respective multipole parameters to the experimental

data which requires Bragg-data to high resolution multipole parameters are predicted fromtheory in Invariom refinement This procedure also yields most benefits of a conventional

charge density refinement These are an improved parameter precision better Figures of

merit ADPs de-convoluted from electron density and an interpretable electron-density

model

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 513

4

Reflections with [ I gt 3σ ( I )] were included in Invariom refinement which was

performed with the program XDLSM as included in the XD package[S8] Prior to XDLSM

refinement input files were processed with the program InvariomTool[S9] and full details of

the general Invariom modeling procedure can be found in the reference for this program

Only positional and displacement parameters of non-hydrogen atoms were adjusted in

Invariom refinement so that the number of parameters was not increased in comparison the

IAM Bond distances to H-atoms were set to values of model compounds of the Invariom

database[S10] Like compound4 the asymmetric unit of 3 contains only half a molecule3

crystallizes in the space groupC 2c For the silaisonitrile core two different conformations

have been modeled (Figure F1) in order to describe the N1minusSiminusN2 rotation around the

C1minusN1 and C20minusN2 single bonds The dynamic rotational motion becomes apparent also

through the elongated atomic displacement parameters (ADPs) According to the occupancy

of the split positions the contribution of the main component Si(1) and Si(2) has been refined

to be 0837(3) ie 84 for the main and 16 for the minor component

Figure F1 Molecular structure of 3 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The picture illustrates the silicon rotation of the Si2N2 core The anisotropic displacementparameters also emphasize the movement around the N1 N2 axis

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 613

5

Figure F2 Side view of the molecular structure of 3 atoms in the silaisonitrile core are mapped as spheresIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity TheSi2N2 motive forms a planar layer in between the phenyl rings The dihedral angles for the Si 2N2 plane and thephenyl rings are 56162deg and 26905deg The phenyl rings on the amino nitrogen atoms are almost perpendicular toeach other as indicated by a dihedral angle of 83067deg

Figure F3 Molecular structure of 4 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The Si2N2 core with the attached TMS groups builds a straight line and perpendicular to thephenyl rings The dihedral angles for the Si 2N2 plane and the phenyl ring are 9122deg and 9349deg

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 713

6

Figure F4 Deformation density plot of 3 the deformation electron density shows the differencebetween total electron density (as modeled by the Invariom approach) and the independent atommodel Contour level steps are 01 eAring 3 with isosurface values as indicated in the legend

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 813

7

(3) Tables T1 and T2

Table T1 Crystal data and structure refinement for 3 middot 3 benzene

Identification code 3 middot 3 benzene

Empirical formula C90 H116 N2 Si2Formula weight 128203

Temperature 100(2) K

Wavelength 154178 Aring

Crystal system monoclinic

Space group C 2c

Unit cell dimensions a = 185170(3) Aring α = 90deg

b = 180955(2) Aring β = 109724(1)deg

c = 246686(4) Aring γ = 90degVolume 77809(2) Aring

3

Z 4

Density (calculated) 1094 mgm3

Absorption coefficient 0743 mm-1

F(000) 2792

Crystal size 002 x 001 x 001 mm3

Theta range for data collection 352 to 7252deg

Index ranges -19lt=hlt=21-22lt=k lt=22 -30lt=l lt=30

Reflections collected 86369

Independent reflections 7740 [ R(int) = 00328]

Completeness toθ = 7252deg 977

Absorption correction semi-empirical from

equivalents

Max and min transmission 04697 and 03916

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 5672 24 436

Goodness-of-fit on F 327

Final R indices [ I gt3σ ( I )] R1( F ) = 00480wR2( F ) =

0047

R indices (all data) R1(F) = 0071wR2(F) =

0094

Largest diff peak and hole 0774 and -0561 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 913

8

Table T2 Crystal data and structure refinement for 4middot2 toluene

Identification code 4 middot 2 toluene

Empirical formula C92 H132 N4 Si4

Formula weight 140638Temperature 100(2) K

Wavelength 154178 Aring

Crystal system triclinic

Space group P ī Unit cell dimensions a = 127393(2) Aring α = 88000(1)deg

b = 136693(2) Aring β = 7583deg

c = 139072(2) Aring γ = 64075(1)deg

Volume 210457(5) Aring3

Z 1

Density (calculated) 1110 mgm3

Absorption coefficient 0994 mm-1

000) 768

Crystal size 002 x 002 x 002 mm3

Theta range for data collection 329 to 7215deg

Index ranges -15lt=hlt=14 -16lt=k lt=16 -

17lt=l lt=17

Reflections collected 94965

Independent reflections 8049 [ R(int) = 00333]

Completeness toθ = 7215deg 969

Absorption correction semi-empirical from

equivalents

Max and min transmission 04696 and 03743

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 8049 1957 592

Goodness-of-fit on F 2

1060

Final R indices [ I gt2σ ( I )] R1 = 00649wR2 = 01770

R indices (all data) R1 = 00707wR2 = 01856

Largest diff peak and hole 1085 and -0377 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1013

9

Table T3 Energies (in au) and coordinates (in Aring) of the calculated molecules

2M22E= -8022457576 au N 3667956 -0653630 -0194643C 2353472 -0398864 -0138839 N 2264652 0848474 0306952C 3498024 1394835 0537005C 4402452 0437771 0217734Si 0643755 -1407455 -0566240 N -0208564 -0075773 -0081149C -1583382 0034285 -0008071C -2378869 -0899151 0672213C -3754632 -0753517 0741106C -4384007 0325122 0138201C -3609472 1262557 -0533569C -2235207 1126625 -0599601H 3641530 2392700 0899786H 5473372 0443431 0249300H 1308247 1203866 0405675H 4046554 -1530538 -0501155H -1634206 1855458 -1122330H -4081814 2110546 -1007271H -5455242 0438129 0195161H -4338531 -1489695 1273630H -1891059 -1731010 1159371

3M26E = -11520227603auC 1180203 0216627 3284382C 0000000 -0000214 2574933C -1180280 -0216780 3284598C -1178497 -0207231 4669327C 0000000 0000379 5370291C 1178568 0207685 4669111 N -0000191 -0000565 1176632Si 1187262 -0559551 0000000 N -0000191 -0000565 -1176632C 0000001 -0000214 -2574933C -1180279 -0216780 -3284598

C -1178496 -0207231 -4669327C 0000001 0000379 -5370291C 1178569 0207685 -4669111C 1180204 0216627 -3284382Si -1187100 0559588 0000000H -2095074 -0405419 -2742205H -2102051 -0373947 -5201948H 0000137 0000620 -6448635H 2102177 0374633 -5201566H 2094948 0405015 -2741813H -2095075 -0405419 2742205H -2102052 -0373947 5201948H 0000136 0000620 6448635H 2102176 0374633 5201566H 2094947 0405015 2741814

4M36E = -18442532845auC 5341396 -0672075 -0000219C 4795583 0601925 -0036761C 3422048 0779108 -0038034C 2584541 -0329807 -0001019C 3124625 -1609891 0035943C 4499812 -1773570 0035867 N 1183068 -0154616 -0001141Si -0158348 -1230938 -0003034 N -0316225 -2774648 -0005386Si -0975976 -4336151 -0018654H -0616765 -5044995 -1266916Si 0158374 1230905 0002769 N 0316313 2774603 0005349Si 0975850 4336196 0018228H 0617624 5044808 1266904 N -1183044 0154583 0000769C -2584516 0329790 0001003C -3422026 -0779117 0038098C -4795560 -0601914 0037186C -5341363 0672098 0000909C -4499773 1773586 -0035277

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 2: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 213

Supporting Information

For

A Dimer of Silaisonitrile with Two-Coordinate Silicon Atoms

Rajendra S Ghadwal Herbert W Roesky Kevin Proumlpper Birger Dittrich Susanne Klein

and Gernot Frenking

Institut fuumlr Anorganische Chemie Georg-August-Universitaumlt Goumlttingen Tammannstrasse 4 37077 Goumlttingen (Germany) and Fachbereich Chemie Philipps-Universitaumlt Marburg Hans-Meerwein-

Straszlige 35032 Marburg (Germany)

To whom correspondence should be addressed Fax (+49) 551-393-373 (+49) 6421-282-5566

E-mail hroeskygwdgde frenkingchemieuni-marburgde

Contents

(1) Experimental details and physical data

(2) X-ray crystallography

(3) Tables T1 T2 and T3

(4) Theoretical details

(5) References

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 313

2

(1) Experimental details and physical data

All syntheses and manipulations were carried out under an inert atmosphere of dry nitrogen

gas using glove-box or Schlenk-line techniques The starting materials IPrCl2Si=NAr (1)[S1]

(Ar = 26-bis(246-triisopropylphenyl)phenyl) and IPr middotSiCl2[S2]

(IPr = 13-bis(26-diisopropylphenyl)imidazol-2-ylidene) were prepared according to the reported methods

Me3SiN3 (Aldrich) was used as received C6D6 and THF-d8 were dried over Na or K metal

and distilled under dry nitrogen prior to use All other solvents were dried and purified by a

MBRAUN solvent purification system (MB SPS 800)1H 13C and 29Si NMR spectra were

recorded using a Bruker Avance DPX 200 or a Bruker Avance DRX 500 spectrometer The

chemical shifts δ are given relative to SiMe4 EI-MS spectrum of 3 was obtained using a

Finnigan MAT 8230 instrument Elemental analyses were performed by the Institut fuumlr Anorganische Chemie Universitaumlt Goumlttingen

Synthesis of (ArNSi) 2 (3) To a Schlenk-flask containing IPrCl2Si=NAr (1) (990 g1006

mmol) (Ar = 26-bis(246-triisopropylphenyl)phenyl)and KC8 (345 g 2552 mmol) was

added pre-cooled (minus78degC) toluene (100 mL) The reaction mixture was allowed to warm to

room temperature and continued to stir overnight Removal of the volatiles under vacuum

afforded a brown solid Silaisonitrile (ArNSi)2 (3) was obtained as yellow crystalline blocks

in 21 (111 g) yield on storage of a saturated toluene solution at minus30 degC for 7 daysSuitable single crystals for X-ray crystallographic studies were grown from a C6D6 solution

in a NMR tube at room temperature Elemental analysis () calcd for C72H98 N2Si2 C 8254

H 943 N 267 found C 8261 H 951 N 2521H NMR (200 MHz C6D6 25 degC) δ 109 (d

24H J = 660 Hz CH Me2) 124 (d 24H J = 680 Hz CH Me2) 136 (d 24H J = 680 Hz

CH Me2) 276 (m 8 H C H Me2) 291 (m 4 H C H Me2) 660-724 (m 14H C6 H 3 C6 H 2) ppm13C NMR (125 MHz C6D6 25 degC) δ 2360 2437 2571(CH Me2) 3157 3466 (C HMe2)

12060 12200 12365 13139 13293 13985 14190 14664 14836(C 6H3 C 6H2) ppm29Si NMR ( 99 MHz C6D6 25degC) δ 18329 ppm EI-MSmz ()1046 [(M)+] (90) 1003

[(M minus C3H7)+] (100)

Synthesis of bis-silaimine (ArNSi=NSiMe 3 )2 (4) To a 20 mL yellow toluene solution of 3

(035 g033 mmol) was added a 20 mL toluene solution of Me3SiN3 (01 mL 075 mmol)

The resulting yellow solution was stirred at room temperature which turned to a colorless

solution after 2h Removal of all the volatiles under reduced pressure gave a white solid

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 413

3

which was re-dissolved in toluene (5 mL) and stored in a freezer at 4 degC for 10 days

Compound4 was isolated as colorless crystals in 62 (025 g) yield Elemental analysis ()

calcd for C78H116 N4Si2 C 7666 H 957 N 458 found C 7654 H 944 N 4471H NMR

(200 MHz C6D6 25 degC)δ 007 (s 18H Si Me3) 105 (d 24H J = 660 Hz CH Me2) 128 (d

24H J = 680 Hz CH Me2) 135 (d 24H J = 680 Hz CH Me2) 280-311 (m 12 H C H Me2)

655-710 (m 14H C6 H 3 C6 H 2) ppm 13C NMR (125 MHz C6D6 25 degC) δ 136 (Si Me3)

2398 2456 2547(CH Me2) 3091 3480 (C HMe2) 11770 12145 12564 12965 13380

13782 14290 14801 14880 (C 6H3 C 6H2) ppm 29Si NMR ( 99 MHz C6D6 25degC)

δ 276 (SiMe3) minus5683 (NSi=N) ppm

(2) X-ray crystallography

Crystal data are summarized in Tables T1 and T2 For compounds3 and 4 single crystals

were measured on a Bruker three-circle diffractometer equipped with a SMART 6000 CCD

area detector and a CuKα rotation anode Integrations were performed with SAINT[S3]

Intensity data for compounds3 and 4 were corrected for absorption and scaled with

SADABS[S4] Both structures were solved by direct methods and subsequently refined on F 2

by full-matrix least-squares methods with the program SHELXL-97[S5] utilizing anisotropic

displacement parameters for non-hydrogen atoms Hydrogen atoms were included in themodel by constraintsvia a riding model after they have been located in difference Fourier

maps The asymmetric unit of 4 contains half a molecule and crystallizes in space group P ī

After initial independent atom model (IAM) refinement with SHELXL-97 parameter

values of compound3 were used to initiate an Invariom refinement[S6] The scattering-factor

model used in Invariom refinement is based on the Hansen and Coppens multipole

formalism[S7] Rather than adjusting the respective multipole parameters to the experimental

data which requires Bragg-data to high resolution multipole parameters are predicted fromtheory in Invariom refinement This procedure also yields most benefits of a conventional

charge density refinement These are an improved parameter precision better Figures of

merit ADPs de-convoluted from electron density and an interpretable electron-density

model

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 513

4

Reflections with [ I gt 3σ ( I )] were included in Invariom refinement which was

performed with the program XDLSM as included in the XD package[S8] Prior to XDLSM

refinement input files were processed with the program InvariomTool[S9] and full details of

the general Invariom modeling procedure can be found in the reference for this program

Only positional and displacement parameters of non-hydrogen atoms were adjusted in

Invariom refinement so that the number of parameters was not increased in comparison the

IAM Bond distances to H-atoms were set to values of model compounds of the Invariom

database[S10] Like compound4 the asymmetric unit of 3 contains only half a molecule3

crystallizes in the space groupC 2c For the silaisonitrile core two different conformations

have been modeled (Figure F1) in order to describe the N1minusSiminusN2 rotation around the

C1minusN1 and C20minusN2 single bonds The dynamic rotational motion becomes apparent also

through the elongated atomic displacement parameters (ADPs) According to the occupancy

of the split positions the contribution of the main component Si(1) and Si(2) has been refined

to be 0837(3) ie 84 for the main and 16 for the minor component

Figure F1 Molecular structure of 3 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The picture illustrates the silicon rotation of the Si2N2 core The anisotropic displacementparameters also emphasize the movement around the N1 N2 axis

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 613

5

Figure F2 Side view of the molecular structure of 3 atoms in the silaisonitrile core are mapped as spheresIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity TheSi2N2 motive forms a planar layer in between the phenyl rings The dihedral angles for the Si 2N2 plane and thephenyl rings are 56162deg and 26905deg The phenyl rings on the amino nitrogen atoms are almost perpendicular toeach other as indicated by a dihedral angle of 83067deg

Figure F3 Molecular structure of 4 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The Si2N2 core with the attached TMS groups builds a straight line and perpendicular to thephenyl rings The dihedral angles for the Si 2N2 plane and the phenyl ring are 9122deg and 9349deg

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 713

6

Figure F4 Deformation density plot of 3 the deformation electron density shows the differencebetween total electron density (as modeled by the Invariom approach) and the independent atommodel Contour level steps are 01 eAring 3 with isosurface values as indicated in the legend

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 813

7

(3) Tables T1 and T2

Table T1 Crystal data and structure refinement for 3 middot 3 benzene

Identification code 3 middot 3 benzene

Empirical formula C90 H116 N2 Si2Formula weight 128203

Temperature 100(2) K

Wavelength 154178 Aring

Crystal system monoclinic

Space group C 2c

Unit cell dimensions a = 185170(3) Aring α = 90deg

b = 180955(2) Aring β = 109724(1)deg

c = 246686(4) Aring γ = 90degVolume 77809(2) Aring

3

Z 4

Density (calculated) 1094 mgm3

Absorption coefficient 0743 mm-1

F(000) 2792

Crystal size 002 x 001 x 001 mm3

Theta range for data collection 352 to 7252deg

Index ranges -19lt=hlt=21-22lt=k lt=22 -30lt=l lt=30

Reflections collected 86369

Independent reflections 7740 [ R(int) = 00328]

Completeness toθ = 7252deg 977

Absorption correction semi-empirical from

equivalents

Max and min transmission 04697 and 03916

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 5672 24 436

Goodness-of-fit on F 327

Final R indices [ I gt3σ ( I )] R1( F ) = 00480wR2( F ) =

0047

R indices (all data) R1(F) = 0071wR2(F) =

0094

Largest diff peak and hole 0774 and -0561 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 913

8

Table T2 Crystal data and structure refinement for 4middot2 toluene

Identification code 4 middot 2 toluene

Empirical formula C92 H132 N4 Si4

Formula weight 140638Temperature 100(2) K

Wavelength 154178 Aring

Crystal system triclinic

Space group P ī Unit cell dimensions a = 127393(2) Aring α = 88000(1)deg

b = 136693(2) Aring β = 7583deg

c = 139072(2) Aring γ = 64075(1)deg

Volume 210457(5) Aring3

Z 1

Density (calculated) 1110 mgm3

Absorption coefficient 0994 mm-1

000) 768

Crystal size 002 x 002 x 002 mm3

Theta range for data collection 329 to 7215deg

Index ranges -15lt=hlt=14 -16lt=k lt=16 -

17lt=l lt=17

Reflections collected 94965

Independent reflections 8049 [ R(int) = 00333]

Completeness toθ = 7215deg 969

Absorption correction semi-empirical from

equivalents

Max and min transmission 04696 and 03743

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 8049 1957 592

Goodness-of-fit on F 2

1060

Final R indices [ I gt2σ ( I )] R1 = 00649wR2 = 01770

R indices (all data) R1 = 00707wR2 = 01856

Largest diff peak and hole 1085 and -0377 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1013

9

Table T3 Energies (in au) and coordinates (in Aring) of the calculated molecules

2M22E= -8022457576 au N 3667956 -0653630 -0194643C 2353472 -0398864 -0138839 N 2264652 0848474 0306952C 3498024 1394835 0537005C 4402452 0437771 0217734Si 0643755 -1407455 -0566240 N -0208564 -0075773 -0081149C -1583382 0034285 -0008071C -2378869 -0899151 0672213C -3754632 -0753517 0741106C -4384007 0325122 0138201C -3609472 1262557 -0533569C -2235207 1126625 -0599601H 3641530 2392700 0899786H 5473372 0443431 0249300H 1308247 1203866 0405675H 4046554 -1530538 -0501155H -1634206 1855458 -1122330H -4081814 2110546 -1007271H -5455242 0438129 0195161H -4338531 -1489695 1273630H -1891059 -1731010 1159371

3M26E = -11520227603auC 1180203 0216627 3284382C 0000000 -0000214 2574933C -1180280 -0216780 3284598C -1178497 -0207231 4669327C 0000000 0000379 5370291C 1178568 0207685 4669111 N -0000191 -0000565 1176632Si 1187262 -0559551 0000000 N -0000191 -0000565 -1176632C 0000001 -0000214 -2574933C -1180279 -0216780 -3284598

C -1178496 -0207231 -4669327C 0000001 0000379 -5370291C 1178569 0207685 -4669111C 1180204 0216627 -3284382Si -1187100 0559588 0000000H -2095074 -0405419 -2742205H -2102051 -0373947 -5201948H 0000137 0000620 -6448635H 2102177 0374633 -5201566H 2094948 0405015 -2741813H -2095075 -0405419 2742205H -2102052 -0373947 5201948H 0000136 0000620 6448635H 2102176 0374633 5201566H 2094947 0405015 2741814

4M36E = -18442532845auC 5341396 -0672075 -0000219C 4795583 0601925 -0036761C 3422048 0779108 -0038034C 2584541 -0329807 -0001019C 3124625 -1609891 0035943C 4499812 -1773570 0035867 N 1183068 -0154616 -0001141Si -0158348 -1230938 -0003034 N -0316225 -2774648 -0005386Si -0975976 -4336151 -0018654H -0616765 -5044995 -1266916Si 0158374 1230905 0002769 N 0316313 2774603 0005349Si 0975850 4336196 0018228H 0617624 5044808 1266904 N -1183044 0154583 0000769C -2584516 0329790 0001003C -3422026 -0779117 0038098C -4795560 -0601914 0037186C -5341363 0672098 0000909C -4499773 1773586 -0035277

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 3: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 313

2

(1) Experimental details and physical data

All syntheses and manipulations were carried out under an inert atmosphere of dry nitrogen

gas using glove-box or Schlenk-line techniques The starting materials IPrCl2Si=NAr (1)[S1]

(Ar = 26-bis(246-triisopropylphenyl)phenyl) and IPr middotSiCl2[S2]

(IPr = 13-bis(26-diisopropylphenyl)imidazol-2-ylidene) were prepared according to the reported methods

Me3SiN3 (Aldrich) was used as received C6D6 and THF-d8 were dried over Na or K metal

and distilled under dry nitrogen prior to use All other solvents were dried and purified by a

MBRAUN solvent purification system (MB SPS 800)1H 13C and 29Si NMR spectra were

recorded using a Bruker Avance DPX 200 or a Bruker Avance DRX 500 spectrometer The

chemical shifts δ are given relative to SiMe4 EI-MS spectrum of 3 was obtained using a

Finnigan MAT 8230 instrument Elemental analyses were performed by the Institut fuumlr Anorganische Chemie Universitaumlt Goumlttingen

Synthesis of (ArNSi) 2 (3) To a Schlenk-flask containing IPrCl2Si=NAr (1) (990 g1006

mmol) (Ar = 26-bis(246-triisopropylphenyl)phenyl)and KC8 (345 g 2552 mmol) was

added pre-cooled (minus78degC) toluene (100 mL) The reaction mixture was allowed to warm to

room temperature and continued to stir overnight Removal of the volatiles under vacuum

afforded a brown solid Silaisonitrile (ArNSi)2 (3) was obtained as yellow crystalline blocks

in 21 (111 g) yield on storage of a saturated toluene solution at minus30 degC for 7 daysSuitable single crystals for X-ray crystallographic studies were grown from a C6D6 solution

in a NMR tube at room temperature Elemental analysis () calcd for C72H98 N2Si2 C 8254

H 943 N 267 found C 8261 H 951 N 2521H NMR (200 MHz C6D6 25 degC) δ 109 (d

24H J = 660 Hz CH Me2) 124 (d 24H J = 680 Hz CH Me2) 136 (d 24H J = 680 Hz

CH Me2) 276 (m 8 H C H Me2) 291 (m 4 H C H Me2) 660-724 (m 14H C6 H 3 C6 H 2) ppm13C NMR (125 MHz C6D6 25 degC) δ 2360 2437 2571(CH Me2) 3157 3466 (C HMe2)

12060 12200 12365 13139 13293 13985 14190 14664 14836(C 6H3 C 6H2) ppm29Si NMR ( 99 MHz C6D6 25degC) δ 18329 ppm EI-MSmz ()1046 [(M)+] (90) 1003

[(M minus C3H7)+] (100)

Synthesis of bis-silaimine (ArNSi=NSiMe 3 )2 (4) To a 20 mL yellow toluene solution of 3

(035 g033 mmol) was added a 20 mL toluene solution of Me3SiN3 (01 mL 075 mmol)

The resulting yellow solution was stirred at room temperature which turned to a colorless

solution after 2h Removal of all the volatiles under reduced pressure gave a white solid

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 413

3

which was re-dissolved in toluene (5 mL) and stored in a freezer at 4 degC for 10 days

Compound4 was isolated as colorless crystals in 62 (025 g) yield Elemental analysis ()

calcd for C78H116 N4Si2 C 7666 H 957 N 458 found C 7654 H 944 N 4471H NMR

(200 MHz C6D6 25 degC)δ 007 (s 18H Si Me3) 105 (d 24H J = 660 Hz CH Me2) 128 (d

24H J = 680 Hz CH Me2) 135 (d 24H J = 680 Hz CH Me2) 280-311 (m 12 H C H Me2)

655-710 (m 14H C6 H 3 C6 H 2) ppm 13C NMR (125 MHz C6D6 25 degC) δ 136 (Si Me3)

2398 2456 2547(CH Me2) 3091 3480 (C HMe2) 11770 12145 12564 12965 13380

13782 14290 14801 14880 (C 6H3 C 6H2) ppm 29Si NMR ( 99 MHz C6D6 25degC)

δ 276 (SiMe3) minus5683 (NSi=N) ppm

(2) X-ray crystallography

Crystal data are summarized in Tables T1 and T2 For compounds3 and 4 single crystals

were measured on a Bruker three-circle diffractometer equipped with a SMART 6000 CCD

area detector and a CuKα rotation anode Integrations were performed with SAINT[S3]

Intensity data for compounds3 and 4 were corrected for absorption and scaled with

SADABS[S4] Both structures were solved by direct methods and subsequently refined on F 2

by full-matrix least-squares methods with the program SHELXL-97[S5] utilizing anisotropic

displacement parameters for non-hydrogen atoms Hydrogen atoms were included in themodel by constraintsvia a riding model after they have been located in difference Fourier

maps The asymmetric unit of 4 contains half a molecule and crystallizes in space group P ī

After initial independent atom model (IAM) refinement with SHELXL-97 parameter

values of compound3 were used to initiate an Invariom refinement[S6] The scattering-factor

model used in Invariom refinement is based on the Hansen and Coppens multipole

formalism[S7] Rather than adjusting the respective multipole parameters to the experimental

data which requires Bragg-data to high resolution multipole parameters are predicted fromtheory in Invariom refinement This procedure also yields most benefits of a conventional

charge density refinement These are an improved parameter precision better Figures of

merit ADPs de-convoluted from electron density and an interpretable electron-density

model

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 513

4

Reflections with [ I gt 3σ ( I )] were included in Invariom refinement which was

performed with the program XDLSM as included in the XD package[S8] Prior to XDLSM

refinement input files were processed with the program InvariomTool[S9] and full details of

the general Invariom modeling procedure can be found in the reference for this program

Only positional and displacement parameters of non-hydrogen atoms were adjusted in

Invariom refinement so that the number of parameters was not increased in comparison the

IAM Bond distances to H-atoms were set to values of model compounds of the Invariom

database[S10] Like compound4 the asymmetric unit of 3 contains only half a molecule3

crystallizes in the space groupC 2c For the silaisonitrile core two different conformations

have been modeled (Figure F1) in order to describe the N1minusSiminusN2 rotation around the

C1minusN1 and C20minusN2 single bonds The dynamic rotational motion becomes apparent also

through the elongated atomic displacement parameters (ADPs) According to the occupancy

of the split positions the contribution of the main component Si(1) and Si(2) has been refined

to be 0837(3) ie 84 for the main and 16 for the minor component

Figure F1 Molecular structure of 3 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The picture illustrates the silicon rotation of the Si2N2 core The anisotropic displacementparameters also emphasize the movement around the N1 N2 axis

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 613

5

Figure F2 Side view of the molecular structure of 3 atoms in the silaisonitrile core are mapped as spheresIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity TheSi2N2 motive forms a planar layer in between the phenyl rings The dihedral angles for the Si 2N2 plane and thephenyl rings are 56162deg and 26905deg The phenyl rings on the amino nitrogen atoms are almost perpendicular toeach other as indicated by a dihedral angle of 83067deg

Figure F3 Molecular structure of 4 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The Si2N2 core with the attached TMS groups builds a straight line and perpendicular to thephenyl rings The dihedral angles for the Si 2N2 plane and the phenyl ring are 9122deg and 9349deg

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 713

6

Figure F4 Deformation density plot of 3 the deformation electron density shows the differencebetween total electron density (as modeled by the Invariom approach) and the independent atommodel Contour level steps are 01 eAring 3 with isosurface values as indicated in the legend

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 813

7

(3) Tables T1 and T2

Table T1 Crystal data and structure refinement for 3 middot 3 benzene

Identification code 3 middot 3 benzene

Empirical formula C90 H116 N2 Si2Formula weight 128203

Temperature 100(2) K

Wavelength 154178 Aring

Crystal system monoclinic

Space group C 2c

Unit cell dimensions a = 185170(3) Aring α = 90deg

b = 180955(2) Aring β = 109724(1)deg

c = 246686(4) Aring γ = 90degVolume 77809(2) Aring

3

Z 4

Density (calculated) 1094 mgm3

Absorption coefficient 0743 mm-1

F(000) 2792

Crystal size 002 x 001 x 001 mm3

Theta range for data collection 352 to 7252deg

Index ranges -19lt=hlt=21-22lt=k lt=22 -30lt=l lt=30

Reflections collected 86369

Independent reflections 7740 [ R(int) = 00328]

Completeness toθ = 7252deg 977

Absorption correction semi-empirical from

equivalents

Max and min transmission 04697 and 03916

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 5672 24 436

Goodness-of-fit on F 327

Final R indices [ I gt3σ ( I )] R1( F ) = 00480wR2( F ) =

0047

R indices (all data) R1(F) = 0071wR2(F) =

0094

Largest diff peak and hole 0774 and -0561 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 913

8

Table T2 Crystal data and structure refinement for 4middot2 toluene

Identification code 4 middot 2 toluene

Empirical formula C92 H132 N4 Si4

Formula weight 140638Temperature 100(2) K

Wavelength 154178 Aring

Crystal system triclinic

Space group P ī Unit cell dimensions a = 127393(2) Aring α = 88000(1)deg

b = 136693(2) Aring β = 7583deg

c = 139072(2) Aring γ = 64075(1)deg

Volume 210457(5) Aring3

Z 1

Density (calculated) 1110 mgm3

Absorption coefficient 0994 mm-1

000) 768

Crystal size 002 x 002 x 002 mm3

Theta range for data collection 329 to 7215deg

Index ranges -15lt=hlt=14 -16lt=k lt=16 -

17lt=l lt=17

Reflections collected 94965

Independent reflections 8049 [ R(int) = 00333]

Completeness toθ = 7215deg 969

Absorption correction semi-empirical from

equivalents

Max and min transmission 04696 and 03743

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 8049 1957 592

Goodness-of-fit on F 2

1060

Final R indices [ I gt2σ ( I )] R1 = 00649wR2 = 01770

R indices (all data) R1 = 00707wR2 = 01856

Largest diff peak and hole 1085 and -0377 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1013

9

Table T3 Energies (in au) and coordinates (in Aring) of the calculated molecules

2M22E= -8022457576 au N 3667956 -0653630 -0194643C 2353472 -0398864 -0138839 N 2264652 0848474 0306952C 3498024 1394835 0537005C 4402452 0437771 0217734Si 0643755 -1407455 -0566240 N -0208564 -0075773 -0081149C -1583382 0034285 -0008071C -2378869 -0899151 0672213C -3754632 -0753517 0741106C -4384007 0325122 0138201C -3609472 1262557 -0533569C -2235207 1126625 -0599601H 3641530 2392700 0899786H 5473372 0443431 0249300H 1308247 1203866 0405675H 4046554 -1530538 -0501155H -1634206 1855458 -1122330H -4081814 2110546 -1007271H -5455242 0438129 0195161H -4338531 -1489695 1273630H -1891059 -1731010 1159371

3M26E = -11520227603auC 1180203 0216627 3284382C 0000000 -0000214 2574933C -1180280 -0216780 3284598C -1178497 -0207231 4669327C 0000000 0000379 5370291C 1178568 0207685 4669111 N -0000191 -0000565 1176632Si 1187262 -0559551 0000000 N -0000191 -0000565 -1176632C 0000001 -0000214 -2574933C -1180279 -0216780 -3284598

C -1178496 -0207231 -4669327C 0000001 0000379 -5370291C 1178569 0207685 -4669111C 1180204 0216627 -3284382Si -1187100 0559588 0000000H -2095074 -0405419 -2742205H -2102051 -0373947 -5201948H 0000137 0000620 -6448635H 2102177 0374633 -5201566H 2094948 0405015 -2741813H -2095075 -0405419 2742205H -2102052 -0373947 5201948H 0000136 0000620 6448635H 2102176 0374633 5201566H 2094947 0405015 2741814

4M36E = -18442532845auC 5341396 -0672075 -0000219C 4795583 0601925 -0036761C 3422048 0779108 -0038034C 2584541 -0329807 -0001019C 3124625 -1609891 0035943C 4499812 -1773570 0035867 N 1183068 -0154616 -0001141Si -0158348 -1230938 -0003034 N -0316225 -2774648 -0005386Si -0975976 -4336151 -0018654H -0616765 -5044995 -1266916Si 0158374 1230905 0002769 N 0316313 2774603 0005349Si 0975850 4336196 0018228H 0617624 5044808 1266904 N -1183044 0154583 0000769C -2584516 0329790 0001003C -3422026 -0779117 0038098C -4795560 -0601914 0037186C -5341363 0672098 0000909C -4499773 1773586 -0035277

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 4: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 413

3

which was re-dissolved in toluene (5 mL) and stored in a freezer at 4 degC for 10 days

Compound4 was isolated as colorless crystals in 62 (025 g) yield Elemental analysis ()

calcd for C78H116 N4Si2 C 7666 H 957 N 458 found C 7654 H 944 N 4471H NMR

(200 MHz C6D6 25 degC)δ 007 (s 18H Si Me3) 105 (d 24H J = 660 Hz CH Me2) 128 (d

24H J = 680 Hz CH Me2) 135 (d 24H J = 680 Hz CH Me2) 280-311 (m 12 H C H Me2)

655-710 (m 14H C6 H 3 C6 H 2) ppm 13C NMR (125 MHz C6D6 25 degC) δ 136 (Si Me3)

2398 2456 2547(CH Me2) 3091 3480 (C HMe2) 11770 12145 12564 12965 13380

13782 14290 14801 14880 (C 6H3 C 6H2) ppm 29Si NMR ( 99 MHz C6D6 25degC)

δ 276 (SiMe3) minus5683 (NSi=N) ppm

(2) X-ray crystallography

Crystal data are summarized in Tables T1 and T2 For compounds3 and 4 single crystals

were measured on a Bruker three-circle diffractometer equipped with a SMART 6000 CCD

area detector and a CuKα rotation anode Integrations were performed with SAINT[S3]

Intensity data for compounds3 and 4 were corrected for absorption and scaled with

SADABS[S4] Both structures were solved by direct methods and subsequently refined on F 2

by full-matrix least-squares methods with the program SHELXL-97[S5] utilizing anisotropic

displacement parameters for non-hydrogen atoms Hydrogen atoms were included in themodel by constraintsvia a riding model after they have been located in difference Fourier

maps The asymmetric unit of 4 contains half a molecule and crystallizes in space group P ī

After initial independent atom model (IAM) refinement with SHELXL-97 parameter

values of compound3 were used to initiate an Invariom refinement[S6] The scattering-factor

model used in Invariom refinement is based on the Hansen and Coppens multipole

formalism[S7] Rather than adjusting the respective multipole parameters to the experimental

data which requires Bragg-data to high resolution multipole parameters are predicted fromtheory in Invariom refinement This procedure also yields most benefits of a conventional

charge density refinement These are an improved parameter precision better Figures of

merit ADPs de-convoluted from electron density and an interpretable electron-density

model

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 513

4

Reflections with [ I gt 3σ ( I )] were included in Invariom refinement which was

performed with the program XDLSM as included in the XD package[S8] Prior to XDLSM

refinement input files were processed with the program InvariomTool[S9] and full details of

the general Invariom modeling procedure can be found in the reference for this program

Only positional and displacement parameters of non-hydrogen atoms were adjusted in

Invariom refinement so that the number of parameters was not increased in comparison the

IAM Bond distances to H-atoms were set to values of model compounds of the Invariom

database[S10] Like compound4 the asymmetric unit of 3 contains only half a molecule3

crystallizes in the space groupC 2c For the silaisonitrile core two different conformations

have been modeled (Figure F1) in order to describe the N1minusSiminusN2 rotation around the

C1minusN1 and C20minusN2 single bonds The dynamic rotational motion becomes apparent also

through the elongated atomic displacement parameters (ADPs) According to the occupancy

of the split positions the contribution of the main component Si(1) and Si(2) has been refined

to be 0837(3) ie 84 for the main and 16 for the minor component

Figure F1 Molecular structure of 3 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The picture illustrates the silicon rotation of the Si2N2 core The anisotropic displacementparameters also emphasize the movement around the N1 N2 axis

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 613

5

Figure F2 Side view of the molecular structure of 3 atoms in the silaisonitrile core are mapped as spheresIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity TheSi2N2 motive forms a planar layer in between the phenyl rings The dihedral angles for the Si 2N2 plane and thephenyl rings are 56162deg and 26905deg The phenyl rings on the amino nitrogen atoms are almost perpendicular toeach other as indicated by a dihedral angle of 83067deg

Figure F3 Molecular structure of 4 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The Si2N2 core with the attached TMS groups builds a straight line and perpendicular to thephenyl rings The dihedral angles for the Si 2N2 plane and the phenyl ring are 9122deg and 9349deg

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 713

6

Figure F4 Deformation density plot of 3 the deformation electron density shows the differencebetween total electron density (as modeled by the Invariom approach) and the independent atommodel Contour level steps are 01 eAring 3 with isosurface values as indicated in the legend

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 813

7

(3) Tables T1 and T2

Table T1 Crystal data and structure refinement for 3 middot 3 benzene

Identification code 3 middot 3 benzene

Empirical formula C90 H116 N2 Si2Formula weight 128203

Temperature 100(2) K

Wavelength 154178 Aring

Crystal system monoclinic

Space group C 2c

Unit cell dimensions a = 185170(3) Aring α = 90deg

b = 180955(2) Aring β = 109724(1)deg

c = 246686(4) Aring γ = 90degVolume 77809(2) Aring

3

Z 4

Density (calculated) 1094 mgm3

Absorption coefficient 0743 mm-1

F(000) 2792

Crystal size 002 x 001 x 001 mm3

Theta range for data collection 352 to 7252deg

Index ranges -19lt=hlt=21-22lt=k lt=22 -30lt=l lt=30

Reflections collected 86369

Independent reflections 7740 [ R(int) = 00328]

Completeness toθ = 7252deg 977

Absorption correction semi-empirical from

equivalents

Max and min transmission 04697 and 03916

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 5672 24 436

Goodness-of-fit on F 327

Final R indices [ I gt3σ ( I )] R1( F ) = 00480wR2( F ) =

0047

R indices (all data) R1(F) = 0071wR2(F) =

0094

Largest diff peak and hole 0774 and -0561 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 913

8

Table T2 Crystal data and structure refinement for 4middot2 toluene

Identification code 4 middot 2 toluene

Empirical formula C92 H132 N4 Si4

Formula weight 140638Temperature 100(2) K

Wavelength 154178 Aring

Crystal system triclinic

Space group P ī Unit cell dimensions a = 127393(2) Aring α = 88000(1)deg

b = 136693(2) Aring β = 7583deg

c = 139072(2) Aring γ = 64075(1)deg

Volume 210457(5) Aring3

Z 1

Density (calculated) 1110 mgm3

Absorption coefficient 0994 mm-1

000) 768

Crystal size 002 x 002 x 002 mm3

Theta range for data collection 329 to 7215deg

Index ranges -15lt=hlt=14 -16lt=k lt=16 -

17lt=l lt=17

Reflections collected 94965

Independent reflections 8049 [ R(int) = 00333]

Completeness toθ = 7215deg 969

Absorption correction semi-empirical from

equivalents

Max and min transmission 04696 and 03743

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 8049 1957 592

Goodness-of-fit on F 2

1060

Final R indices [ I gt2σ ( I )] R1 = 00649wR2 = 01770

R indices (all data) R1 = 00707wR2 = 01856

Largest diff peak and hole 1085 and -0377 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1013

9

Table T3 Energies (in au) and coordinates (in Aring) of the calculated molecules

2M22E= -8022457576 au N 3667956 -0653630 -0194643C 2353472 -0398864 -0138839 N 2264652 0848474 0306952C 3498024 1394835 0537005C 4402452 0437771 0217734Si 0643755 -1407455 -0566240 N -0208564 -0075773 -0081149C -1583382 0034285 -0008071C -2378869 -0899151 0672213C -3754632 -0753517 0741106C -4384007 0325122 0138201C -3609472 1262557 -0533569C -2235207 1126625 -0599601H 3641530 2392700 0899786H 5473372 0443431 0249300H 1308247 1203866 0405675H 4046554 -1530538 -0501155H -1634206 1855458 -1122330H -4081814 2110546 -1007271H -5455242 0438129 0195161H -4338531 -1489695 1273630H -1891059 -1731010 1159371

3M26E = -11520227603auC 1180203 0216627 3284382C 0000000 -0000214 2574933C -1180280 -0216780 3284598C -1178497 -0207231 4669327C 0000000 0000379 5370291C 1178568 0207685 4669111 N -0000191 -0000565 1176632Si 1187262 -0559551 0000000 N -0000191 -0000565 -1176632C 0000001 -0000214 -2574933C -1180279 -0216780 -3284598

C -1178496 -0207231 -4669327C 0000001 0000379 -5370291C 1178569 0207685 -4669111C 1180204 0216627 -3284382Si -1187100 0559588 0000000H -2095074 -0405419 -2742205H -2102051 -0373947 -5201948H 0000137 0000620 -6448635H 2102177 0374633 -5201566H 2094948 0405015 -2741813H -2095075 -0405419 2742205H -2102052 -0373947 5201948H 0000136 0000620 6448635H 2102176 0374633 5201566H 2094947 0405015 2741814

4M36E = -18442532845auC 5341396 -0672075 -0000219C 4795583 0601925 -0036761C 3422048 0779108 -0038034C 2584541 -0329807 -0001019C 3124625 -1609891 0035943C 4499812 -1773570 0035867 N 1183068 -0154616 -0001141Si -0158348 -1230938 -0003034 N -0316225 -2774648 -0005386Si -0975976 -4336151 -0018654H -0616765 -5044995 -1266916Si 0158374 1230905 0002769 N 0316313 2774603 0005349Si 0975850 4336196 0018228H 0617624 5044808 1266904 N -1183044 0154583 0000769C -2584516 0329790 0001003C -3422026 -0779117 0038098C -4795560 -0601914 0037186C -5341363 0672098 0000909C -4499773 1773586 -0035277

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 5: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 513

4

Reflections with [ I gt 3σ ( I )] were included in Invariom refinement which was

performed with the program XDLSM as included in the XD package[S8] Prior to XDLSM

refinement input files were processed with the program InvariomTool[S9] and full details of

the general Invariom modeling procedure can be found in the reference for this program

Only positional and displacement parameters of non-hydrogen atoms were adjusted in

Invariom refinement so that the number of parameters was not increased in comparison the

IAM Bond distances to H-atoms were set to values of model compounds of the Invariom

database[S10] Like compound4 the asymmetric unit of 3 contains only half a molecule3

crystallizes in the space groupC 2c For the silaisonitrile core two different conformations

have been modeled (Figure F1) in order to describe the N1minusSiminusN2 rotation around the

C1minusN1 and C20minusN2 single bonds The dynamic rotational motion becomes apparent also

through the elongated atomic displacement parameters (ADPs) According to the occupancy

of the split positions the contribution of the main component Si(1) and Si(2) has been refined

to be 0837(3) ie 84 for the main and 16 for the minor component

Figure F1 Molecular structure of 3 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The picture illustrates the silicon rotation of the Si2N2 core The anisotropic displacementparameters also emphasize the movement around the N1 N2 axis

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 613

5

Figure F2 Side view of the molecular structure of 3 atoms in the silaisonitrile core are mapped as spheresIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity TheSi2N2 motive forms a planar layer in between the phenyl rings The dihedral angles for the Si 2N2 plane and thephenyl rings are 56162deg and 26905deg The phenyl rings on the amino nitrogen atoms are almost perpendicular toeach other as indicated by a dihedral angle of 83067deg

Figure F3 Molecular structure of 4 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The Si2N2 core with the attached TMS groups builds a straight line and perpendicular to thephenyl rings The dihedral angles for the Si 2N2 plane and the phenyl ring are 9122deg and 9349deg

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 713

6

Figure F4 Deformation density plot of 3 the deformation electron density shows the differencebetween total electron density (as modeled by the Invariom approach) and the independent atommodel Contour level steps are 01 eAring 3 with isosurface values as indicated in the legend

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 813

7

(3) Tables T1 and T2

Table T1 Crystal data and structure refinement for 3 middot 3 benzene

Identification code 3 middot 3 benzene

Empirical formula C90 H116 N2 Si2Formula weight 128203

Temperature 100(2) K

Wavelength 154178 Aring

Crystal system monoclinic

Space group C 2c

Unit cell dimensions a = 185170(3) Aring α = 90deg

b = 180955(2) Aring β = 109724(1)deg

c = 246686(4) Aring γ = 90degVolume 77809(2) Aring

3

Z 4

Density (calculated) 1094 mgm3

Absorption coefficient 0743 mm-1

F(000) 2792

Crystal size 002 x 001 x 001 mm3

Theta range for data collection 352 to 7252deg

Index ranges -19lt=hlt=21-22lt=k lt=22 -30lt=l lt=30

Reflections collected 86369

Independent reflections 7740 [ R(int) = 00328]

Completeness toθ = 7252deg 977

Absorption correction semi-empirical from

equivalents

Max and min transmission 04697 and 03916

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 5672 24 436

Goodness-of-fit on F 327

Final R indices [ I gt3σ ( I )] R1( F ) = 00480wR2( F ) =

0047

R indices (all data) R1(F) = 0071wR2(F) =

0094

Largest diff peak and hole 0774 and -0561 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 913

8

Table T2 Crystal data and structure refinement for 4middot2 toluene

Identification code 4 middot 2 toluene

Empirical formula C92 H132 N4 Si4

Formula weight 140638Temperature 100(2) K

Wavelength 154178 Aring

Crystal system triclinic

Space group P ī Unit cell dimensions a = 127393(2) Aring α = 88000(1)deg

b = 136693(2) Aring β = 7583deg

c = 139072(2) Aring γ = 64075(1)deg

Volume 210457(5) Aring3

Z 1

Density (calculated) 1110 mgm3

Absorption coefficient 0994 mm-1

000) 768

Crystal size 002 x 002 x 002 mm3

Theta range for data collection 329 to 7215deg

Index ranges -15lt=hlt=14 -16lt=k lt=16 -

17lt=l lt=17

Reflections collected 94965

Independent reflections 8049 [ R(int) = 00333]

Completeness toθ = 7215deg 969

Absorption correction semi-empirical from

equivalents

Max and min transmission 04696 and 03743

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 8049 1957 592

Goodness-of-fit on F 2

1060

Final R indices [ I gt2σ ( I )] R1 = 00649wR2 = 01770

R indices (all data) R1 = 00707wR2 = 01856

Largest diff peak and hole 1085 and -0377 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1013

9

Table T3 Energies (in au) and coordinates (in Aring) of the calculated molecules

2M22E= -8022457576 au N 3667956 -0653630 -0194643C 2353472 -0398864 -0138839 N 2264652 0848474 0306952C 3498024 1394835 0537005C 4402452 0437771 0217734Si 0643755 -1407455 -0566240 N -0208564 -0075773 -0081149C -1583382 0034285 -0008071C -2378869 -0899151 0672213C -3754632 -0753517 0741106C -4384007 0325122 0138201C -3609472 1262557 -0533569C -2235207 1126625 -0599601H 3641530 2392700 0899786H 5473372 0443431 0249300H 1308247 1203866 0405675H 4046554 -1530538 -0501155H -1634206 1855458 -1122330H -4081814 2110546 -1007271H -5455242 0438129 0195161H -4338531 -1489695 1273630H -1891059 -1731010 1159371

3M26E = -11520227603auC 1180203 0216627 3284382C 0000000 -0000214 2574933C -1180280 -0216780 3284598C -1178497 -0207231 4669327C 0000000 0000379 5370291C 1178568 0207685 4669111 N -0000191 -0000565 1176632Si 1187262 -0559551 0000000 N -0000191 -0000565 -1176632C 0000001 -0000214 -2574933C -1180279 -0216780 -3284598

C -1178496 -0207231 -4669327C 0000001 0000379 -5370291C 1178569 0207685 -4669111C 1180204 0216627 -3284382Si -1187100 0559588 0000000H -2095074 -0405419 -2742205H -2102051 -0373947 -5201948H 0000137 0000620 -6448635H 2102177 0374633 -5201566H 2094948 0405015 -2741813H -2095075 -0405419 2742205H -2102052 -0373947 5201948H 0000136 0000620 6448635H 2102176 0374633 5201566H 2094947 0405015 2741814

4M36E = -18442532845auC 5341396 -0672075 -0000219C 4795583 0601925 -0036761C 3422048 0779108 -0038034C 2584541 -0329807 -0001019C 3124625 -1609891 0035943C 4499812 -1773570 0035867 N 1183068 -0154616 -0001141Si -0158348 -1230938 -0003034 N -0316225 -2774648 -0005386Si -0975976 -4336151 -0018654H -0616765 -5044995 -1266916Si 0158374 1230905 0002769 N 0316313 2774603 0005349Si 0975850 4336196 0018228H 0617624 5044808 1266904 N -1183044 0154583 0000769C -2584516 0329790 0001003C -3422026 -0779117 0038098C -4795560 -0601914 0037186C -5341363 0672098 0000909C -4499773 1773586 -0035277

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 6: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 613

5

Figure F2 Side view of the molecular structure of 3 atoms in the silaisonitrile core are mapped as spheresIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity TheSi2N2 motive forms a planar layer in between the phenyl rings The dihedral angles for the Si 2N2 plane and thephenyl rings are 56162deg and 26905deg The phenyl rings on the amino nitrogen atoms are almost perpendicular toeach other as indicated by a dihedral angle of 83067deg

Figure F3 Molecular structure of 4 anisotropic displacement parameters depicted at 50 probabilityIsopropyl groups and benzene molecules are omitted and residual groups are shown as wires for clarity The Si2N2 core with the attached TMS groups builds a straight line and perpendicular to thephenyl rings The dihedral angles for the Si 2N2 plane and the phenyl ring are 9122deg and 9349deg

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 713

6

Figure F4 Deformation density plot of 3 the deformation electron density shows the differencebetween total electron density (as modeled by the Invariom approach) and the independent atommodel Contour level steps are 01 eAring 3 with isosurface values as indicated in the legend

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 813

7

(3) Tables T1 and T2

Table T1 Crystal data and structure refinement for 3 middot 3 benzene

Identification code 3 middot 3 benzene

Empirical formula C90 H116 N2 Si2Formula weight 128203

Temperature 100(2) K

Wavelength 154178 Aring

Crystal system monoclinic

Space group C 2c

Unit cell dimensions a = 185170(3) Aring α = 90deg

b = 180955(2) Aring β = 109724(1)deg

c = 246686(4) Aring γ = 90degVolume 77809(2) Aring

3

Z 4

Density (calculated) 1094 mgm3

Absorption coefficient 0743 mm-1

F(000) 2792

Crystal size 002 x 001 x 001 mm3

Theta range for data collection 352 to 7252deg

Index ranges -19lt=hlt=21-22lt=k lt=22 -30lt=l lt=30

Reflections collected 86369

Independent reflections 7740 [ R(int) = 00328]

Completeness toθ = 7252deg 977

Absorption correction semi-empirical from

equivalents

Max and min transmission 04697 and 03916

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 5672 24 436

Goodness-of-fit on F 327

Final R indices [ I gt3σ ( I )] R1( F ) = 00480wR2( F ) =

0047

R indices (all data) R1(F) = 0071wR2(F) =

0094

Largest diff peak and hole 0774 and -0561 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 913

8

Table T2 Crystal data and structure refinement for 4middot2 toluene

Identification code 4 middot 2 toluene

Empirical formula C92 H132 N4 Si4

Formula weight 140638Temperature 100(2) K

Wavelength 154178 Aring

Crystal system triclinic

Space group P ī Unit cell dimensions a = 127393(2) Aring α = 88000(1)deg

b = 136693(2) Aring β = 7583deg

c = 139072(2) Aring γ = 64075(1)deg

Volume 210457(5) Aring3

Z 1

Density (calculated) 1110 mgm3

Absorption coefficient 0994 mm-1

000) 768

Crystal size 002 x 002 x 002 mm3

Theta range for data collection 329 to 7215deg

Index ranges -15lt=hlt=14 -16lt=k lt=16 -

17lt=l lt=17

Reflections collected 94965

Independent reflections 8049 [ R(int) = 00333]

Completeness toθ = 7215deg 969

Absorption correction semi-empirical from

equivalents

Max and min transmission 04696 and 03743

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 8049 1957 592

Goodness-of-fit on F 2

1060

Final R indices [ I gt2σ ( I )] R1 = 00649wR2 = 01770

R indices (all data) R1 = 00707wR2 = 01856

Largest diff peak and hole 1085 and -0377 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1013

9

Table T3 Energies (in au) and coordinates (in Aring) of the calculated molecules

2M22E= -8022457576 au N 3667956 -0653630 -0194643C 2353472 -0398864 -0138839 N 2264652 0848474 0306952C 3498024 1394835 0537005C 4402452 0437771 0217734Si 0643755 -1407455 -0566240 N -0208564 -0075773 -0081149C -1583382 0034285 -0008071C -2378869 -0899151 0672213C -3754632 -0753517 0741106C -4384007 0325122 0138201C -3609472 1262557 -0533569C -2235207 1126625 -0599601H 3641530 2392700 0899786H 5473372 0443431 0249300H 1308247 1203866 0405675H 4046554 -1530538 -0501155H -1634206 1855458 -1122330H -4081814 2110546 -1007271H -5455242 0438129 0195161H -4338531 -1489695 1273630H -1891059 -1731010 1159371

3M26E = -11520227603auC 1180203 0216627 3284382C 0000000 -0000214 2574933C -1180280 -0216780 3284598C -1178497 -0207231 4669327C 0000000 0000379 5370291C 1178568 0207685 4669111 N -0000191 -0000565 1176632Si 1187262 -0559551 0000000 N -0000191 -0000565 -1176632C 0000001 -0000214 -2574933C -1180279 -0216780 -3284598

C -1178496 -0207231 -4669327C 0000001 0000379 -5370291C 1178569 0207685 -4669111C 1180204 0216627 -3284382Si -1187100 0559588 0000000H -2095074 -0405419 -2742205H -2102051 -0373947 -5201948H 0000137 0000620 -6448635H 2102177 0374633 -5201566H 2094948 0405015 -2741813H -2095075 -0405419 2742205H -2102052 -0373947 5201948H 0000136 0000620 6448635H 2102176 0374633 5201566H 2094947 0405015 2741814

4M36E = -18442532845auC 5341396 -0672075 -0000219C 4795583 0601925 -0036761C 3422048 0779108 -0038034C 2584541 -0329807 -0001019C 3124625 -1609891 0035943C 4499812 -1773570 0035867 N 1183068 -0154616 -0001141Si -0158348 -1230938 -0003034 N -0316225 -2774648 -0005386Si -0975976 -4336151 -0018654H -0616765 -5044995 -1266916Si 0158374 1230905 0002769 N 0316313 2774603 0005349Si 0975850 4336196 0018228H 0617624 5044808 1266904 N -1183044 0154583 0000769C -2584516 0329790 0001003C -3422026 -0779117 0038098C -4795560 -0601914 0037186C -5341363 0672098 0000909C -4499773 1773586 -0035277

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 7: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 713

6

Figure F4 Deformation density plot of 3 the deformation electron density shows the differencebetween total electron density (as modeled by the Invariom approach) and the independent atommodel Contour level steps are 01 eAring 3 with isosurface values as indicated in the legend

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 813

7

(3) Tables T1 and T2

Table T1 Crystal data and structure refinement for 3 middot 3 benzene

Identification code 3 middot 3 benzene

Empirical formula C90 H116 N2 Si2Formula weight 128203

Temperature 100(2) K

Wavelength 154178 Aring

Crystal system monoclinic

Space group C 2c

Unit cell dimensions a = 185170(3) Aring α = 90deg

b = 180955(2) Aring β = 109724(1)deg

c = 246686(4) Aring γ = 90degVolume 77809(2) Aring

3

Z 4

Density (calculated) 1094 mgm3

Absorption coefficient 0743 mm-1

F(000) 2792

Crystal size 002 x 001 x 001 mm3

Theta range for data collection 352 to 7252deg

Index ranges -19lt=hlt=21-22lt=k lt=22 -30lt=l lt=30

Reflections collected 86369

Independent reflections 7740 [ R(int) = 00328]

Completeness toθ = 7252deg 977

Absorption correction semi-empirical from

equivalents

Max and min transmission 04697 and 03916

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 5672 24 436

Goodness-of-fit on F 327

Final R indices [ I gt3σ ( I )] R1( F ) = 00480wR2( F ) =

0047

R indices (all data) R1(F) = 0071wR2(F) =

0094

Largest diff peak and hole 0774 and -0561 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 913

8

Table T2 Crystal data and structure refinement for 4middot2 toluene

Identification code 4 middot 2 toluene

Empirical formula C92 H132 N4 Si4

Formula weight 140638Temperature 100(2) K

Wavelength 154178 Aring

Crystal system triclinic

Space group P ī Unit cell dimensions a = 127393(2) Aring α = 88000(1)deg

b = 136693(2) Aring β = 7583deg

c = 139072(2) Aring γ = 64075(1)deg

Volume 210457(5) Aring3

Z 1

Density (calculated) 1110 mgm3

Absorption coefficient 0994 mm-1

000) 768

Crystal size 002 x 002 x 002 mm3

Theta range for data collection 329 to 7215deg

Index ranges -15lt=hlt=14 -16lt=k lt=16 -

17lt=l lt=17

Reflections collected 94965

Independent reflections 8049 [ R(int) = 00333]

Completeness toθ = 7215deg 969

Absorption correction semi-empirical from

equivalents

Max and min transmission 04696 and 03743

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 8049 1957 592

Goodness-of-fit on F 2

1060

Final R indices [ I gt2σ ( I )] R1 = 00649wR2 = 01770

R indices (all data) R1 = 00707wR2 = 01856

Largest diff peak and hole 1085 and -0377 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1013

9

Table T3 Energies (in au) and coordinates (in Aring) of the calculated molecules

2M22E= -8022457576 au N 3667956 -0653630 -0194643C 2353472 -0398864 -0138839 N 2264652 0848474 0306952C 3498024 1394835 0537005C 4402452 0437771 0217734Si 0643755 -1407455 -0566240 N -0208564 -0075773 -0081149C -1583382 0034285 -0008071C -2378869 -0899151 0672213C -3754632 -0753517 0741106C -4384007 0325122 0138201C -3609472 1262557 -0533569C -2235207 1126625 -0599601H 3641530 2392700 0899786H 5473372 0443431 0249300H 1308247 1203866 0405675H 4046554 -1530538 -0501155H -1634206 1855458 -1122330H -4081814 2110546 -1007271H -5455242 0438129 0195161H -4338531 -1489695 1273630H -1891059 -1731010 1159371

3M26E = -11520227603auC 1180203 0216627 3284382C 0000000 -0000214 2574933C -1180280 -0216780 3284598C -1178497 -0207231 4669327C 0000000 0000379 5370291C 1178568 0207685 4669111 N -0000191 -0000565 1176632Si 1187262 -0559551 0000000 N -0000191 -0000565 -1176632C 0000001 -0000214 -2574933C -1180279 -0216780 -3284598

C -1178496 -0207231 -4669327C 0000001 0000379 -5370291C 1178569 0207685 -4669111C 1180204 0216627 -3284382Si -1187100 0559588 0000000H -2095074 -0405419 -2742205H -2102051 -0373947 -5201948H 0000137 0000620 -6448635H 2102177 0374633 -5201566H 2094948 0405015 -2741813H -2095075 -0405419 2742205H -2102052 -0373947 5201948H 0000136 0000620 6448635H 2102176 0374633 5201566H 2094947 0405015 2741814

4M36E = -18442532845auC 5341396 -0672075 -0000219C 4795583 0601925 -0036761C 3422048 0779108 -0038034C 2584541 -0329807 -0001019C 3124625 -1609891 0035943C 4499812 -1773570 0035867 N 1183068 -0154616 -0001141Si -0158348 -1230938 -0003034 N -0316225 -2774648 -0005386Si -0975976 -4336151 -0018654H -0616765 -5044995 -1266916Si 0158374 1230905 0002769 N 0316313 2774603 0005349Si 0975850 4336196 0018228H 0617624 5044808 1266904 N -1183044 0154583 0000769C -2584516 0329790 0001003C -3422026 -0779117 0038098C -4795560 -0601914 0037186C -5341363 0672098 0000909C -4499773 1773586 -0035277

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 8: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 813

7

(3) Tables T1 and T2

Table T1 Crystal data and structure refinement for 3 middot 3 benzene

Identification code 3 middot 3 benzene

Empirical formula C90 H116 N2 Si2Formula weight 128203

Temperature 100(2) K

Wavelength 154178 Aring

Crystal system monoclinic

Space group C 2c

Unit cell dimensions a = 185170(3) Aring α = 90deg

b = 180955(2) Aring β = 109724(1)deg

c = 246686(4) Aring γ = 90degVolume 77809(2) Aring

3

Z 4

Density (calculated) 1094 mgm3

Absorption coefficient 0743 mm-1

F(000) 2792

Crystal size 002 x 001 x 001 mm3

Theta range for data collection 352 to 7252deg

Index ranges -19lt=hlt=21-22lt=k lt=22 -30lt=l lt=30

Reflections collected 86369

Independent reflections 7740 [ R(int) = 00328]

Completeness toθ = 7252deg 977

Absorption correction semi-empirical from

equivalents

Max and min transmission 04697 and 03916

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 5672 24 436

Goodness-of-fit on F 327

Final R indices [ I gt3σ ( I )] R1( F ) = 00480wR2( F ) =

0047

R indices (all data) R1(F) = 0071wR2(F) =

0094

Largest diff peak and hole 0774 and -0561 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 913

8

Table T2 Crystal data and structure refinement for 4middot2 toluene

Identification code 4 middot 2 toluene

Empirical formula C92 H132 N4 Si4

Formula weight 140638Temperature 100(2) K

Wavelength 154178 Aring

Crystal system triclinic

Space group P ī Unit cell dimensions a = 127393(2) Aring α = 88000(1)deg

b = 136693(2) Aring β = 7583deg

c = 139072(2) Aring γ = 64075(1)deg

Volume 210457(5) Aring3

Z 1

Density (calculated) 1110 mgm3

Absorption coefficient 0994 mm-1

000) 768

Crystal size 002 x 002 x 002 mm3

Theta range for data collection 329 to 7215deg

Index ranges -15lt=hlt=14 -16lt=k lt=16 -

17lt=l lt=17

Reflections collected 94965

Independent reflections 8049 [ R(int) = 00333]

Completeness toθ = 7215deg 969

Absorption correction semi-empirical from

equivalents

Max and min transmission 04696 and 03743

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 8049 1957 592

Goodness-of-fit on F 2

1060

Final R indices [ I gt2σ ( I )] R1 = 00649wR2 = 01770

R indices (all data) R1 = 00707wR2 = 01856

Largest diff peak and hole 1085 and -0377 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1013

9

Table T3 Energies (in au) and coordinates (in Aring) of the calculated molecules

2M22E= -8022457576 au N 3667956 -0653630 -0194643C 2353472 -0398864 -0138839 N 2264652 0848474 0306952C 3498024 1394835 0537005C 4402452 0437771 0217734Si 0643755 -1407455 -0566240 N -0208564 -0075773 -0081149C -1583382 0034285 -0008071C -2378869 -0899151 0672213C -3754632 -0753517 0741106C -4384007 0325122 0138201C -3609472 1262557 -0533569C -2235207 1126625 -0599601H 3641530 2392700 0899786H 5473372 0443431 0249300H 1308247 1203866 0405675H 4046554 -1530538 -0501155H -1634206 1855458 -1122330H -4081814 2110546 -1007271H -5455242 0438129 0195161H -4338531 -1489695 1273630H -1891059 -1731010 1159371

3M26E = -11520227603auC 1180203 0216627 3284382C 0000000 -0000214 2574933C -1180280 -0216780 3284598C -1178497 -0207231 4669327C 0000000 0000379 5370291C 1178568 0207685 4669111 N -0000191 -0000565 1176632Si 1187262 -0559551 0000000 N -0000191 -0000565 -1176632C 0000001 -0000214 -2574933C -1180279 -0216780 -3284598

C -1178496 -0207231 -4669327C 0000001 0000379 -5370291C 1178569 0207685 -4669111C 1180204 0216627 -3284382Si -1187100 0559588 0000000H -2095074 -0405419 -2742205H -2102051 -0373947 -5201948H 0000137 0000620 -6448635H 2102177 0374633 -5201566H 2094948 0405015 -2741813H -2095075 -0405419 2742205H -2102052 -0373947 5201948H 0000136 0000620 6448635H 2102176 0374633 5201566H 2094947 0405015 2741814

4M36E = -18442532845auC 5341396 -0672075 -0000219C 4795583 0601925 -0036761C 3422048 0779108 -0038034C 2584541 -0329807 -0001019C 3124625 -1609891 0035943C 4499812 -1773570 0035867 N 1183068 -0154616 -0001141Si -0158348 -1230938 -0003034 N -0316225 -2774648 -0005386Si -0975976 -4336151 -0018654H -0616765 -5044995 -1266916Si 0158374 1230905 0002769 N 0316313 2774603 0005349Si 0975850 4336196 0018228H 0617624 5044808 1266904 N -1183044 0154583 0000769C -2584516 0329790 0001003C -3422026 -0779117 0038098C -4795560 -0601914 0037186C -5341363 0672098 0000909C -4499773 1773586 -0035277

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 9: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 913

8

Table T2 Crystal data and structure refinement for 4middot2 toluene

Identification code 4 middot 2 toluene

Empirical formula C92 H132 N4 Si4

Formula weight 140638Temperature 100(2) K

Wavelength 154178 Aring

Crystal system triclinic

Space group P ī Unit cell dimensions a = 127393(2) Aring α = 88000(1)deg

b = 136693(2) Aring β = 7583deg

c = 139072(2) Aring γ = 64075(1)deg

Volume 210457(5) Aring3

Z 1

Density (calculated) 1110 mgm3

Absorption coefficient 0994 mm-1

000) 768

Crystal size 002 x 002 x 002 mm3

Theta range for data collection 329 to 7215deg

Index ranges -15lt=hlt=14 -16lt=k lt=16 -

17lt=l lt=17

Reflections collected 94965

Independent reflections 8049 [ R(int) = 00333]

Completeness toθ = 7215deg 969

Absorption correction semi-empirical from

equivalents

Max and min transmission 04696 and 03743

Refinement method Full-matrix least-squares on

F 2

Data restraints parameters 8049 1957 592

Goodness-of-fit on F 2

1060

Final R indices [ I gt2σ ( I )] R1 = 00649wR2 = 01770

R indices (all data) R1 = 00707wR2 = 01856

Largest diff peak and hole 1085 and -0377 eAring-3

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1013

9

Table T3 Energies (in au) and coordinates (in Aring) of the calculated molecules

2M22E= -8022457576 au N 3667956 -0653630 -0194643C 2353472 -0398864 -0138839 N 2264652 0848474 0306952C 3498024 1394835 0537005C 4402452 0437771 0217734Si 0643755 -1407455 -0566240 N -0208564 -0075773 -0081149C -1583382 0034285 -0008071C -2378869 -0899151 0672213C -3754632 -0753517 0741106C -4384007 0325122 0138201C -3609472 1262557 -0533569C -2235207 1126625 -0599601H 3641530 2392700 0899786H 5473372 0443431 0249300H 1308247 1203866 0405675H 4046554 -1530538 -0501155H -1634206 1855458 -1122330H -4081814 2110546 -1007271H -5455242 0438129 0195161H -4338531 -1489695 1273630H -1891059 -1731010 1159371

3M26E = -11520227603auC 1180203 0216627 3284382C 0000000 -0000214 2574933C -1180280 -0216780 3284598C -1178497 -0207231 4669327C 0000000 0000379 5370291C 1178568 0207685 4669111 N -0000191 -0000565 1176632Si 1187262 -0559551 0000000 N -0000191 -0000565 -1176632C 0000001 -0000214 -2574933C -1180279 -0216780 -3284598

C -1178496 -0207231 -4669327C 0000001 0000379 -5370291C 1178569 0207685 -4669111C 1180204 0216627 -3284382Si -1187100 0559588 0000000H -2095074 -0405419 -2742205H -2102051 -0373947 -5201948H 0000137 0000620 -6448635H 2102177 0374633 -5201566H 2094948 0405015 -2741813H -2095075 -0405419 2742205H -2102052 -0373947 5201948H 0000136 0000620 6448635H 2102176 0374633 5201566H 2094947 0405015 2741814

4M36E = -18442532845auC 5341396 -0672075 -0000219C 4795583 0601925 -0036761C 3422048 0779108 -0038034C 2584541 -0329807 -0001019C 3124625 -1609891 0035943C 4499812 -1773570 0035867 N 1183068 -0154616 -0001141Si -0158348 -1230938 -0003034 N -0316225 -2774648 -0005386Si -0975976 -4336151 -0018654H -0616765 -5044995 -1266916Si 0158374 1230905 0002769 N 0316313 2774603 0005349Si 0975850 4336196 0018228H 0617624 5044808 1266904 N -1183044 0154583 0000769C -2584516 0329790 0001003C -3422026 -0779117 0038098C -4795560 -0601914 0037186C -5341363 0672098 0000909C -4499773 1773586 -0035277

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 10: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1013

9

Table T3 Energies (in au) and coordinates (in Aring) of the calculated molecules

2M22E= -8022457576 au N 3667956 -0653630 -0194643C 2353472 -0398864 -0138839 N 2264652 0848474 0306952C 3498024 1394835 0537005C 4402452 0437771 0217734Si 0643755 -1407455 -0566240 N -0208564 -0075773 -0081149C -1583382 0034285 -0008071C -2378869 -0899151 0672213C -3754632 -0753517 0741106C -4384007 0325122 0138201C -3609472 1262557 -0533569C -2235207 1126625 -0599601H 3641530 2392700 0899786H 5473372 0443431 0249300H 1308247 1203866 0405675H 4046554 -1530538 -0501155H -1634206 1855458 -1122330H -4081814 2110546 -1007271H -5455242 0438129 0195161H -4338531 -1489695 1273630H -1891059 -1731010 1159371

3M26E = -11520227603auC 1180203 0216627 3284382C 0000000 -0000214 2574933C -1180280 -0216780 3284598C -1178497 -0207231 4669327C 0000000 0000379 5370291C 1178568 0207685 4669111 N -0000191 -0000565 1176632Si 1187262 -0559551 0000000 N -0000191 -0000565 -1176632C 0000001 -0000214 -2574933C -1180279 -0216780 -3284598

C -1178496 -0207231 -4669327C 0000001 0000379 -5370291C 1178569 0207685 -4669111C 1180204 0216627 -3284382Si -1187100 0559588 0000000H -2095074 -0405419 -2742205H -2102051 -0373947 -5201948H 0000137 0000620 -6448635H 2102177 0374633 -5201566H 2094948 0405015 -2741813H -2095075 -0405419 2742205H -2102052 -0373947 5201948H 0000136 0000620 6448635H 2102176 0374633 5201566H 2094947 0405015 2741814

4M36E = -18442532845auC 5341396 -0672075 -0000219C 4795583 0601925 -0036761C 3422048 0779108 -0038034C 2584541 -0329807 -0001019C 3124625 -1609891 0035943C 4499812 -1773570 0035867 N 1183068 -0154616 -0001141Si -0158348 -1230938 -0003034 N -0316225 -2774648 -0005386Si -0975976 -4336151 -0018654H -0616765 -5044995 -1266916Si 0158374 1230905 0002769 N 0316313 2774603 0005349Si 0975850 4336196 0018228H 0617624 5044808 1266904 N -1183044 0154583 0000769C -2584516 0329790 0001003C -3422026 -0779117 0038098C -4795560 -0601914 0037186C -5341363 0672098 0000909C -4499773 1773586 -0035277

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 11: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1113

C -3124590 1609885 -0035709H 2457902 4311536 -0073739H 0470119 5128371 -112477H -2458110 -4311299 0071988H -0471352 -5128208 1124911H 2998947 1772712 -0067947H 2466600 -2466046 0064063H -2998933 -1772730 006778H -2466558 2466033 -0063906H -5439178 -1467409 0065748H -4912681 2769767 -0063795H -6411321 0805741 0000786H 5439193 1467429 -0065259H 4912724 -2769743 0064583H 6411355 -0805705 0000182

C6H5 NSi13E = -5759715026auC -0560395 1203289 -0000147C 0149222 -0000010 -0000695C -0560419 -1203298 -000019

C -1943948 -1198336 0000182C -2643604 0000015 0000164C -1943926 1198350 0000128 N 1520024 -0000028 -0000199Si 3076685 0000008 0000264H -0007991 -2129687 -0000114H -2478619 -2135767 0000404H -3722186 0000025 0000433H -2478579 2135792 0000384H -0007951 2129668 -0000056

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 12: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1213

(4) Theoretical details

Geometry optimizations with and without symmetry constraints were carried out with

GAUSSIAN03[S11] at M05-2xdef2-TZVPP[S12][S13] level of theory Stationary points were characterized by calculating the Hessian matrix analytically at this level of theory

The Nuclei Independant Chemical Shifts (NICS) were calculated with the GIAO method at

M05-2xdef2-TZVPP The NBO[S14] analyses were carried out with the internal module of

GAUSSIAN03 at this level of theory We also analyzed the electronic charge distribution with

the Atoms-in-Molecules (AIM) method[S15] which was performed at the M05-2xdef2-TZVPP

level of theory with a locally modified version of the AIMPAC program package[S16]

(5) References

[S1] R S Ghadwal H W Roesky C Schulzke M GranitzkaOrganometallics 2010 29

6329-6333

[S2] R S Ghadwal H W Roesky S Merkel J Henn D Stalke Angew Chem Int Ed 2009 48 5683-5686 Angew Chem 2009 121 5793-5796

[S3] Bruker APEX2 SAINT and SHELXTL Bruker AXS Inc Madison Wisconsin

USA 2009

[S4] G M Sheldrick SADABS University of Goumlttingen Germany 2009

[S5] G M Sheldrick Acta Crystallogr 2008 A64 112ndash122

[S6] a) B Dittrich T Koritsaacutenszky P Luger Angew Chem Int Ed 2004 43 2718-2721 Angew Chem 2004 116 2773-2776 b) B Dittrich C B Huumlbschle M

Messerschmidt R Kalinowski D Girnt P Luger Acta Cryst 2005 A61 314- 320

[S7] N K Hansen P Coppens Acta Cryst 1978 A34 909-921

[S8] T Koritsaacutenszky T Richter P Macchi A Volkov C Gatti S Howard P R

Mallinson L Farrugia Z W SuN K Hansen Freie Universitaumlt Berlin Berlin 2003

[S9] C B Huumlbschle P Luger B Dittrich J Appl Cryst 2007 40 623-627

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults

Page 13: Anie 201101320 Sm Miscellaneous Information

7312019 Anie 201101320 Sm Miscellaneous Information

httpslidepdfcomreaderfullanie-201101320-sm-miscellaneous-information 1313

[S10] B Dittrich C B Huumlbschle P Luger M A Spackman Acta Cryst 2006 D65

1325-1335

[S11] MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb RJ CheesemanJA Montgomery T Vreven KN Kudin JC Burant JM Millam SS Iyengar

J Tomasi V Barone B Mennucci M Cossi G Scalmani N Rega GA

Petersson H Nakatsuji M Hada M Ehara K Toyota R Fukuda J Hasegawa

M Ishida T Nakajima Y Honda O Kitao H Nakai M Klene X Li JE Knox

HP Hratchian JB Cross V Bakken C Adamo J Jaramillo R Gomperts RE

Stratmann O Yazyev AJ Austin R Cammi C Pomelli JW Ochterski PY Ayala

K Morokuma G A Voth P Salvador JJ Dannenberg VG Zakrzewski SDapprich AD Daniels MC Strain O Farkas DK Malick AD Rabuck K

Raghavachari JB Foresman JV Ortiz Q Cui AG Baboul S Clifford J

Cioslowski BB Stefanov G Liu A Liashenko P Piskorz I Komaromi RL

Martin DJ Fox T Keith MA Al-Laham CY Peng A Nanayakkara M

Challacombe P M W Gill B Johnson W Chen MW Wong C Gonzalez JA

Pople Gaussian 03 RevisionD01 Gaussian Inc Wallingford CT 2004

[S12] (a) Y Zhao N E Schultz D G Truhlar J Chem Theory Comput 2006 2 364-382(b) Y Zhao D G Truhlar Acc Chem Res 2008 41 157-167

[S13] F Weigend R Ahlrichs Phys Chem Chem Phys 2005 7 3297-3305

[S14] A E Reed L A Curtiss F WeinholdChem Rev 1988 88 899-926

[S15] R F W Bader Atoms in Molecules A Quantum Theory Oxford University

Press Oxford 1990

[S16] a) AIMPAC httpwwwchemistrymcmastercaaimpac b) A Krapp unpublishedresults