22
1 Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians Philipp Bauknecht 1 and Gáspár Jékely 1 * 1 Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany *Correspondence to: [email protected] Abstract Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered absent and analogous functions are attributed to the biogenic amine octopamine. Here we describe the coexistence of signaling by norepinephrine, octopamine, and its precursor tyramine in representatives of the two major clades of Bilateria, the protostomes and the deuterostomes. Using phylogenetic analysis and receptor pharmacology we show that six receptors coexisted in the protostome-deuterostome last common ancestor, two each for the three ligands. All receptors were retained in the genomes of the deuterostome Saccoglossus kowalewskii (a hemichordate) and the protostomes Platynereis dumerilii (an annelid) and Priapulus caudatus (a priapulid). Adrenergic receptors were lost from most insects and nematodes and tyramine and octopamine receptors were lost from most deuterostomes. These results clarify the history of monoamine signaling in animals and highlight the importance of studying slowly evolving marine taxa. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. . https://doi.org/10.1101/063743 doi: bioRxiv preprint

Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

1

Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in

bilaterians

Philipp Bauknecht1 and Gáspár Jékely1*

1Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany *Correspondence to: [email protected] Abstract Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered absent and analogous functions are attributed to the biogenic amine octopamine. Here we describe the coexistence of signaling by norepinephrine, octopamine, and its precursor tyramine in representatives of the two major clades of Bilateria, the protostomes and the deuterostomes. Using phylogenetic analysis and receptor pharmacology we show that six receptors coexisted in the protostome-deuterostome last common ancestor, two each for the three ligands. All receptors were retained in the genomes of the deuterostome Saccoglossus kowalewskii (a hemichordate) and the protostomes Platynereis dumerilii (an annelid) and Priapulus caudatus (a priapulid). Adrenergic receptors were lost from most insects and nematodes and tyramine and octopamine receptors were lost from most deuterostomes. These results clarify the history of monoamine signaling in animals and highlight the importance of studying slowly evolving marine taxa.

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 2: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

2

Introduction Norepinephrine is a major neurotransmitter in vertebrates with a variety of functions including roles in promoting wakefulness and arousal (Singh et al., 2015), regulating aggression (Marino et al., 2005), and autonomic functions such a heart beat (Kim et al., 2002). Signaling by the monoamine octopamine in protostome invertebrates is often considered equivalent to vertebrate adrenergic signaling (Roeder, 2005) with analogous roles in promoting aggression and wakefulness in flies (Crocker and Sehgal, 2008; Zhou et al., 2008), or the regulation of heart rate in annelids and arthropods (Crisp et al., 2010; Florey and Rathmayer, 1978). Octopamine is synthesized from tyramine (Figure 1A) which itself also acts as a neurotransmitter or neuromodulator in arthropods and nematodes (Jin et al., 2016; Kutsukake et al., 2000; Nagaya et al., 2002; Rex and Komuniecki, 2002; Roeder, 2005; Saudou et al., 1990; Selcho et al., 2012). Octopamine and norepinephrine are chemically similar, are synthesized by homologous enzymes (Monastirioti et al., 1996; Wallace, 1976), and signal by similar G-protein coupled receptors (GPCRs) (Evans and Maqueira, 2005; Roeder, 2005), further arguing for their equivalence. However, the precise evolutionary relationship of these transmitter systems is unclear.

The evolution of neurotransmitter systems has been analyzed by studying the distribution of monoamines or biosynthetic enzymes in different organisms (Gallo et al., 2016). This approach has limitations, however, because some of the biosynthetic enzymes are not specific to one substrate (Wallace, 1976) and because trace amounts of several monoamines are found across many organisms, even if specific receptors are often absent. For example, even if invertebrates can synthesize trace amounts of norepinephrine and vertebrates can synthesize tyramine and octopamine, these are not considered to be active neuronal signaling molecules, since the respective receptors are lacking. Consequently, the presence of specific neuronally expressed monoamine receptors is the best indicator that a particular monoamine is used in neuronal signaling (Arakawa et al., 1990; Saudou et al., 1990). We thus decided to analyze the evolution of adrenergic, octopamine, and tyramine receptors in bilaterians. Results Using database searches, sequence-similarity-based clustering, and phylogenetic analysis, we identified a few invertebrate GPCR sequences that were similar to vertebrate adrenergic α1 and α2 receptors (Figure 1B). An adrenergic α1 receptor ortholog is present in the sea urchin Strongylocentrotus purpuratus. Adrenergic α1 and α2 receptors were both present in Saccoglossus kowalewskii, a deuterostome hemichordate (Figure 1B and Supplementary figures 1-2), as previously reported (Krishnan et al., 2013). We also identified adrenergic α1 and α2 receptor orthologs in annelids and mollusks (members of the Lophotrochozoa), including Aplysia californica, and in the priapulid worm Priapulus caudatus (member of the Ecdysozoa)(Figure 1B). Adrenergic α receptors are also present in a few arthropods, including the crustacean Daphnia pulex and the moth Chilo suppressalis (the Chilo receptor was first described as an octopamine receptor (Wu et al., 2012)), but are absent from most other insects (Supplementary figures 1-2). We also identified α2 receptors in some nematodes. The identification of adrenergic α1 and α2 receptor orthologs in ambulacrarians, lophotrochozoans, and ecdysozoans indicates that both families were present in the protostome-deuterostome last common ancestor. We could not identify adrenergic β receptors outside chordates (Supplementary figure 3).

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 3: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

3

Figure 1. Biosynthesis of monoamines and cluster map of GPCR sequences. (A) Biosynthesis of tyramine, octopamine, norepinephrine and epinephrine from tyrosine. The enzymes catalyzing the reaction steps are indicated. (B) Sequence-similarity-based cluster map of bilaterian octopamine, tyramine, and adrenergic GPCRs. Nodes correspond to individual GPCRs and are colored based on taxonomy. Edges correspond to BLAST connections of P value >1e-20.

To characterize the ligand specificities of these putative invertebrate adrenergic receptors we cloned them from S. kowalewskii, P. caudatus, and the marine annelid Platynereis dumerilii. We performed in vitro GPCR activation experiments using a Ca2+-mobilization assay (Bauknecht and Jékely, 2015; Tunaru et al., 2005). We found that norepinephrine activated both the adrenergic α1 and α2 receptors from all three species with EC50 values in the nanomolar range. In contrast, tyramine, octopamine, and dopamine were either inactive or only activated the receptors at higher concentrations (Figure 2, Table 1, and Supplementary figures 4-5). These phylogenetic and pharmacological results collectively establish these invertebrate receptors as bona fide adrenergic α receptors.

To investigate if adrenergic signaling coexists with octopamine and tyramine signaling in protostomes we searched for octopamine and tyramine receptors in P. dumerilii and P. caudatus. In phylogenetic and clustering analyses, we identified orthologs for tyramine type 1 and type 2 and octopamine α and β receptors in both species (Figure 1B and Supplementary figures 6-9). We performed activation assays with the P. dumerilii receptors. The tyramine type 1 and type 2 receptors orthologs were preferentially activated by tyramine with EC50 values in the nanomolar range (Figure 2, Table 1, and Supplementary figures 10-11). The P. dumerilii octopamine α receptor was activated by octopamine at a lower concentration than by tyramine and dopamine. The P. dumerilii octopamine β receptor was not active in our assay. These results show that specific receptor systems for norepinephrine, octopamine, and tyramine coexist in P. dumerilii and very likely also P. caudatus.

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 4: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

4

Figure 2. Dose-Response curves of selected monoamine GPCRs from P. dumerilii, P. caudatus, and S. kowalevskii treated with varying concentrations of ligand. Data, representing luminescence units relative to the maximum of the fitted dose-response curves, are shown as mean ± SEM (n = 3) for selected monoamine GPCRs. All dose-response curves with diverse agonists and antagonists are shown in the Supplementary material. EC50 values are listed in Table 1.

When did tyramine and octopamine signaling originate? To answer this, we surveyed

available genome sequences for tyramine and octopamine receptors. As expected, we identified several receptors across the protostomes, including ecdysozoans and lophotrochozoans (Supplementary figures 6-9). However, chordate genomes lacked clear orthologs of these receptors. Strikingly, we identified tyramine type 1 and 2 and octopamine α and β receptor orthologs in the genome of the hemichordate S. kowalewskii (Figure 1B). In phylogenetic analyses, we recovered at least one S. kowalewskii sequence in each of the four receptor clades (one octopamine α, one octopamine β, two tyramine type 1, and two tyramine type 2 receptors), establishing these sequences as deuterostome orthologs of these predominantly protostome GPCR families (Supplementary figures 6-9).

We cloned the candidate S. kowalewskii tyramine and octopamine receptors and performed ligand activation experiments. The S. kowalewskii type 2 receptors were preferentially activated by tyramine in the nanomolar range. The type 1 receptor was only activated at very high ligand concentrations. The octopamine α and β receptors were preferentially activated by octopamine in the nanomolar, and low micromolar range, respectively (Figure 2, table 1, and Supplementary figures 10-11). These data show that octopamine and tyramine signaling also

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 5: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

5

coexists with adrenergic signaling in this deuterostome, as in P. dumerilii and P. caudatus. The presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine decarboxylase, a specific enzyme for tyramine synthesis (Alkema et al., 2005). Tyrosine decarboxylase is present in protostomes and S. kowalewskii but is absent from other deuterostomes (Supplementary figure 12).

We also tested the α adrenergic agonist clonidine and the GPCR antagonists mianserin and yohimbine on several receptors from all three species. These chemicals did not show specificity for any of the receptor types, suggesting these chemicals may not be useful for studying invertebrate neurotransmission (Table 1, and Supplementary figures 4-5, Supplementary figures 9-10). Discussion Our results established the coexistence of adrenergic, octopaminergic, and tyraminergic signaling in the deuterostome S. kowalewskii and the protostomes P. dumerilii and P. caudatus. The discovery of adrenergic signaling in some protostomes and octopamine and tyramine signaling in a deuterostome changes our view on the evolution of monoamine signaling in bilaterians (Figure 3). It is clear from the phyletic distribution of orthologous receptor systems that two families of receptors per each ligand were present in the protostome-deuterostome last common ancestor. These include the adrenergic α1 and α2 receptors, the tyramine type 1 and type 2 receptors, and the octopamine α and β receptors. From the six ancestral families, the octopamine and tyramine receptors were lost from most deuterostomes, and the adrenergic receptors were lost from most ecdysozoans.

Figure 3. Evolution of adrenergic, octopamine, and tyramine signaling in bilaterians. (A) Phylogenetic tree of major clades of bilaterian animals with the loss of specific GPCR families indicated. (B) Phyletic distribution of adrenergic, octopamine, and tyramine GPCR families across major bilaterian clades.

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 6: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

6

We consider the measured in vitro ligand preferences for these receptors as indicative of their physiological ligands. In general, there is a two orders of magnitude difference in the EC50 values between the best ligand and other related ligands, indicating the high specificity of the receptors. The preferred ligand of all six orthologous receptor families is the same across protostomes and deuterostomes, indicating the evolutionary stability of ligand-receptor pairs, similar to the long-term stability of neuropeptide GPCR ligand-receptor pairs (Jékely, 2013; Mirabeau and Joly, 2013).

Understanding the ancestral role of these signaling systems and why they may have been lost differentially in different animal groups will require functional studies in organisms where all three neurotransmitter systems coexist. Signaling by norepinephrine in vertebrates has often been considered as equivalent to signaling by octopamine in invertebrates. Our results change this view and show that these signaling systems coexisted ancestrally and still coexist in some bilaterians, and thus cannot be equivalent. This has important implications for our interpretation of comparative studies of neural circuits and nervous system evolution.

References

Alkema, M. J., Hunter-Ensor, M., Ringstad, N. and Horvitz, H. R. (2005). Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46, 247–260.

Arakawa, S., Gocayne, J. D., McCombie, W. R., Urquhart, D. A., Hall, L. M., Fraser, C. M. and Venter, J. C. (1990). Cloning, localization, and permanent expression of a Drosophila octopamine receptor. Neuron 4, 343–354.

Balfanz, S., Jordan, N., Langenstück, T., Breuer, J., Bergmeier, V. and Baumann, A. (2014). Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain. J Neurochem 129, 284–296.

Baubet, V., Le Mouellic, H., Campbell, A. K., Lucas-Meunier, E., Fossier, P. and Brúlet, P. (2000). Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci U S A 97, 7260–7265.

Bauknecht, P. and Jékely, G. (2015). Large-Scale Combinatorial Deorphanization of Platynereis Neuropeptide GPCRs. Cell Rep 12, 684–693.

Blais, V., Bounif, N. and Dubé, F. (2010). Characterization of a novel octopamine receptor expressed in the surf clam Spisula solidissima. Gen Comp Endocrinol 167, 215–227.

Capella-Gutiérrez, S., Silla-Martínez, J. M. and Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.

Chang, D. J., Li, X. C., Lee, Y. S., Kim, H. K., Kim, U. S., Cho, N. J., Lo, X., Weiss, K. R., Kandel, E. R. and Kaang, B. K. (2000). Activation of a heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in aplysia sensory neurons. Proc Natl Acad Sci U S A 97, 1829–1834.

Chen, X., Ohta, H., Ozoe, F., Miyazawa, K., Huang, J. and Ozoe, Y. (2010). Functional and pharmacological characterization of a beta-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Insect Biochem Mol Biol 40, 476–486.

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 7: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

7

Conzelmann, M., Williams, E. A., Krug, K., Franz-Wachtel, M., Macek, B. and Jékely, G. (2013). The neuropeptide complement of the marine annelid Platynereis dumerilii. BMC Genomics 14, 906.

Crisp, K. M., Grupe, R. E., Lobsang, T. T. and Yang, X. (2010). Biogenic amines modulate pulse rate in the dorsal blood vessel of Lumbriculus variegatus. Comp Biochem Physiol C Toxicol Pharmacol 151, 467–472.

Crocker, A. and Sehgal, A. (2008). Octopamine regulates sleep in drosophila through protein kinase A-dependent mechanisms. J Neurosci 28, 9377–9385.

Darriba, D., Taboada, G. L., Doallo, R. and Posada, D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165.

Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.

Evans, P. D. and Maqueira, B. (2005). Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert Neurosci 5, 111–118.

Florey, E. and Rathmayer, M. (1978). The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: Further evidence for a role as neurohormone. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 61, 229–237.

Frickey, T. and Lupas, A. (2004). CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704.

Gallo, V. P., Accordi, F., Chimenti, C., Civinini, A. and Crivellato, E. (2016). Catecholaminergic System of Invertebrates: Comparative and Evolutionary Aspects in Comparison With the Octopaminergic System. Int Rev Cell Mol Biol 322, 363–394.

Gerhardt, C. C., Bakker, R. A., Piek, G. J., Planta, R. J., Vreugdenhil, E., Leysen, J. E. and Van Heerikhuizen, H. (1997). Molecular cloning and pharmacological characterization of a molluscan octopamine receptor. Mol Pharmacol 51, 293–300.

Gross, A. D., Temeyer, K. B., Day, T. A., Pérez de León, A. A., Kimber, M. J. and Coats, J. R. (2015). Pharmacological characterization of a tyramine receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol 63, 47–53.

Huang, J., Wu, S. F., Li, X. H., Adamo, S. A. and Ye, G. Y. (2012). The characterization of a concentration-sensitive α-adrenergic-like octopamine receptor found on insect immune cells and its possible role in mediating stress hormone effects on immune function. Brain Behav Immun 26, 942–950.

Jékely, G. (2013). Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci U S A 110, 8702–8707.

Jezzini, S. H., Reyes-Colón, D. and Sosa, M. A. (2014). Characterization of a prawn OA/TA receptor in Xenopus oocytes suggests functional selectivity between octopamine and tyramine. PLoS ONE 9, e111314.

Jin, X., Pokala, N. and Bargmann, C. I. (2016). Distinct Circuits for the Formation and Retrieval of an Imprinted Olfactory Memory. Cell 164, 632–643.

Kastner, K. W., Shoue, D. A., Estiu, G. L., Wolford, J., Fuerst, M. F., Markley, L. D., Izaguirre, J. A. and McDowell, M. A. (2014). Characterization of the Anopheles gambiae octopamine receptor and discovery

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 8: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

8

of potential agonists and antagonists using a combined computational-experimental approach. Malar J 13, 434.

Kim, C. H., Zabetian, C. P., Cubells, J. F., Cho, S., Biaggioni, I., Cohen, B. M., Robertson, D. and Kim, K. S. (2002). Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency. Am J Med Genet 108, 140–147.

Krishnan, A., Almén, M. S., Fredriksson, R. and Schiöth, H. B. (2013). Remarkable similarities between the hemichordate (Saccoglossus kowalevskii) and vertebrate GPCR repertoire. Gene 526, 122–133.

Kutsukake, M., Komatsu, A., Yamamoto, D. and Ishiwa-Chigusa, S. (2000). A tyramine receptor gene mutation causes a defective olfactory behavior in Drosophila melanogaster. Gene 245, 31–42.

Li, W. and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659.

Lind, U., Alm Rosenblad, M., Hasselberg Frank, L., Falkbring, S., Brive, L., Laurila, J. M., Pohjanoksa, K., Vuorenpää, A., Kukkonen, J. P., Gunnarsson, L., et al. (2010). Octopamine receptors from the barnacle balanus improvisus are activated by the alpha2-adrenoceptor agonist medetomidine. Mol Pharmacol 78, 237–248.

Marino, M. D., Bourdélat-Parks, B. N., Cameron Liles, L. and Weinshenker, D. (2005). Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161, 197–203.

Miller, M. A., Pfeiffer, W. and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE), pp. 1–8. IEEE.

Mirabeau, O. and Joly, J. S. (2013). Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A 110, E2028–E2037.

Monastirioti, M., Linn, C. E. and White, K. (1996). Characterization of Drosophila tyramine beta-hydroxylase gene and isolation of mutant flies lacking octopamine. J Neurosci 16, 3900–3911.

Nagaya, Y., Kutsukake, M., Chigusa, S. I. and Komatsu, A. (2002). A trace amine, tyramine, functions as a neuromodulator in Drosophila melanogaster. Neurosci Lett 329, 324–328.

Offermanns, S. and Simon, M. I. (1995). G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J Biol Chem 270, 15175–15180.

Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R., Moret, B. M. and Stamatakis, A. (2010). How many bootstrap replicates are necessary? J Comput Biol 17, 337–354.

Rex, E. and Komuniecki, R. W. (2002). Characterization of a tyramine receptor from Caenorhabditis elegans. J Neurochem 82, 1352–1359.

Roeder, T. (2005). Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50, 447–477.

Saudou, F., Amlaiky, N., Plassat, J. L., Borrelli, E. and Hen, R. (1990). Cloning and characterization of a Drosophila tyramine receptor. EMBO J 9, 3611–3617.

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 9: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

9

Selcho, M., Pauls, D., El Jundi, B., Stocker, R. F. and Thum, A. S. (2012). The role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol 520, 3764–3785.

Singh, C., Oikonomou, G. and Prober, D. A. (2015). Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. elife 4, e07000.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.

Tunaru, S., Lättig, J., Kero, J., Krause, G. and Offermanns, S. (2005). Characterization of determinants of ligand binding to the nicotinic acid receptor GPR109A (HM74A/PUMA-G). Mol Pharmacol 68, 1271–1280.

Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Pflüger, H. J., Blenau, W. and Broeck, J. V. (2010). The role of octopamine in locusts and other arthropods. J Insect Physiol 56, 854–867.

Wallace, B. G. (1976). The biosynthesis of octopamine--characterization of lobster tyramine beta-hydroxylase. J Neurochem 26, 761–770.

Wu, S. F., Yao, Y., Huang, J. and Ye, G. Y. (2012). Characterization of a β-adrenergic-like octopamine receptor from the rice stem borer (Chilo suppressalis). J Exp Biol 215, 2646–2652.

Wu, S. F., Xu, G., Qi, Y. X., Xia, R. Y., Huang, J. and Ye, G. Y. (2014). Two splicing variants of a novel family of octopamine receptors with different signaling properties. J Neurochem 129, 37–47.

Wu, S. F., Xu, G. and Ye, G. Y. (2015). Characterization of a tyramine receptor type 2 from hemocytes of rice stem borer, Chilo suppressalis. J Insect Physiol 75, 39–46.

Zhou, C., Rao, Y. and Rao, Y. (2008). A subset of octopaminergic neurons are important for Drosophila aggression. Nat Neurosci 11, 1059–1067.

Acknowledgments We thank John Gerhart for Saccoglossus DNA and the image of Saccoglossus. We thank Mattias Hogvall for Priapulus DNA and the image of Priapulus. We also thank Elizabeth Williams for comments on the manuscript. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ European Research Council Grant Agreement 260821. P.B. is supported by the International Max Planck Research School (IMPRS) ‘‘From Molecules to Organisms.’’ Materials and Methods Gene identification and receptor cloning Platynereis protein sequences were collected from a Platynereis mixed stages transcriptome assembly (Conzelmann et al., 2013). The accession numbers of all newly identified GPCRs tested here are GenBank: KX372342, KX372343, KP293998, KU715093, KU530199, KU886229). GPCR sequences from other species were downloaded from NCBI. GPCRs were cloned into pcDNA3.1(+) (Thermo Fisher Scientific, Waltham, USA) as described before (Bauknecht and Jékely, 2015). Forward primers consisted of a spacer (ACAATA) followed by a

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 10: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

10

BamHI or EcoRI restriction site, the Kozak consensus sequence (CGCCACC), the start codon (ATG) and a sequence corresponding to the target sequence. Reverse primers consisted of a spacer (ACAATA), a NotI restriction site, a STOP codon, and reverse complementary sequence to the target sequence. Primers were designed to end with a C or G with 72°C melting temperature. PCR was performed using Phusion polymerase (New England Biolabs GmbH, Frankfurt, Germany). The sequences of all Platynereis GPCRs tested here were deposited in GenBank (accession numbers: α1-adrenergic receptor, KX372342; α2-adrenergic receptor, KX372343 Tyramine-1 receptor, KP293998; Tyramine-2 receptor, KU715093; Octopamine α receptor, KU530199; Octopamine β receptor, KU886229). Tyramine receptor 1 has been previously published (Bauknecht and Jékely, 2015) as Pdu orphan GPCR 48. Cell culture and receptor deorphanization Cell culture assays were done as described before (Bauknecht and Jékely, 2015). Briefly, CHO-K1 cells were kept in Ham’s F12 Nut Mix medium (Thermo Fisher Scientific, Waltham, USA) with 10 % fetal bovine serum and penicillin-streptomycin (PenStrep, Invitrogen). Cells were seeded in 96-well plates (Thermo Fisher Scientific, Waltham, USA) at approximately 10,000 cells/well. After 1 day, cells were transfected with plasmids encoding a GPCR, the promiscuous Gα-16 protein (Offermanns and Simon, 1995), and a reporter construct GFP-apoaequorin (Baubet et al., 2000) (60 ng each) using 0.375 µl of the transfection reagent TurboFect (Thermo Fisher Scientific, Waltham, USA). After two days of expression, the medium was removed and replaced with Hank’s Balanced Salt Solution (HBSS) supplemented with 1.8 mM Ca2+, 10 mM glucose and 1 mM coelenterazine h (Promega, Madison, USA). After incubation at 37°C for 2 hours, cells were tested by adding synthetic monoamines (Sigma, St. Louis, USA) in HBSS supplemented with 1.8 mM Ca2+ and 10 mM glucose. Solutions containing norepinephrine, epinephrine or dopamine were supplemented with 100 µM ascorbic acid to prevent oxidation. Luminescence was recorded for 45 seconds in a plate reader (BioTek Synergy Mx or Synergy H4, BioTek, Winooski, USA). For inhibitor testing, the cells were incubated with yohimbine or mianserin (Sigma, St. Louis, USA) for 1 hour. Then, synthetic monoamines were added to yield in each case the smallest final concentration expected to elicit the maximal response in the absence of inhibitor and luminescence was recorded for 45 seconds. Data were integrated over the 45-second measurement period. Data for dose-response curves were recorded in triplicate for each concentration. Dose-response curves were fitted with a four-parameter curve using Prism 6 (GraphPad, La Jolla, USA). The curves were normalized to the calculated upper plateau values (100% activation). Bioinformatics Protein sequences were downloaded from the NCBI. Redundant sequences were removed from the collection using CD-HIT (Li and Godzik, 2006) with an identity cutoff of 95%. Sequence cluster maps were created with CLANS2 (Frickey and Lupas, 2004) using the BLOSUM62 matrix and a P-value cutoff of 1E-70. For phylogenetic trees, protein sequences were aligned with MUSCLE (Edgar, 2004). Alignments were trimmed with TrimAI (Capella-Gutiérrez et al., 2009) in “Automated 1” mode. The best amino acid substitution model was selected using ProtTest 3 (Darriba et al., 2011). Maximum likelihood trees were calculated with RAxML (Stamatakis, 2014) using the CIPRES Science Gateway (Miller et al., 2010). Bootstrap analysis was done and automatically stopped (Pattengale et al., 2010) when the Majority Rule Criterion (autoMRE) was met. The resulting trees were visualized with FigTree

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 11: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

11

(http://tree.bio.ed.ac.uk/software/figtree/). The identifiers of deorphanized octopamine and tyramine receptors (Balfanz et al., 2014; Blais et al., 2010; Chang et al., 2000; Chen et al., 2010; Gerhardt et al., 1997; Gross et al., 2015; Huang et al., 2012; Jezzini et al., 2014; Kastner et al., 2014; Lind et al., 2010; Rex and Komuniecki, 2002; Verlinden et al., 2010; Wu et al., 2012; Wu et al., 2014; Wu et al., 2015) were tagged with _Oa, _Ob, _T1, or _T2.

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 12: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

12

EC50 (M)/IC50 (M) Tyramine Octopami

ne Norepinephrine

Epinephrine

Dopamine

Clonidine Yohimbine

Mianserin

P. dumerilii α1-adrenergic KX372342

inactive inactive 2.12E-07 3.79E-07 1.25E-04 inactive 4.41E-06 3.79E-06

P. dumerilii α2-adrenergic KX372343

8.36E-05 2.67E-06 5.25E-09 1.06E-08 1.63E-06 2.57E-06 5.71E-06 2.53E-05

S. kowalevskii α1-adrenergic ALR88680

inactive n/a 1.67E-08 1.94E-08 3.79E-06 inactive 1.32E-05 4.46E-06

S. kovalewskii α2-adrenergic XP_002734932

3.75E-06 1.94E-06 1.16E-13 2.31E-09 5.60E-09 3.61E-08 7.90E-05 n/a

P. caudatus α1-adrenergic XP_014662992

inactive inactive 7.49E-09 inactive inactive inactive n/a n/a

P. caudatus α2-adrenergic XP_014681069

inactive inactive 2.20E-06 4.52E-07 inactive 1.02E-07 n/a 9.85E-07

P. dumerilii Tyramine-1 KP293998

1.12E-08 2.70E-06 n/a n/a 7.79E-06 n/a 2.06E-06 1.05E-05

P. dumerilii Tyramine-2 KU715093

7.02E-09 7.82E-07 n/a n/a 3.89E-06 n/a 5.38E-05 6.36E-06

S. kovalewskii Tyramine-1 XP_002742354

8.40E-05 n/a inactive inactive n/a 2.86E-04 1.68E-06 1.70E-05

S. kovalewskii Tyramine-2A XP_002734062

1.22E-09 6.24E-08 inactive inactive 7.18E-08 1.39E-06 n/a 1.61E-04

S. kovalewskii Tyramine-2B XP_006812999

3.71E-09 1.57E-06 1.15E-04 2.85E-05 1.44E-06 1.60E-05 2.06E-05 1.88E-05

P. dumerilii Octopamine α KU530199

1.34E-05 2.56E-07 n/a n/a inactive n/a 9.02E-09 1.62E-06

S. kowalevskii Octopamine α XP_006823182

1.72E-05 6.89E-07 5.30E-05 1.85E-05 2.65E-04 1.64E-07 7.78E-06 2.16E-05

S. kowalevskii Octopamine β XP_002733926

inactive 6.37E-08 3.49E-06 inactive inactive inactive 1.57E-04 6.45E-06

Table 1. EC50 (M)/IC50 (M) values of all tested GPCRs with the indicated ligands or inhibitors. The most effective ligand for each receptor is shown in bold.

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 13: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

13

Supplementary figure 1. Maximum likelihood tree of α1-adrenergic receptors. Bootstrap support values are shown for selected nodes. This tree is part of a larger tree containing all investigated GPCRs.

0.5

EFX64650.1_Daphnia_pulex

XP_010205582.1_Colius_striatus

XP_009050255.1_Lottia_gigantea

XP_014662992.1_Priapulus_caudatus

XP_008279073.1_Stegastes_partitus

CDQ72256.1_Oncorhynchus_mykiss

XP_005285240.1_Chrysemys_picta_bellii

XP_003970475.1_Takifugu_rubripes

XP_014743771.1_Sturnus_vulgaris

XP_008334310.1_Cynoglossus_semilaevis

XP_014822169.1_Calidris_pugnax

XP_014051077.1_Salmo_salar

CDQ56739.1_Oncorhynchus_mykiss

KTG32062.1_Cyprinus_carpio

XP_010788374.1_Notothenia_coriiceps

XP_004460877.1_Dasypus_novemcinctus

XP_013133031.1_Oreochromis_niloticus

NP_001007359.1_Danio_rerio

XP_012687224_Clupea_harengus

XP_003227101.1_Anolis_carolinensis

XP_013867515.1_Austrofundulus_limnaeus

XP_003782039.1_Otolemur_garnettii

CDQ56384.1_Oncorhynchus_mykiss

KTF87842.1_Cyprinus_carpio

XP_014068076.1_Salmo_salar

XP_007430469.1_Python_bivittatus

XP_007247270.1_Astyanax_mexicanus

XP_010154880.1_Eurypyga_helias

XP_009993014.1_Chaetura_pelagica

XP_011355023.1_Pteropus_vampyrus

XP_008630655.1_Corvus_brachyrhynchos

NP_001118147.1_Oncorhynchus_mykiss

XP_013091628_Biomphalaria_glabrata

XP_006138206_Pelodiscus_sinensis

XP_008489604.1_Calypte_anna

XP_007896221.1_Callorhinchus_milii

XP_015268171.1_Gekko_japonicus

XP_002935531.2_Xenopus_tropicalis

XP_697043.2_Danio_rerio

XP_007548430.1_Poecilia_formosa

XP_003726237.1_Strongylocentrotus_purpuratus

KTG02316.1_Cyprinus_carpio

XP_006211986.1_Vicugna_pacos

XP_007477871.1_Monodelphis_domestica

XP_005142671.1_Melopsittacus_undulatus

XP_005719861.1_Pundamilia_nyererei

XP_012959596.1_Anas_platyrhynchos

XP_006625863.1_Lepisosteus_oculatus

XP_013787844.1_Limulus_polyphemus

XP_004665892.1_Jaculus_jaculus

AAA35496.1_Homo_sapiens_AA1A

XP_001922013.3_Danio_rerio

XP_012697555.1_Clupea_harengus

XP_003748403.1_Metaseiulus_occidentalis

XP_009566450.1_Cuculus_canorus

ALR88680.1_Saccoglossus_kowalevskii_AA1

XP_010795800.1_Notothenia_coriiceps

XP_015827734.1_Nothobranchius_furzeri

XP_008059269.1_Tarsius_syrichta

XP_010886834.1_Esox_lucius

XP_006276442.2_Alligator_mississippiensis

XP_004460873.1_Dasypus_novemcinctus

KX372342_Platynereis_dumerilii_AA1

KFM77668.1_Stegodyphus_mimosarum

ETE57756.1_Ophiophagus_hannah

XP_010795024.1_Notothenia_coriiceps

XP_002197113.1_Taeniopygia_guttata

XP_007424603.1_Python_bivittatus

XP_015598849.1_Cephus_cinctus

XP_014663408.1_Priapulus_caudatus

XP_015233524.1_Cyprinodon_variegatus

ADK98420.1_Meriones_unguiculatus

XP_008325595.1_Cynoglossus_semilaevis

XP_010143615.1_Buceros_rhinoceros_silvestris

CDQ95487.1_Oncorhynchus_mykiss

XP_012709980.1_Fundulus_heteroclitus

XP_006629253.1_Lepisosteus_oculatus

XP_002933012.2_Xenopus_tropicalis

CDQ73039.1_Oncorhynchus_mykiss

KPP75495.1_Scleropages_formosus

XP_004065916.1_Oryzias_latipes

XP_008921792.1_Manacus_vitellinus

KTG31243.1_Cyprinus_carpio

XP_009899896.1_Picoides_pubescens

XP_007235606.1_Astyanax_mexicanus

XP_004073535.1_Oryzias_latipes

XP_006805960.1_Neolamprologus_brichardi

XP_015152983.1_Gallus_gallus

XP_003793998.1_Otolemur_garnettii

XP_009951638.1_Leptosomus_discolor

XP_008282667.1_Stegastes_partitus

XP_011422115.1_Crassostrea_gigasELU14162.1_Capitella_teleta

XP_010177730.1_Mesitornis_unicolor

XP_006114239.1_Pelodiscus_sinensis

XP_012736728.1_Fundulus_heteroclitus

XP_013917984.1_Thamnophis_sirtalis

XP_008499885.1_Calypte_anna

XP_013419311.1_Lingula_anatina

XP_015255918.1_Cyprinodon_variegatus

XP_013864145.1_Austrofundulus_limnaeus

XP_006252170.1_Rattus_norvegicus

XP_011478573.1_Oryzias_latipes

XP_008417330.1_Poecilia_reticulata

XP_010900547.1_Esox_lucius

XP_012936806.1_Aplysia_californica

XP_014777674.1_Octopus_bimaculoides

XP_006010360.1_Latimeria_chalumnae

XP_010853649.1_Bison_bison_bison

1

100

100

85

83

71

99

80

93

96

95

63

α1-adrenergic receptors

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 14: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

14

Supplementary figure 2. Maximum likelihood tree of α2-adrenergic receptors. Bootstrap support values are shown for selected nodes. This tree is part of a larger tree containing all investigated GPCRs.

0.5

XP_010784224.1_Notothenia_coriiceps

CDJ80122.1_Haemonchus_contortus

XP_012722422.1_Fundulus_heteroclitus

KPP70140.1_Scleropages_formosus

XP_013875010.1_Austrofundulus_limnaeus

Q90WY4.1_Danio_rerio

CDQ90138.1_Oncorhynchus_mykiss

XP_014026328.1_Salmo_salar

KTF91499.1_Cyprinus_carpio

KX372343_Platynereis_dumerilii_AA2

KTG06372.1_Cyprinus_carpio

XP_008315824.1_Cynoglossus_semilaevis

XP_010968209.1_Camelus_bactrianus

CDQ73934.1_Oncorhynchus_mykiss

XP_014938420.1_Acinonyx_jubatus

CAD11981.1_Rhogeessa_tumida

EDL01717.1_Mus_musculus

XP_006778809.1_Myotis_davidii

XP_015267985.1_Gekko_japonicus

XP_011573649.1_Aquila_chrysaetos_canadensis

XP_012692326.1_Clupea_harengus

XP_012730184.1_Fundulus_heteroclitus

XP_014333406.1_Bos_mutus

XP_010732944.1_Larimichthys_crocea

CAG05052.1_Tetraodon_nigroviridis

XP_008296024.1_Stegastes_partitus

KQK80321.1_Amazona_aestiva

XP_010981560.1_Camelus_dromedarius

XP_015350355.1_Marmota_marmota_marmota

XP_014055357.1_Salmo_salar

XP_015262427.1_Gekko_japonicus

XP_014274544.1_Halyomorpha_halys

Q8JG70.1_Danio_rerio

XP_014390455.1_Myotis_brandtii

CAG00720.1_Tetraodon_nigroviridis

XP_002734932.1_Saccoglossus_kowalevskii_AA2

XP_013920993.1_Thamnophis_sirtalis

CDQ75057.1_Oncorhynchus_mykiss

XP_012873058.1_Dipodomys_ordii

XP_014242340.1_Cimex_lectularius

XP_009911888.1_Haliaeetus_albicilla

XP_007905605.1_Callorhinchus_milii

XP_005813740.2_Xiphophorus_maculatus

XP_013986063.1_Salmo_salar

XP_002644716.1_Caenorhabditis_briggsae

XP_007173405.1_Balaenoptera_acutorostrata_scammoni

XP_009067029.1_Lottia_gigantea

XP_011433775.1_Crassostrea_gigas

CAL36767.1_Branchiostoma_floridae

XP_002595000.1_Branchiostoma_floridae

XP_015718435.1_Coturnix_japonica

XP_005308213.1_Chrysemys_picta_bellii

XP_009806348.1_Gavia_stellata

EHH14168.1_Macaca_mulatta

XP_010778794.1_Notothenia_coriiceps

CEF71092.1_Strongyloides_ratti

XP_010733243.1_Larimichthys_crocea

EFX76926.1_Daphnia_pulex

XP_008296631.1_Stegastes_partitus

XP_015200296.1_Lepisosteus_oculatus

XP_015244492.1_Cyprinodon_variegatus

CDQ85392.1_Oncorhynchus_mykiss

XP_014046094.1_Salmo_salar

XP_004539207_Maylandia_zebra

XP_003966929.1_Takifugu_rubripes

XP_012953671.1_Anas_platyrhynchos

XP_008334393.1_Cynoglossus_semilaevis

CAG01293.1_Tetraodon_nigroviridis

XP_013156970.1_Falco_peregrinus

XP_014062277.1_Salmo_salar

P32251.1_Carassius_auratus

KTG45995.1_Cyprinus_carpio

XP_007420380.1_Python_bivittatus

XP_007236033.1_Astyanax_mexicanus

XP_006135062.1_Pelodiscus_sinensis

XP_003787216.1_Otolemur_garnettii

XP_005446496.1_Falco_cherrug

CAD20302.1_Tachyoryctes_sp.

XP_012685854.1_Clupea_harengus

XP_015463451.1_Astyanax_mexicanus

XP_008538974.1_Equus_przewalskii

XP_015252539.1_Cyprinodon_variegatus

XP_012675626.1_Clupea_harengus

XP_015673604.1_Protobothrops_mucrosquamatus

XP_012879340.1_Dipodomys_ordii

XP_014010145.1_Salmo_salar

EDL94448.1_Rattus_norvegicus

XP_003755431.1_Sarcophilus_harrisii

XP_003218553.1_Anolis_carolinensis

XP_014958903.1_Ovis_aries

XP_010777801.1_Notothenia_coriiceps

XP_008320162.1_Cynoglossus_semilaevis

XP_014767930.1_Octopus_bimaculoides

XP_015202895.1_Lepisosteus_oculatus

CDQ94371.1_Oncorhynchus_mykiss

XP_012579513.1_Condylura_cristata

XP_008198464.2_Tribolium_castaneum

XP_013030003.1_Anser_cygnoides_domesticus

XP_003972567.1_Takifugu_rubripes

XP_006022896.1_Alligator_sinensis

XP_013857577.1_Austrofundulus_limnaeus

XP_008315656.1_Cynoglossus_semilaevis

XP_006750950.1_Leptonychotes_weddellii

XP_012626815.1_Microcebus_murinus

XP_005874627.1_Myotis_brandtii

ERE78076.1_Cricetulus_griseus

XP_008142634.1_Eptesicus_fuscus

XP_005485737.1_Zonotrichia_albicollis

XP_004066404.1_Oryzias_latipes

XP_006880000.1_Elephantulus_edwardii

XP_004265893.1_Orcinus_orca

XP_013383118.1_Lingula_anatina

XP_006609424.1_Apis_dorsata

XP_015262234.1_Gekko_japonicus

CAC87884.1_Takifugu_rubripes

XP_015390193.1_Panthera_tigris_altaica

KKF18259.1_Larimichthys_crocea

NP_997522.1_Danio_rerio

XP_013802685.1_Apteryx_australis_mantelli

XP_010350316.1_Saimiri_boliviensis_boliviensis

NP_001072843.1_Xenopus_tropicalis

XP_005998869.1_Latimeria_chalumnae

XP_010587294.1_Loxodonta_africana

XP_006011954.1_Latimeria_chalumnae

XP_008280550.1_Stegastes_partitus

XP_015228090.1_Cyprinodon_variegatus

XP_005416433.1_Geospiza_fortis

CAI70426.1_Cricetomys_gambianus

XP_005983264.1_Pantholops_hodgsonii

XP_007120031.1_Physeter_catodon

XP_010886433.1_Esox_lucius

Q91081.1_Labrus_ossifagus

XP_010886159.1_Esox_lucius

XP_004942333.2_Gallus_gallus

EPB80586_Ancylostoma_ceylanicum

ELT99717.1_Capitella_teleta

XP_009881752.1_Charadrius_vociferus

XP_013820290.1_Capra_hircus

NP_000672.3_Homo_sapiens_AA2A

XP_007234270.1_Astyanax_mexicanus

ETE69512.1_Ophiophagus_hannah

KPP71495.1_Scleropages_formosus

AEP17845.1_Anomalurus_beecrofti

XP_014681069.1_Priapulus_caudatus

XP_002605761.1_Branchiostoma_floridae

KF460458.1_Chilo_suppressalis_Oa

XP_010895107.1_Esox_lucius

XP_012943687.1_Aplysia_californica

KPP60422.1_Scleropages_formosus

XP_004073361.1_Oryzias_latipes

XP_007903477.1_Callorhinchus_milii

XP_005235799.1_Falco_peregrinus

XP_012697346.1_Clupea_harengus

XP_008325312.1_Cynoglossus_semilaevis

AAN78417.1_Tupaia_belangeri

XP_013868957.1_Austrofundulus_limnaeus

XP_004912925.1_Xenopus_tropicalis

XP_008276148.1_Stegastes_partitus

XP_002663705.3_Danio_rerio

XP_007437437.1_Python_bivittatus

XP_008626884.1_Corvus_brachyrhynchos

XP_014011189.1_Salmo_salar

XP_003217630.1_Anolis_carolinensis

XP_013096124.1_Biomphalaria_glabrata

XP_015738423.1_Coturnix_japonica

XP_004631588.1_Octodon_degus

XP_014059545.1_Salmo_salar

96

77

95

99

96

100

α2-adrenergic receptors

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 15: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

15

Supplementary figure 3. Maximum likelihood tree of β-adrenergic receptors. Bootstrap support values are shown for some nodes of interest. This tree is part of a larger tree containing all investigated GPCRs.

Supplementary figure 4. Maximum likelihood tree of Tyramine-1 receptors. Bootstrap support values are shown for selected nodes. This tree is part of a larger tree containing all investigated GPCRs. The identifiers of deorphanized tyramine receptors were tagged with _T1.

XP_004587615.1_Ochotona_princeps

CAA06540.1_Petromyzon_marinus

XP_005324245.1_Ictidomys_tridecemlineatus

XP_002122923.1_Ciona_intestinalis

XP_006002873.1_Latimeria_chalumnae

KTG34400.1_Cyprinus_carpio

XP_003796342.1_Otolemur_garnettii

KTG06855.1_Cyprinus_carpio

XP_006994457.1_Peromyscus_maniculatus_bairdii

XP_004696769.1_Echinops_telfairi

XP_015202883.1_Lepisosteus_oculatus

NP_001093397.1_Sus_scrofa

XP_007232946.1_Astyanax_mexicanus

AAQ91625.1_Branchiostoma_floridae

XP_014326866.1_Xiphophorus_maculatus

XP_006000436.1_Latimeria_chalumnae

XP_003217407.2_Anolis_carolinensis

XP_008417789.1_Poecilia_reticulata

XP_012880977.1_Dipodomys_ordii

XP_008325872.1_Cynoglossus_semilaevis

XP_014746696.1_Sturnus_vulgaris

AGU01500.1_Sus_scrofa

XP_003404888.1_Loxodonta_africana

XP_014708070.1_Equus_asinus

KKF21487.1_Larimichthys_crocea

XP_006766281.1_Myotis_davidii

AAA89068.1_Rattus_norvegicus

XP_012707242.1_Fundulus_heteroclitus

XP_014054344.1_Salmo_salar

XP_005795585.2_Xiphophorus_maculatus

XP_004620654.1_Sorex_araneus

XP_015262106.1_Gekko_japonicus

XP_015678290.1_Protobothrops_mucrosquamatus

XP_002710343.1_Oryctolagus_cuniculus

XP_006784977.1_Neolamprologus_brichardi

XP_004073575.1_Oryzias_latipes

CBN81445.1_Dicentrarchus_labrax

XP_013873112.1_Austrofundulus_limnaeus

XP_008586147.1_Galeopterus_variegatus

XP_006893779.1_Elephantulus_edwardii

XP_009284014.1_Aptenodytes_forsteri

XP_014803719.1_Calidris_pugnax

XP_004384975.1_Trichechus_manatus_latirostris

XP_010895941.1_Esox_lucius

KTG42897.1_Cyprinus_carpio

XP_007906212.1_Callorhinchus_milii

NP_001122161.1_Danio_rerio

XP_009474370.1_Nipponia_nippon

XP_015306903.1_Macaca_fascicularis

XP_013870150.1_Austrofundulus_limnaeus

XP_011609112.1_Takifugu_rubripes

XP_519708.2_Pan_troglodytes

NP_001117912.1_Oncorhynchus_mykiss

XP_013863035.1_Austrofundulus_limnaeus

XP_008930097.1_Manacus_vitellinus

XP_010869486.2_Esox_lucius

XP_008690966.1_Ursus_maritimus

KKF11668.1_Larimichthys_crocea

XP_015356717.1_Marmota_marmota_marmota

AAF20199.1_Homo_sapiens

XP_008150402.1_Eptesicus_fuscus

XP_004460730.1_Dasypus_novemcinctus

NP_001082940.1_Danio_rerio

XP_003782105.1_Otolemur_garnettii

ACX46713.1_Pimephales_promelas

XP_007903898.1_Callorhinchus_milii

XP_009470511.1_Nipponia_nippon

XP_006277924.1_Alligator_mississippiensis

NP_001083418.1_Xenopus_laevis

XP_008488388.1_Calypte_anna

XP_005719651.1_Pundamilia_nyererei

XP_006985221.1_Peromyscus_maniculatus_bairdii

AAG31164.1_Ovis_aries

KPP58190.1_Scleropages_formosus

KPP77020.1_Scleropages_formosus

CAG12607.1_Tetraodon_nigroviridis

XP_015731815.1_Coturnix_japonica

XP_008836112.1_Nannospalax_galili

NP_001116897.2_Xenopus_tropicalis

XP_007260201.1_Astyanax_mexicanus

CAA06541.1_Petromyzon_marinus

XP_012669957.1_Clupea_harengus

CAA06539.1_Myxine_glutinosa

XP_008977573.1_Callithrix_jacchus

XP_009069256.1_Acanthisitta_chloris

Q28927.2_sheep

XP_005468045.1_Oreochromis_niloticus

NP_031446.2_Mus_musculus

XP_005614864.1_Equus_caballus

XP_006879982.1_Elephantulus_edwardii

AAA35550.1_Homo_sapiens

XP_007447551.1_Lipotes_vexillifer

XP_015232667.1_Cyprinodon_variegatusXP_014901064.1_Poecilia_latipinna

XP_007421173.1_Python_bivittatus

XP_004664808.1_Jaculus_jaculus

ELW64306.1_Tupaia_chinensis

XP_007553424.1_Poecilia_formosa

XP_007516440.1_Erinaceus_europaeus

XP_007188760.1_Balaenoptera_acutorostrata_scammoni

NP_001085791.1_Xenopus_laevis

XP_006052758.1_Bubalus_bubalis

XP_003934046.2_Saimiri_boliviensis_boliviensis

ETE71498.1_Ophiophagus_hannah

XP_008062588.1_Tarsius_syrichta

XP_007231763.1_Astyanax_mexicanus

XP_015245990.1_Cyprinodon_variegatus

XP_015229372.1_Cyprinodon_variegatus

XP_008275795.1_Stegastes_partitus

ABG56138.1_Bos_taurus

XP_008277801.1_Stegastes_partitus

XP_007435758.1_Python_bivittatus

XP_007574343.1_Poecilia_formosa

XP_010383600.1_Rhinopithecus_roxellana

XP_009645348.1_Egretta_garzetta

XP_013912817.1_Thamnophis_sirtalis

NP_000675.1_Homo_sapiens

ERE85201.1_Cricetulus_griseus

XP_004080293.1_Oryzias_latipes

XP_015818613.1_Nothobranchius_furzeri

XP_012691165.1_Clupea_harengus

XP_012597080.1_Microcebus_murinus

NP_001096122.1_Danio_rerio

XP_004428726.1_Ceratotherium_simum_simum

XP_015204860.1_Lepisosteus_oculatus

XP_003477383.1_Cavia_porcellus

AAI60515.1_Xenopus_tropicalis

XP_006863914.1_Chrysochloris_asiatica

XP_013918020.1_Thamnophis_sirtalis

XP_004686925.1_Condylura_cristata

XP_010625409.1_Fukomys_damarensis

72

100

30

100

90

0.5

β-adrenergic receptors

0.5

XP_312420.3_Anopheles_gambiae_str._PEST

XP_011339818.1_Cerapachys_biroi

XP_002426131.1_Pediculus_humanus_corporis

XP_014359277.1_Papilio_machaon

KRT86051.1_Oryctes_borbonicus

KOB69231.1_Operophtera_brumata

KFB35059.1_Anopheles_sinensisKFB51134.1_Anopheles_sinensis

XP_013197949.1_Amyelois_transitellaAFG26689.1_Chilo_suppressalis

NP_001164311.1_Tribolium_castaneum

ACJ06651.1_Spodoptera_littoralis

XP_003392960.1_Bombus_terrestris

XP_002742354.2_Saccoglossus_kowalevskii_T1

XP_014278335.1_Halyomorpha_halys

XP_014776496.1_Octopus_bimaculoides

XP_001863342.1_Culex_quinquefasciatus

XP_012227598.1_Linepithema_humile

XP_013190483.1_Amyelois_transitella

XP_008472990.1_Diaphorina_citri

KPJ14377.1_Papilio_machaon

XP_002415939.1_Ixodes_scapularis

XP_013791379.1_Limulus_polyphemus

XP_014481134.1_Dinoponera_quadriceps

Q25321.1_Locusta_migratoria_T1

XP_012259361.1_Athalia_rosae

BAB71788.1_Drosophila_melanogaster_T1

XP_013784920.1_Limulus_polyphemus

XP_014099568.1_Bactrocera_oleae

AKQ63052.1_Platynereis_dumerilii_T1

XP_011501106.1_Ceratosolen_solmsi_marchali

KPI95840.1_Papilio_xuthus

XP_011451309.1_Crassostrea_gigas

XP_004526236.1_Ceratitis_capitata

XP_001652255.2_Aedes_aegypti

XP_011156273.1_Solenopsis_invicta

EF490687.1_Rhipicephalus_microplus_T1

XP_001958478.1_Drosophila_ananassae

XP_002008573.2_Drosophila_mojavensis

EHJ68870.1_Danaus_plexippus

ELT94407.1_Capitella_teleta

BAL72847.1_Phormia_regina

NP_001024335.1_Caenorhabitis_elegans_T1

ENN74962.1_Dendroctonus_ponderosae

XP_014672793.1_Priapulus_caudatus

CAQ48240.1_Periplaneta_americana_T1

ABY71758.1_Macrobrachium_rosenbergii

XP_001352884.2_Drosophila_pseudoobscura_pseudoobscura

KMQ93013.1_Lasius_niger

XP_008206976.1_Nasonia_vitripennis

AHN85845.1_Nicrophorus_vespilloides

XP_014614240.1_Polistes_canadensis

AFX62896.1_Pieris_rapae

ALM55746.1_Sitophilus_oryzae

CAB76374.1_Apis_mellifera_T1

XP_011562493.1_Plutella_xylostella

EGT40715_Caenorhabditis_brenneri

XP_011202418.1_Bactrocera_dorsalis

XP_013116014.1_Stomoxys_calcitrans

XP_011194697.1_Bactrocera_cucurbitae

XP_001985558.1_Drosophila_grimshawi

KOB71731.1_Operophtera_brumata

XP_002068046.2_Drosophila_willistoni

XP_011312300.1_Fopius_arisanus

KOB67833.1_Operophtera_brumata

CAA64865.1_Bombyx_mori_T1

XP_014240675.1_Cimex_lectularius

ALC43118.1_Drosophila_busckii

KDR16545.1_Zootermopsis_nevadensis

ETN58983.1_Anopheles_darlingi

XP_006822832.1_Saccoglossus_kowalevskii

XP_014218105.1_Copidosoma_floridanum

XP_005185605.2_Musca_domesticaKNC24708.1_Lucilia_cuprina

ENN72328.1_Dendroctonus_ponderosae

XP_014235818.1_Trichogramma_pretiosum

KDR16544.1_Zootermopsis_nevadensis

81

73

98

74

95

Tyramine-1 receptors

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 16: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

16

Supplementary figure 5. Maximum likelihood tree of Tyramine-2 receptors. Bootstrap support values are shown for selected nodes. This tree is part of a larger tree containing all investigated GPCRs. The identifiers of deorphanized tyramine receptors were tagged with _T2.

Supplementary figure 6. Maximum likelihood tree of Octopamine-α receptors. Bootstrap support values are shown for selected nodes. This tree is part of a larger tree containing all investigated GPCRs. The identifiers of deorphanized octopamine receptors were tagged with _Oa.

0.5

DAA64505.1_Tribolium_castaneum

XP_002056769.2_Drosophila_virilis

XP_013142077.1_Papilio_polytes

XP_001649033.2_Aedes_aegypti

KPJ03809.1_Papilio_xuthus

KU715093_Platynereis_dumerilii_T2

XP_004529356.1_Ceratitis_capitata

XP_011154023.1_Harpegnathos_saltator

XP_001998427.2_Drosophila_mojavensis

XP_015174118.1_Polistes_dominula

XP_011069002.1_Acromyrmex_echinatior

XP_011184892.1_Bactrocera_cucurbitae

XP_012281361.1_Orussus_abietinus

KDR18992.1_Zootermopsis_nevadensis

AHN85846.1_Nicrophorus_vespilloides

XP_011184896.1_Bactrocera_cucurbitae

ETN64745.1_Anopheles_darlingi

XP_014097299.1_Bactrocera_oleae

XP_011875691.1_Vollenhovia_emeryi

KNC22325.1_Lucilia_cuprina

XP_001954230.1_Drosophila_ananassaeNP_650652.1_Drosophila_melanogaster_T2

XP_003426713.1_Nasonia_vitripennis

XP_008475339.1_Diaphorina_citri

XP_005185145.1_Musca_domestica

XP_011555966.1_Plutella_xylostella

ETN64509.1_Anopheles_darlingi

XP_001994504.1_Drosophila_grimshawi

XP_014356598.1_Papilio_machaon

XP_012224475.1_Linepithema_humile

XP_011500363.1_Ceratosolen_solmsi_marchali

XP_309588.5_Anopheles_gambiae_str._PEST

XP_011293189.1_Musca_domestica

ALC46687.1_Drosophila_busckii

XP_014097290.1_Bactrocera_oleae

KNC22330.1_Lucilia_cuprina

XP_001998428.2_Drosophila_mojavensis

XP_014488846.1_Dinoponera_quadriceps

XP_003702699.1_Megachile_rotundata

ERL83362.1_Dendroctonus_ponderosae

XP_001649034.2_Aedes_aegypti

EHJ64085.1_Danaus_plexippus

XP_004529353.2_Ceratitis_capitata

XP_008188216.1_Acyrthosiphon_pisum

XP_014235895.1_Trichogramma_pretiosum

XP_013165484.1_Papilio_xuthus

XP_013188063.1_Amyelois_transitella

XP_006608318.1_Apis_dorsata

XP_013786964.1_Limulus_polyphemus

KOF79848.1_Octopus_bimaculoides

XP_006812999.1_Saccoglossus_kowalevskii_T2B

KFB41294.1_Anopheles_sinensis

XP_011203887.1_Bactrocera_dorsalis

XP_002734062.1_Saccoglossus_kowalevskii_T2A

BAI52937.1_Bombyx_mori_T2

XP_011633420.1_Pogonomyrmex_barbatus

ALC46686.1_Drosophila_busckii

ADK91078.1_Chilo_suppressalis_T2

XP_001359694.4_Drosophila_pseudoobscura_pseudoobscura

XP_014678717.1_Priapulus_caudatus

KOC70478.1_Habropoda_laboriosa

XP_002429476.1_Pediculus_humanus_corporis

XP_014778476.1_Octopus_bimaculoides

XP_011184895.1_Bactrocera_cucurbitaeXP_013112132.1_Stomoxys_calcitrans

XP_001994503.1_Drosophila_grimshawi

XP_014207104.1_Copidosoma_floridanum

XP_013785118.1_Limulus_polyphemus

ELU14919.1_Capitella_teleta

XP_002096110.1_Drosophila_yakuba

XP_004529355.2_Ceratitis_capitata

KOX76145.1_Melipona_quadrifasciata

KPJ21156.1_Papilio_machaon

XP_015026222.1_Drosophila_virilis

XP_013112135.1_Stomoxys_calcitrans

XP_015368899.1_Diuraphis_noxia

XP_011203890.1_Bactrocera_dorsalis

XP_003393336.1_Bombus_terrestris

XP_002072092.2_Drosophila_willistoni

XP_008197781.1_Tribolium_castaneum

XP_012257334.1_Athalia_rosae98

77

92

100

100

98

Tyramine-2 receptors

0.5

XP_012156222.1_Ceratitis_capitata

XP_002429940.1_Pediculus_humanus_corporis

XP_011872000.1_Vollenhovia_emeryi

AFG22597.1_Mythimna_separata

EHJ74631.1_Danaus_plexippus

XP_001869401.1_Culex_quinquefasciatus

XP_002408812.1_Ixodes_scapularis

XP_013110682.1_Stomoxys_calcitrans

AAP93817.1_Periplaneta_americana_Oa

XP_011264281.1_Camponotus_floridanus

XP_015116423.1_Diachasma_alloeum

XP_014225936.1_Trichogramma_pretiosum

XP_012223081.1_Linepithema_humile

XP_003736341.2_Drosophila_pseudoobscura_pseudoobscura

XP_008558339.1_Microplitis_demolitor

XP_013772246.1_Limulus_polyphemus

XP_011147506.1_Harpegnathos_saltator

XP_014291339.1_Halyomorpha_halys

XP_001648244.2_Aedes_aegypti

XP_014772693.1_Octopus_bimaculoides

XP_011291813.1_Musca_domestica

XP_011185898.1_Bactrocera_cucurbitae

XP_001994470.1_Drosophila_grimshawi

XP_012136296.1_Megachile_rotundata

XP_009058244.1_Lottia_gigantea

KOX67468.1_Melipona_quadrifasciata

GU074418.1_Balanus_improvisus_Oa

XP_004523572.1_Ceratitis_capitata

KOC61009.1_Habropoda_laboriosa

EGK96547.1_Anopheles_gambiae_Oa

XP_012261366.1_Athalia_rosae

XP_012937854.1_Aplysia_californica

XP_013079946.1_Biomphalaria_glabrata

XP_014091610.1_Bactrocera_oleae

XP_311113.4_Anopheles_gambiae_str._PEST

XP_002096452.2_Drosophila_yakuba

JN641302.1_Chilo_suppressalis_Oa

XP_002072172.2_Drosophila_willistoni

XP_014675454.1_Priapulus_caudatus

XP_014613083.1_Polistes_canadensis

U62771.1_Lymnaea_stagnalis_Oa

XP_011303410.1_Fopius_arisanus

XP_013790352.1_Limulus_polyphemus

XP_014362386.1_Papilio_machaon

XP_014486016.1_Dinoponera_quadriceps

XP_011185894.1_Bactrocera_cucurbitae

NP_001280520.1_Tribolium_castaneum

XP_011555307.1_Plutella_xylostella

AHN85844.1_Nicrophorus_vespilloides

XP_011702891.1_Wasmannia_auropunctata

ERL88449.1_Dendroctonus_ponderosae

XP_014253839.1_Cimex_lectularius

KU530199_Platynereis_dumerilii_Oa

CAD67999.1_Apis_mellifera_Oa

ABI33825.1_Manduca_sexta

AAC17442.1_Drosophila_melanogaster_Oa

XP_011505609.1_Ceratosolen_solmsi_marchali

XM_013530280.1_Lingula_anatina

XP_006823182.1_Saccoglossus_kowalevskii_OA1

BAF33393.1_Bombyx_mori_OaXP_013183250.1_Amyelois_transitella

84

9883

77

Octopamine−α receptors

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 17: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

17

Supplementary figure 7. Maximum likelihood tree of Octopamine-β receptors. Bootstrap support values are shown for selected nodes. This tree is part of a larger tree containing all investigated GPCRs. The identifiers of deorphanized octopamine receptors were tagged with _Ob.

0.5

FC563777.1_Lottia_gigantea

XP_011140150.1_Harpegnathos_saltator

AF117654.1_Aplysia_kurodai_Ob

HF548211.1_Apis_mellifera_Ob

XP_396348.4_Apis_mellifera

XP_014241423.1_Cimex_lectularius

XP_011702778.1_Wasmannia_auropunctata

XP_011557485.1_Plutella_xylostella

XP_002054844.1_Drosophila_virilis

XP_012215458.1_Linepithema_humile

XP_011344277.1_Cerapachys_biroi

XP_003701983.1_Megachile_rotundata

XP_002733926.1_Saccoglossus_kowalevskii_Ob

XP_014467276.1_Dinoponera_quadriceps

XP_009052442.1_Lottia_gigantea

XP_014207204.1_Copidosoma_floridanum

JN620367.1_Chilo_suppressalis_Ob

XP_008548361.1_Microplitis_demolitor

ELT86969.1_Capitella_teleta

NP_001280514.1_Tribolium_castaneum

HF548212.1_Apis_mellifera_Ob

KNC25005.1_Lucilia_cuprina

GU074422.1_Balanus_improvisus_Ob

AEO17899.1_Drosophila_melanogaster

XP_014611330.1_Polistes_canadensis

CCO13922.1_Apis_mellifera_Ob

XP_012281474.1_Orussus_abietinusAB470228.1_Bombyx_mori_Ob

EHJ66744.1_Danaus_plexippus

XP_011876313.1_Vollenhovia_emeryi

XP_014088159.1_Bactrocera_oleae

XP_002074057.1_Drosophila_willistoni

XP_011294329.1_Musca_domestica

XP_011166275.1_Solenopsis_invicta

XP_012269188.1_Athalia_rosae

XP_011504152.1_Ceratosolen_solmsi_marchali

XP_012261826.1_Athalia_rosae

XP_011630965.1_Pogonomyrmex_barbatus

XP_013165427.1_Papilio_xuthus

XP_008207151.1_Nasonia_vitripennis

XP_002422997.1_Pediculus_humanus_corporis

XP_013096128.1_Biomphalaria_glabrata

XP_015180910.1_Polistes_dominula

XP_011349656.1_Cerapachys_biroi

NP_001280505.1_Tribolium_castaneum

XP_001994735.1_Drosophila_grimshawi

XP_013389322.1_Lingula_anatina

AY055377.1_Spisula_solidissima_Ob

AGV79326.1_Chilo_suppressalis

XP_014221613.1_Trichogramma_pretiosum

XP_011263631.1_Camponotus_floridanus

KDR19125.1_Zootermopsis_nevadensis

XP_001357862.3_Drosophila_pseudoobscura_pseudoobscura

XP_012281328.1_Orussus_abietinus

AHN85842.1_Nicrophorus_vespilloides

GU074421.1_Balanus_improvisus_Ob

XP_001947781.1_Acyrthosiphon_pisum

XP_001948521.2_Acyrthosiphon_pisum

XP_003706543.1_Megachile_rotundata

GU074419.1_Balanus_improvisus_Ob

AHN85841.1_Nicrophorus_vespilloides

XP_011053483.1_Acromyrmex_echinatiorXP_011870420.1_Vollenhovia_emeryi

XP_013099911.1_Stomoxys_calcitrans

XP_012166217.1_Bombus_terrestris

XP_014771877.1_Octopus_bimaculoides

XP_004922133.2_Bombyx_mori

XP_012343074.1_Apis_florea

GU074420.1_Balanus_improvisus_Ob

EFX87996.1_Daphnia_pulexXP_014671143.1_Priapulus_caudatus

XP_011448928.1_Crassostrea_gigas

XP_015118835.1_Diachasma_alloeum

XP_013185050.1_Amyelois_transitella

KNC25006.1_Lucilia_cuprinaXP_014254146.1_Cimex_lectularius

XP_001955623.2_Drosophila_ananassae

XP_011312392.1_Fopius_arisanus

Q4LBB9.2_Drosophila_melanogaster_Ob

AF222978.1_Aplysia_californica_Ob

XP_003402376.1_Bombus_terrestris

XP_004523493.1_Ceratitis_capitata

KU886229_Platynereis_dumerilii

XP_002000086.1_Drosophila_mojavensis

87

80

86

71

99

73

74100

Octopamine−β receptors

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 18: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

18

Supplementary figure 8. Dose-response curves of α1-adrenergic receptors from P. dumerilii, P. caudatus, and S. kowalevskii treated with varying concentrations of ligand or inhibitor. Data, representing luminescence units relative to the maximum of the fitted dose-response curves, are shown as mean ± SEM (n = 3). EC50 and IC50 values are listed in Table 1.

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]P. dumerilii α1-adrenergic

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

S. kowalevskii α1-adrenergic

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

P. caudatus α1-adrenergic

log conc (log[M])

activ

atio

n [%

]

Norepinephrine

Dopamine

Epinephrine

Yohimbine

Mianserin

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]Yohimbine

Mianserin

Yohimbine

Mianserin

Octopamine

Norepinephrine

Dopamine

Epinephrine

Norepinephrine

A

B

C

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 19: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

19

Supplementary figure 9. Dose-response curves of α2-adrenergic receptors from P. dumerilii, P. caudatus, and S. kowalevskii treated with varying concentrations of ligand or inhibitor. Data, representing luminescence units relative to the maximum of the fitted dose-response curves, are shown as mean ± SEM (n = 3). EC50 and IC50 values are listed in Table 1.

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-20 -15 -10 -5 00

50

100

150

log conc (log[M])

activ

atio

n [%

]

-15 -10 -5 00

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

Tyramine

Octopamine

Norepinephrine

Epinephrine

Yohimbine

Mianserin

Yohimbine

Mianserin

Yohimbine

Mianserin

Octopamine

Norepinephrine

Epinephrine

Tyramine

Clonidine

Dopamine

Clonidine

Norepinephrine

Epinephrine

Clonidine

Dopamine

P. dumerilii α2-adrenergic

S. kowalevskii α2-adrenergic

P. caudatus α2-adrenergic

A

B

C

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 20: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

20

Supplementary figure 10. Dose-response curves of tyramine receptors from P. dumerilii and S. kowalevskii treated with varying concentrations of ligand or inhibitor. Data, representing luminescence units relative to the maximum of the fitted dose-response curves, are shown as mean ± SEM (n = 3). EC50 and IC50 values are listed in Table 1.

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -2 00

50

100

150

log conc (log[M])

activ

atio

n [%

]

-14 -12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-14 -12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

Tyramine

Octopamine

Dopamine

Yohimbine

Mianserin

Yohimbine

Mianserin

Tyramine

Octopamine

Dopamine

Tyramine

Octopamine

Clonidine

Dopamine

Tyramine

Octopamine

Tyramine

Octopamine

Norepinephrine

Epinephrine

Clonidine

Dopamine

Clonidine

Dopamine

Yohimbine

Mianserin

Yohimbine

Mianserin

Yohimbine

Mianserin

P. dumerilii Tyramine-1

P. dumerilii Tyramine-2

S. kowalevskii Tyramine-1

A

B

C

S. kowalevskii Tyramine-2AD

S. kowalevskii Tyramine-2BE

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 21: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

21

Supplementary figure 11. Dose-response curves of octopamine receptors from P. dumerilii and S. kowalevskii treated with varying concentrations of ligand or inhibitor. Data, representing luminescence units relative to the maximum of the fitted dose-response curves, are shown as mean ± SEM (n = 3). EC50 and IC50 values are listed in Table 1.

-12 -10 -8 -6 -4 -2 00

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

-12 -10 -8 -6 -4 -20

50

100

150

log conc (log[M])

activ

atio

n [%

]

Tyramine

Octopamine

Yohimbine

Mianserin

Yohimbine

Mianserin

Yohimbine

Mianserin

Tyramine

Octopamine

Norepinephrine

Dopamine

Clonidine

Epinephrine

Octopamine

Norepinephrine

P. dumerilii Octopamine α

S. kowalevskii Octopamine α

S. kowalevskii Octopamine β

A

B

C

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint

Page 22: Ancient coexistence of norepinephrine, tyramine, and octopamine … · presence of tyramine signaling in S. kowalewskii is also supported by the phyletic distribution of tyrosine

22

Supplementary figure 12. Maximum likelihood tree of tyrosine decarboxylase and aromatic amino acid decarboxylase enzymes. Bootstrap support values are shown for selected nodes. P. dumerilii, P. caudatus, and S. kowalevskii sequences are highlighted in color. The Caenorhabditis elegans tyrosine decarboxylase was experimentally shown to be required for tyramine biosynthesis (Alkema et al., 2005).

0.2

XP_010219192.1_Tinamus_guttatus

XP_001899866.1_Brugia_malayi

KNC26593.1_Lucilia_cuprina

XP_014605048.1_Polistes_canadensis

XP_012680382.1_Clupea_harengus

AHN85839.1_Nicrophorus_vespilloides

XP_003407186.1_Loxodonta_africana

XP_001870804.1_Culex_quinquefasciatus

AAI30528.1_Homo_sapiens

lcl|Contig8616_Platynereis_dumerilii

XP_004739444.1_Mustela_putorius_furo

XP_008193582.1_Tribolium_castaneum

XP_006875343.1_Chrysochloris_asiatica

XP_012534953.1_Monomorium_pharaonis

KDR12158.1_Zootermopsis_nevadensis

XP_008548824.1_Microplitis_demolitor

XP_308519.3_Anopheles_gambiae_str._PEST

XP_012506091.1_Propithecus_coquereli

XP_012226027.1_Linepithema_humile

XP_003896028.1_Papio_anubisELV13924.1_Tupaia_chinensis

XP_010006646.1_Chaetura_pelagica

XP_011297267.1_Fopius_arisanus

XP_006621116.1_Apis_dorsata

XP_014671545.1_Priapulus_caudatus

XP_014291341.1_Halyomorpha_halys

CEF60746.1_Strongyloides_ratti

NP_001161568.1_Saccoglossus_kowalevskii

BAO52000.1_Gryllus_bimaculatus

XP_014227242.1_Trichogramma_pretiosum

XP_004630583.1_Octodon_degus

NP_001191536.1_Aplysia_californica

NP_495744.1_Caenorhabditis_elegans

XP_009028665.1_Helobdella_robusta

XP_014769443.1_Octopus_bimaculoides

XP_013070812.1_Biomphalaria_glabrata

XP_014774406.1_Octopus_bimaculoides

XP_015245016.1_Cyprinodon_variegatus

XP_012262153.1_Athalia_rosae

BAP16218.1_Gallus_gallus

XP_009048193.1_Lottia_gigantea

ELU11164.1_Capitella_teleta

XP_014649145.1_Ceratotherium_simum_simum

XP_013419956.1_Lingula_anatina

NP_058712.2_Rattus_norvegicus

XP_003762585.1_Sarcophilus_harrisii

XP_002074575.1_Drosophila_willistoni

XP_014666248.1_Priapulus_caudatus

XP_004526583.1_Ceratitis_capitata

XP_005396658.1_Chinchilla_lanigera

XP_010138453.1_Buceros_rhinoceros_silvestris

XP_848285.2_Canis_lupus_familiaris

EKC41301.1_Crassostrea_gigas

XP_003797782.1_Otolemur_garnettii

CAJ38793.1_Platynereis_dumerilii

XP_001950555.2_Acyrthosiphon_pisum

XP_012265736.1_Athalia_rosae

EFX81779.1_Daphnia_pulex

XP_972728.2_Tribolium_castaneum

BAM35936.1_Lymnaea_stagnalis

XP_011196622.1_Bactrocera_cucurbitae

XP_009050823.1_Lottia_gigantea

XP_012147325.1_Megachile_rotundata

XP_012879949.1_Dipodomys_ordii

XP_013401543.1_Lingula_anatina

XP_013789180.1_Limulus_polyphemus

XP_014775466.1_Octopus_bimaculoides

XP_015508789.1_Parus_major

XP_015345826.1_Marmota_marmota_marmota

XP_005108337.1_Aplysia_californica

KRT84890.1_Oryctes_borbonicus

XP_008489540.1_Calypte_anna

XP_014241491.1_Cimex_lectularius

XP_013088909.1_Biomphalaria_glabrata

XP_010339695.1_Saimiri_boliviensis_boliviensis

XP_004839911.1_Heterocephalus_glaber

XP_003704683.1_Megachile_rotundata

XP_001656857.1_Aedes_aegypti

XP_006000049.1_Latimeria_chalumnae

XP_011441559.1_Crassostrea_gigas

XP_014489121.1_Dinoponera_quadriceps

XP_013772406.1_Limulus_polyphemus

XP_005180269.1_Musca_domestica

XP_011449820.1_Crassostrea_gigas

BAQ94593.1_Ambigolimax_valentianus

XP_012265735.1_Athalia_rosae

XP_014667849.1_Priapulus_caudatus

XP_005434516.1_Falco_cherrug

EFO20782.2_Loa_loa

XP_012025784.1_Ovis_aries_musimon

XP_014230308.1_Trichogramma_pretiosum

XP_004010670.1_Ovis_aries

KOX68436.1_Melipona_quadrifasciata

XP_002002172.1_Drosophila_mojavensis

XP_002731843.1_Saccoglossus_kowalevskii

XP_006973100.1_Peromyscus_maniculatus_bairdii

ADP08788.1_Azumapecten_farreri

XP_012942331.1_Aplysia_californica

XP_008847491.1_Nannospalax_galili

XP_010022195.1_Nestor_notabilis

XP_008548921.1_Microplitis_demolitor

XP_013000851.1_Cavia_porcellus

EKC37654.1_Crassostrea_gigas

KHN71251.1_Toxocara_canis

XP_011297268.1_Fopius_arisanus

XP_005949669.1_Haplochromis_burtoni

XP_006635648.1_Lepisosteus_oculatus

ELU05968.1_Capitella_teleta

XP_015054436.1_Drosophila_yakuba

XP_013421253.1_Lingula_anatina

XP_003699867.1_Megachile_rotundata

XP_002735383.1_Saccoglossus_kowalevskii

XP_014291344.1_Halyomorpha_halys

XP_008553493.1_Microplitis_demolitor

XP_009056307.1_Lottia_gigantea

XP_001379620.3_Monodelphis_domestica

XP_014245782.1_Cimex_lectularius

KTG31909.1_Cyprinus_carpio

XP_008202389.1_Nasonia_vitripennis

XP_005107794.1_Aplysia_californica

XP_004415117.1_Odobenus_rosmarus_divergens

XP_004694560.1_Condylura_cristata

XP_004582273.2_Ochotona_princeps

XP_003744997.1_Metaseiulus_occidentalis

XP_013781988.1_Limulus_polyphemus

XP_011443238.1_Crassostrea_gigas

XP_006030466.1_Alligator_sinensis

XP_002426339.1_Pediculus_humanus_corporis

ELU18925.1_Capitella_teleta

XP_012055250.1_Atta_cephalotes

XP_002597913.1_Branchiostoma_floridae

lcl|comp422145_c0_seq4_Platynereis_dumerilii

XP_009680213.1_Struthio_camelus_australis

XP_012940696.1_Aplysia_californica

XP_012272741.1_Orussus_abietinus

XP_008198031.1_Tribolium_castaneum

XP_007942142.1_Orycteropus_afer_afer

XP_012274121.1_Orussus_abietinus

XP_009023368.1_Helobdella_robusta

ACJ13262.1_Drosophila_melanogaster

XP_015122001.1_Diachasma_alloeum

XP_011290217.1_Musca_domestica

XP_011061414.1_Acromyrmex_echinatior

XP_005278593.1_Chrysemys_picta_belliiXP_004708097.1_Echinops_telfairi

XP_002050467.1_Drosophila_virilisXP_001360141.2_Drosophila_pseudoobscura_pseudoobscura

ENN79134.1_Dendroctonus_ponderosae

XP_012942336.1_Aplysia_californica

XP_003966032.1_Takifugu_rubripes

XP_013404119.1_Lingula_anatina

EKC25403.1_Crassostrea_gigas

KFB44891.1_Anopheles_sinensis

XP_008768473.1_Rattus_norvegicus

XP_002426536.1_Pediculus_humanus_corporis

XP_007061422.1_Chelonia_mydas

ELU12210.1_Capitella_teleta

XP_006570903.1_Apis_mellifera

XP_544676.3_Canis_lupus_familiaris

XP_010895280.1_Esox_lucius

XP_002630249.1_Caenorhabditis_briggsae

XP_007895676.1_Callorhinchus_milii

96

100

100

52100

100

95

100

91

arom

atic

am

ino

acid

dec

arbo

xyla

sety

rosi

ne d

ecar

boxy

lase

All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/063743doi: bioRxiv preprint