Analysis of the Alpha-beta Pruning Algorithm

Embed Size (px)

Citation preview

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    1/56

    Carnegie Mellon University

    Research Showcase

    Computer Science Department School of Computer Science

    1-1-1973

    Analysis of the alpha-beta pruning algorithmSamuel H. FullerCarnegie Mellon University

    John G. Gaschnig

    Gillogly

    Follow this and additional works at: hp://repository.cmu.edu/compsci

    is Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase. It has been accepted for

    inclusion in Computer Science Department by an authorized administrator of Research Showcase. For more information, please contactresearch-

    [email protected] .

    Recommended CitationFuller, Samuel H.; Gaschnig, John G.; and Gillogly, "Analysis of the alpha-beta pruning algorithm" (1973).Computer ScienceDepartment. Paper 1701.hp://repository.cmu.edu/compsci/1701

    http://repository.cmu.edu/?utm_source=repository.cmu.edu%2Fcompsci%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPagesmailto:[email protected]:[email protected]://repository.cmu.edu/compsci/1701?utm_source=repository.cmu.edu%2Fcompsci%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPagesmailto:[email protected]:[email protected]://repository.cmu.edu/compsci/1701?utm_source=repository.cmu.edu%2Fcompsci%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://repository.cmu.edu/?utm_source=repository.cmu.edu%2Fcompsci%2F1701&utm_medium=PDF&utm_campaign=PDFCoverPages
  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    2/56

    NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

    The copyright law of the United States (title 17, U.S. Code) governs the making

    of photocopies or other reproductions of copyrighted material. Any copying of this

    document without permission of its author may be prohibited by law.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    3/56

    ANALYSI S OF THE ALPHA-BETA PRUNI NG ALGORI THM

    S. H. Ful l er , J . G. Gaschni g and J. J . Gi l l ogl y

    Department of Computer Sci enceCarnegi e- Mel l on Uni versi ty

    Pi t t sburgh, Pennsyl vani a 15213

    J ul y, 1973

    Thi s work was supported by the Advanced Research Proj ects Agencyof the Of f i ce of the Secretary of Def ense ( F44620- 73- C- 0074) andi s moni tored by t he Ai r Force Of f i ce of Sci ent i f i c Research.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    4/56

    ABSTRACT

    Many game-pl ayi ng programs must search very l arge game trees. Use

    of the al pha- beta pruni ng al gor i thm i nstead of the si mpl e mi ni max search

    reduces by a l arge f actor the number of bot tomposi t i ons whi ch must be

    exami ned i n the search. An anal yti cal expressi on f or the expected number

    of bot tom posi t i ons exami ned i n a game t ree usi ng al pha- beta pruni ng i s

    deri ved, subj ect to the assumpt i ons that the branchi ng f actor N and the

    depth D of the tree are arbi t rary but f i xed, and the bot tomposi t i ons

    are a random permutat i on of N uni que val ues. A si mpl e approxi mat i on t o the

    growth rate of the expected number of bot tomposi t i ons exami ned i s suggested,

    based on a Mont e Car l o si mul ati on for l arge val ues of N and D. The behavi or

    of the model i s compared wi t h t he behavi or of the al pha- beta al gor i thm i n a

    chess pl ayi ng program and t he ef f ects of correl at i on and non- uni que bot tom

    posi t i on val ues i n real game t rees are exami ned.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    5/56

    TABLE OF CONTENTS

    Secti on Page

    1. I nt roducti on 1

    2. The Al pha- Beta Pruni ng Al gor i thm 2

    3. A Probabi l i st i c Model of Game Trees and Some I ni t i al 14

    Observat i ons

    4. The Probabi l i ty of Eval uati ng a Node i n the Game Tree 18

    5. The Expected Number of BottomPosi t i ons Eval uated 23

    6. Appl i cati on of the Game Tree Model to Chess 37

    7. Empi r i cal Observat i ons 42

    8. Concl usi on 47

    Appendi x: Notat i on 49

    References 51

    i i

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    6/56

    1. I NTRODUCTI ON

    Searchi ng t rees of possi bl e al ternat i ves i s a task common to a wi de

    range of programs. The ef f i ci ency wi th whi ch these t rees can be searched

    i s of cri t i cal i mportance to such programs, si nce the t rees are typi cal l y

    very l arge. Thi s paper i s concerned wi t h measur i ng the ef f i ci ency of a

    part i cul ar t ree- searchi ng al gor i t hm, the mi ni max search of a game t ree

    wi t h al pha- beta pruni ng.

    The probabi l i st i c model used i n our study i s presented i n the next

    sect i on and we der i ve an anal yti cal expressi on f or the expected number of

    bot tomposi t i ons eval uated i n the search of a game tree usi ng al pha- beta

    pruni ng. A reasonabl y accurate si mpl e approxi mat i on to the anal yt i cal

    resul t based upon an empi r i cal anal ysi s i s suggested. Si nce our model i n

    corporates several si mpl i f yi ng assumpt i ons, the rel evance of our model wi l l

    be exami ned i n Sect i on 6 where we compare the behavi or of our model wi t h

    the observed behavi or of the al pha- beta procedure as i t i s used i n a non-

    t r i vi al exampl e, a chess pl ayi ng program.

    I n thi s paper, the operat i on of the mi ni max search procedure and the

    al pha- beta pruni ng procedure are i l l ust rated i n the context of game pl ay

    i ng programs. We gi ve t he name Max to the pl ayer whose t urn i t i s to move

    and t he name Mi n to hi s opponent . Max at tempts to maxi mi ze the ul t i mate

    val ue of the game whi l e Mi n at tempts to mi ni mi ze the val ue. A number of

    strategi es exi st to ai d a pl ayer i n determi ni ng hi s next move, but the

    mi ni max procedure has recei ved the most attent i on i n programs whi ch pl ay

    games of perf ect i nf ormat i on. The procedure i s most easi l y i l l ustrated

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    7/56

    - 2-

    wi t h the ai d of the si mpl e game tree of Fi gure 1. 1. The nodes of the t ree

    are i nterpreted as posi t i ons, and the arcs f romeach node are the l egal

    moves f rom that posi t i on. The square nodes i ndi cate i t i s Max' s turn to

    move whi l e the ci rcl es i ndi cate i t i s Mi n' s turn. The stati c val ues

    associ ated wi t h each of the ni ne bot tomposi t i ons are gi ven i ndependent l y

    of the appl i cat i on of any search procedure. I ncreasi ng val ues are i nterpreted

    as a measure of the "goodness11 of a board posi t i on, i . e. , the amount of ad

    vantage to pl ayer Max. I n the mi ni max procedure t he backed- up val ue of a

    Max posi t i on i s the maxi mum of the val ues of i ts i mmedi ate successors and

    si mi l ar l y, the backed- up val ue of a Mi n posi t i on i s the mi ni mumof the

    val ues of i t s i mmedi ate successors, i . e. , at each node t he pl ayer to move

    wi l l choose t he move whi ch i s most f avorabl e t o hi msel f . The mi ni max pro

    cedure recursi vel y appl i es these two rul es unt i l t he stat i c val ues at the

    l eaf nodes have been used t o generate a backed- up val ue f or the root node.

    For exampl e, i n Fi gure 1.1 the backed- up val ues of p (1 ) , p( 2) , and p( 3)

    are 3, -2 and - 10, r especti vel y and t he backed- up val ue of p, the root node,

    i s 3. For a more compl ete di scussi on of the mi ni max procedure see Shannon

    [1950] or Ni l sson [1970] .

    We wi l l f requent l y use t he game of chess i n thi s paper to i l l ustrate

    some of the practi cal i mpl i cat i ons and l i mi tat i ons of our anal ysi s. The

    cl assi c exampl e of the l i mi tat i on of the mi ni max procedure i s i ts appl i ca

    t i on to chess. Consi der the game tree for chess where the posi t i on p i s

    def i ned by t he l ocat i on and i dent i ty of each pi ece on the board, the i dent i ty

    of the pl ayer whose t urn i t i s to move, and hi stor i cal i nf ormat i on rel at i ng

    to cast l i ng, en passant capt ures, and draws by repet i t i on. Suppose we ex

    tend the chess game tree unt i l every l eaf node i s a wi n, l oss, or draw.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    8/56

    - 3-

    4

    Fi gure 1. 1. A game tree wi t h branchi ng f actor 3and depth 2.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    9/56

    - 4-

    Then the mi ni max procedure coul d be appl i ed to thi s t ree to f i nd the

    opt i mal pl ayi ng st rategy. However , the exponent i al expl osi on of the

    "l ook-ahead11 t ree makes t hi s i mpossi bl e i n pract i ce. ( I t i s est i mated

    40

    that there are about 10 possi bl e checkers games [ Samuel , 1959] and about

    10^ possi bl e chess games [Shannon, 1950] , but l ess than 10^ mi croseconds

    per century. ) Theref ore, the l ook- ahead process i s typi cal l y cont i nued

    down to some non- termi nal (and possi bl y f i xed) depth at whi ch the posi t i on

    i s eval uated wi t h a l ess accurate eval uat i on functi on. I f the branchi ng

    f actor , N, and the dept h, D, are both f i xed, then N bot tom posi t i ons are

    generated i n the mi ni max search. Even usi ng i ncompl ete ( non- termi nal )

    trees, the l ook-ahead t rees f or most game pl ayi ng programs are st i l l very

    l arge. I n chess, f or exampl e, a typi cal val ue f or the number of l egal

    moves f roma mi ddl e-game posi t i on i s 35. I f = , then the

    number of bot tom posi t i ons, ND, whi ch must be eval uated usi ng si mpl y mi ni

    max search i s 1, 500, 625. For , N = 42, 521, 875. Chess

    pl ayi ng programs are expected t o sat i sf y the t i me const rai nts of tournament

    pl ay: they are al l owed t wo hours of computati on t i me to make 40 moves. For

    a t ree of si ze =, thi s woul d mean that on the average about 220

    mi croseconds woul d be avai l abl e f or eval uat i on of each bot tomposi t i on i f

    the mi ni max al gor i thmwere used, i ncl udi ng the tree- searchi ng overhead i n

    vol ved i n reachi ng that posi t i on. The need to ef f ecti vel y reduce the si ze

    of the tree to be searched i s apparent .

    I n the remai nder of thi s paper we wi l l rest r i ct our at tent i on to Max-

    trees, i . e. , game trees that maxi mi ze at the top l evel . We can do thi s

    wi t hout any l oss i n general i ty because of the obvi ous mappi ngs that exi st to

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    10/56

    - 5-

    t ransformMi n- t rees toMax- t rees. For exampl e, consi der thei somorphi sm:

    cp(x) - x. Thenby t hedef i ni ti on of the mi n and maxoperatorswe see:

    max( x1, x2, . . . , xn) = - mi n( - x- , - x2, . . . , - x^= cp(mi n(cptx1), cp(x2) , . . . , co(xn>)

    and

    mi n( x1, x2, . . . , xn) - - max( - x- , - x 2, . . . , -x r)

    = cp(max(cptx1), co(x2) , . . . , co(xn) )

    Si nce these i dent i t i es can be appl i ed r ecursi vel y, anarbi t rary Mi n- t ree

    canbeanal yzed byanal yzi ng thecorrespondi ng Max- t ree created bycompl e

    ment i ngal l theval ues i n theMi n- t r ee, repl aci ng al l mi n' sbymax' s, and

    repl aci ng al l max' sbymi n' s. Theonl y di f f erence betweenaMi n- t reeand

    i ts associ ated Max- t ree i sthat al l backed- up (andstat i c) val ues i n the

    Max-t ree wi l l be thecompl ement of thecorrespondi ng val ues i n the Mi n- t ree

    2. THEALPHA-BETA PRUNI NG ALGORI THM

    The al pha- beta al gor i thm i sequi val ent to themi ni max al gor i thmi n

    that they both f i nd thesame best move f romposi t i onp andbot h wi l l assi gn

    the same val ueofexpected advantage t o i t . Al pha- beta i s faster thanmi ni

    max because i t does not expl ore some branchesof the tree that wi l l not

    af f ect thebacked-up val ue. Theal gor i thm can be i l l ustrated wi t h thetree

    of depth three i nFi gure 2. 1. Assumi ng that thesearchi ng proceeds i n a

    depth- f i rst f ashi on f rom l ef t tor i ght and that theroot node i s a Max

    node, thesuccessors of Mi nnode p( l ) are f i rst exami ned and themaxi mum

    val ue 3 i sbacked up top( 1, 1) . Theval ue3 nowbecomes anupper l i mi t

    (beta val ue) f or thebacked- up val ue ofnode p( l ) . At thi s poi nt thef i nal

    val ue p( 1) i sunknown, but si nce p( 1) i s a Mi nnodewe doknow that i t s

    val ue must be at most 3.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    11/56

    pO);v( 1) - 3

    3 2 5 -8 1 -1

    | +1: posi t i on not eval uated because ofacutof f s,

    0 : posi t i on not eval uated because of |3 cutof f s.

    Fi gure 2. 1. Exampl e of al pha and beta cut of f s.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    12/56

    - 7-

    Next the procedure begi ns t o exami ne the successors of p( 1, 2) . When

    p( l , 2, 2) i s eval uated t he l ower l i mi t (al pha val ue) f or the backed- up

    val ue of the Max node p( l , 2) becomes 5. Si nce the al pha val ue of p(1, 2)

    i s greater than the beta val ue of p( 1) ( =3) , p( 1, 2) cannot be t he l owest

    val ued successor of p( l ) , and t hus there i s no need to eval uate t he re

    mai ni ng successors of p( 1, 2) 0 That i s, Mi n wi l l not sel ect p(1, 2) because

    Max can choose a branch l eadi ng to a hi gher val ue t han Mi n knows can be

    achi eved wi t h p( l , l ) . Hence we have a beta cutof f at p( 1, 2, 2) . Addi t i onal

    beta cutof f s occur at p( l , 3, l ) and p( 3, 2, 2) .

    Af t er the bet a prunes at p( l , 2, 2) and p( l , 3, l ) occur , the val ue 3 i s

    backed- up to p( l ) and becomes the l ower l i mi t (al pha val ue) f or the backed-

    up val ue of node p. The procedure now begi ns to i nvest i gate the successors

    of p(2). On eval uat i on of p( 2, l ) the beta val ue of p( 2) becomes 1. Si nce

    thi s i s l ess than the al pha val ue (-3) of p, an al pha prune occurs at p( 2, 1)

    Because of al pha cutof f s, nodes p( 2, 2) , p( 2, 3) , and p( 3, 4) , and thei r suc

    cessors, are not eval uated. Note that onl y 15 bot tomposi t i ons are eval uate

    by the al pha-beta procedure, whereas the mi ni max procedure woul d exami ne al l

    28.

    I n thi s exampl e t he al pha val ue used to obtai n the al pha cutof f s was

    associ ated wi t h t he root node and t he cutof f s occurred near the bot tom l evel

    of the tree. Not e that i f the tree i n the exampl e were one of greater

    depth, the cutof f s at p( 2, l ) and p( 3, 3) woul d prune the potent i al l y vast

    subt rees r ooted at p( 2, 2) , p( 2f3) , and p( 3, 4) . Fur t hermore, an al pha or

    beta val ue may generate cutof f s at any node an even number of l evel s bel ow

    i t . These are cal l ed deep cutof f s and a deep al pha cutof f i s i l l ustrated i n

    Fi gure 2. 2.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    13/56

    - 8-

    Backed- up val ues: 3

    Stat i cval ues:

    x x

    x| posi t i on not eval uated because of deepa cutof f

    x posi t i on not eval uated because of shal l owa cutof f

    Fi gure 2. 2. Exampl e of deep al pha cutof f s.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    14/56

    - 9-

    Beta cutof f s are anal ogous to al pha cut of f s, wi th t he rol es ofmi ni

    mi zi ng and maxi mi zi ng reversed. The beta val ue speci f i es an upper l i mi t

    f or the backed- up val ue of a Mi n node and i s used to generate cutof f s

    among the successors of Max nodes at any l evel deeper i n the tree. Assum

    i ng t hat the root node ( D O) i s a Max node, al pha cutof f s occur at even

    l evel s and bet a cutof f s occur at odd l evel s.

    I n order to formal l y def i ne the al pha- beta pruni ng al gor i thmdescri bed

    above, we i nt roduce a few notat i onal conveni ences. Consi der the part i al

    game t ree shown i n Fi gure 2. 3. We i dent i f y a node at depth d ^ D i n the

    tree as p(T^), where i , someti mes denoted ( i ^ , i ^ ) , i s a vector of

    l ength d whose components i.j , i 2, . . . j i i dent i f y the branch sel ected from

    the nodes at successi ve depths i n the t ree al ong t he path f rom the root

    node to p(T^). v(i^) i s the backed- up (f or an i ntermedi ate node) or stat i c

    (f or a l eaf node) val ue associ ated wi t h node p( i ) .

    To si mpl i f y subsequent subscri pts and summat i on ranges, we i nt roduce

    the notat i on

    , IK i fK i s evenLKL = 2L|J =. JK i fK i s oddLKJ = 2L SF I] + 1 =/ (2. 2) ] k-1 i f k i s even

    Consi der the path f rom the root node to p( i ) . At l evel j , f or j and d eve

    and 0 j < d, a maxi mi zi ng operati on i s i n progress and we have a l ower

    bounda^(i^) on v( i ) , denoted the j - l evel al pha val ue, where

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    15/56

    - 10-

    depth

    5 3 i 5 = (2, 3, 1, 4, 3)

    Of ( l 5) = -1

    0( i 5) =10

    Fi gure 2. 3. A game t ree i l l ustrat i ng our notat i on f or the al pha- beta al gor i thm.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    16/56

    - 11-

    a j ( i d ) - p m a x { v ( i 1 v( i 1 , . . . , 2) , . . . ,

    v( i 1, . . . , i j , i j +1- 1 ) } f or > 1 (2. 3)

    for i J + 1 = 1

    Si mi l ar l y, at l evel j ,f or j and d odd and 1 j < d, a mi ni mi zi ng operat i o

    i s i n progress and we have an upper bound b ( i ) on v( i ) , denoted the j -

    l evel beta val ue where

    b. . ( i d) ^ m i n j V C ^ , . . . , ^ , ! ) , v(i j , , i ^ , 2) , . . . , v( i1, . , i ^ , i ^+1-

    f or i ^ > 1 (2. 4)

    for i J + 1 = 1

    Fi nal l y, def i ne the greatest al pha val ue, or si mpl y al pha val ue as

    ( i d) = m a x { a 0 ( i d ) , a 2 ( i d ) a

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    17/56

    - 12-

    v( l j :> p( i j and d odda a

    a beta cutof f occurs. A cutof f at node p0- d) means that the remai nder of

    the subt ree rooted at p( i , . . . >i d- 1) > i . e. , p( i d>! s parent node, i s not

    exami ned i n the mi ni max search.

    The above di scussi on of j - l evel al pha and bet a val ues proves the fol l ow

    i ng f undamental l emma.

    >

    Al pha-Beta Lemma. Let v ( i g) be the backed- up val ue of a game tree usi ng

    the al pha- beta pruni ng al gor i thmand l et v ^^g) be the backed- up val ue of

    the same game tree usi ng the mi n-max al gor i thm. Then

    I t shoul d be noted that there i s at l east one cl ass of r i sk- f ree pruni ng

    al gor i thms that i s not subsumed by t he al pha- beta al gor i thm. For exampl e,

    consi der the case where a top l evel move i s f ound to l ead to a wi n. Usi ng

    the al pha-beta al gor i thm the next branch woul d have to be expl ored to some

    extent bef ore bei ng pruned; but i t i s cl ear that al l other branches at the

    top l evel coul d be pruned i mmedi atel y. Thi s coul d, of course, be appl i ed

    at any poi nt i n the t ree where a wi n f or the pl ayer to move i s f ound.

    The use of al pha- beta pruni ng i n the mi ni max search reduces by a l arge

    f actor the number of bot tom posi t i ons whi ch need to be exami ned, typi cal l y

    Some care must be taken i n tne i mpl ementat i on of thi s al gor i thm. I n theSecond Annual Computer Chess Champi onshi p (Chi cago, 1971) a chess programusi ng t hi s al gor i thm di scovered a mate i n two moves and t ermi nated i ts search.Af ter the opponent moved, the programbegan t he search agai n, di scover i ngf i rst a mate i n three. I t i mmedi atel y pruned and made the f i rst move of thi ssequence, mi ssi ng t he possi bl e mate on the move. I t cont i nued f i ndi ng matesi n more than one move unt i l due t o another bug i t f i nal l y l ost the game.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    18/56

    - 13-

    by several orders of magni tude i n many game pl ayi ng programs. Previ ous

    resul t s [Sl agl e and Di xon, 1969] have establ i shed the l ower l i mi t f or the

    number of bot tom posi t i ons exami ned. The l ower l i mi t wi l l be achi eved i f

    the stat i c val ues of the bot tom posi t i ons are i n "per f ect or der 11, i . e. ,

    ordered such that every possi bl e al pha and beta cutof f occurs. I t can be

    shown that i f per f ect order i s achi eved at every l evel , so that every pos

    si bl e al pha or bet a cutof f occur s, then the number of posi t i ons at thebot

    tomof the t ree of depth D and constant branchi ng f actor N i s:

    D

    NBP = 2N2 - 1 f or D even,po

    D+1 D-1

    NBP = N 2 + N 2 - 1 f or D odd.po

    4

    Thus f or = , NBP - 2449, whi ch di f f ers f rom35 - 1, 500, 625

    by a f actor of 612.

    Thi s very l arge rat i o of extremes i n per f ormance has i mportant i mpl i ca

    t i ons f or searchi ng l arge game trees. The perf ormance of the al pha- beta

    procedure may be f urther i mproved by the i ncorporat i on of heur i st i cs whi ch

    reorder the nodes of the tree i nto a "more perf ect 11 arrangement . Var i ous

    techni ques of f i xed and dynami c order i ng of nodes at i ntermedi ate l evel s

    of the t ree are avai l abl e [e. g. , Sl agl e, 1963] . The rat i onal e f or t hese

    types of heur i st i cs i s based on a correl at i on between the stat i c val ues of

    nodes at i ntermedi ate l evel s of the tree and the f i nal backed- up val ues ob

    tai ned f or these nodes. Thi s means that the nodes may be reordered before

    eval uat i on of thei r subt rees to more cl osel y approxi mate per f ect order i ng an

    thus obtai n a hi gher rate of pruni ng. The eval uat i on of the expected gai n

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    19/56

    - 14-

    over the si mpl e al pha- beta al gor i thm obtai ned by t he use of such heur i st i cs i s

    compl i cated by t he f act t hat , whi l e the perf ect order i ng r esul ts provi de a great

    est l ower bound f or the number of bot t om posi t i ons eval uated, the upper bound

    of N i s unreal i st i c because i t i s great er , of ten by several orders of magni tude

    than the number of bot tom posi t i ons eval uated wi t h the unmodi f i ed al pha- beta

    al gor i thm.

    Knowl edge of the expected val ue of the number of bottomposi t i ons

    eval uated i n a l ook-ahead t ree usi ng al pha- beta pruni ng shoul d be usef ul

    because the expected val ue provi des a much t i ghter upper bound f or the

    average perf ormance of the t ree- searchi ng procedures than does the upper

    bound gi ven by t he mi ni max al gor i thm. Thus, when eval uat i ng the ef f ect i ve

    ness of heur i st i cs to be used i n conj uncti on wi t h t he al pha- beta al gor i thm

    one mi ght determi ne not onl y how cl osel y the resul t i ng per f ormance approach

    es the l i mi t under perf ect order i ng, but al so how much bet t er (or worse!)

    the resul t i ng per f ormance i s compared wi t h t hat of the unmodi f i ed al pha- beta

    al gor i thm.

    3. A PROBABI LI STI C MODEL OF GAME TREES AND SOME I NI TI AL OBSERVATI ONS

    I n order to draw some quant i tat i ve concl usi ons about the per f ormance of

    the al pha- beta procedure i t i s necessary t o preci sel y model game t rees.

    However, our purpose here i s to keep the model suf f i ci ent l y si mpl e so that

    anal yti cal techni ques can be appl i ed t o our study of the perf ormance of the

    al pha- beta procedure.

    Our model i ncl udes three si mpl i f yi ng assumpt i ons.

    1. Let us assume our game trees are compl ete t rees of depth D wi t h

    constant branchi ng f actor N, e. g. , Fi gure 2. 3 where D = 5 and N = 4.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    20/56

    - 15-

    Note that there are al ways bot tom posi t i ons, and i n general

    dN nodes at depth d i n the game t ree.

    2. To study the probabi l i st i c propert i es of the game trees we must

    provi de a model of the stat i c val ues assi gned to the bot tomposi

    t i ons. A si mpl e yet appeal i ng assumpt i on to make i s. that the

    val ues, v( i p) , of al l N bot tom posi t i ons are i ndependent , i den

    t i cal l y di str i buted ( i i d) r andomvari abl es wi t h arbi t rary di s

    t r i but i on f uncti on VD( x ) .

    3. The onl y requi rement on VD( x ) , i n addi t i on to the standard prop

    er t i es of a cumul at i ve di st r i but i on functi on [cf . Parzen, 1960] ,

    i s t hat i t be cont i nuous. I n other wor ds, we requi re that the

    probabi l i ty t hat the val ue of a l eaf node i s preci sel y x i s van-

    i shi ngl y smal l , to el i mi nate t he possi bi l i t y of two or more nodes

    havi ng the same val ue.

    The second and thi rd assumpt i ons can be equi val ent l y restated by model

    i ng the l eaf nodes as a randompermutat i on of the ordered l i st of val ues;

    i . e. , each of the NI assi gnment of val ues to the nodes i s equal l y l i kel y.

    Not e that the actual val ues of the N bot tom posi t i ons i s not of i nterest

    when st udyi ng the behavLDr of mi ni max searchi ng, and the al pha-beta procedur

    i n par t i cul ar , but onl y thei r rel at i ve order i ng. Our previ ous di scussi on o

    the t ransf ormat i on of Mi n- t rees to Max-t rees i mpl i es that the probabi l i ty

    of exami ni ng a part i cul ar bot tom posi t i on i n a Mi n- t ree wi t h cont i nuous

    di st r i but i on Vp( x) i s equal to the probabi l i t y of exami ni ng the cor re

    spondi ng bot tomposi t i on i n the associ ated Max- t ree wi t h di st r i but i on

    Vp(-x). Thus, si nce the behavi or of the search i s i ndependent of the

    speci f i c di str i but i on (as l ong as i t i s cont i nuous) , each of the subsequent

    resul ts about Max-t rees wi l l be t rue of Mi n- t rees aswel l .

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    21/56

    - 16-

    We can now make t he obvi ous but i mportant observat i on that the val ue

    of a node at any l evel i n the game t ree i s i ndependent of the val ues of the

    other nodes at the same l evel * I n addi t i on, si nce the l eaf nodes are i i d

    random var i abl es, i t f ol l ows f rom the structure of our game t rees, i . e. ,

    uni f ormdepth at al l bot tom posi t i ons and constant branci ng f actors, that

    al l the nodes at any l evel i n the t ree are i i d random var i abl es. I t i s

    i nterest i ng to consi der the actual di st r i but i on of the val ues of the nodes

    at an arbi tr ary l evel . I t f ol l ows f rom f i rst pri nci pl es i n order stati sti cs

    that the di st r i but i on f uncti on of the maxi mum of n i i d random var i abl es wi t h

    di str i but i on funct i on F( x) i s [F (x)] n and the di st r i but i on f uncti on of the

    mi ni mumof n i i d random vari abl es wi th di st r i but i on f uncti on F( x) i s

    1-[1-F(x)] n. Hence:

    VQ( x) = [ V x) ] * ,

    V x) = 1 - [1 -V2(x ) ]

    N

    ,

    V, ( x) = [ V2( x ) ]N;

    and i n general :

    Vf c(x) = V +1( x ) , f or k=0, 2, . . . , LD- 1J e ( 3. 1)

    Vf c(x) ^+ 1 ( x ) , f or k=1, 3, . . . , LD- 1j Q (3. 2)

    where F( x) denotes the survi vor f unct i on, i . e. , F(x) = 1- F( x).

    To i l l ust rate the rel at i on of the di st r i but i on of the nodes f romone

    l evel to the next, the di st r i but i on f uncti on at al l the l evel s i n the game

    tree of Fi gure 2. 3 are shown i n Fi gure 3. 1. The val ue of the l eaf nodes

    are assumed t o be uni f orml y di st r i buted over the uni t i nterval i n Fi gure 3. 1,

    but thi s i s onl y f or i l l ustr at i ve purposes; as stated bef ore, V D (X ) c a n he

    any cont i nuous di st r i but i on f uncti on.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    22/56

    - 17-

    Fi gure 3. Cumul at i ve di st r i but i on f uncti on of val ues of nodes i ngame t ree wi t h .

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    23/56

    - 18-

    4. THE PROBABI LI TY OF EVALUATI NG A NODE I N THE GAME TREE

    We are i nterested i n the stat i st i cs concerni ng t he number of bot tom

    posi t i ons eval uated i n an al pha- beta search of a game tree. We wi l l start

    by f i ndi ng the probabi l i t y t hat an arbi t rary node wi t h i ndi ces i ^ i s ex

    ami ned by t he al pha- beta procedure; cal l thi s probabi l i ty of exami nat i on

    Pr{i d}.

    To f i nd Pr[ i } we f i rst consi der the path f rom the root node to p( i ) .At l evel j , f or j a non- negat i ve, even i nteger l ess t han d, a maxi mi zi ng

    operat i on i s i n progress, we have a l ower bound on v ( i ) , i . e. , a i ) ,

    and the di st r i but i on functi on for the j - l evel al pha val ue i s

    A. (x) = [V ( x ) ] l j + 1 \ (4. 1)3 9 j +1 J

    As i . approaches N, the f ormof A. . (x) approaches V . ( x ) .

    Si mi l ar l y, at l evel j , f or j a posi t i ve, odd i nteger l ess t han D, a

    -*

    mi ni mi zi ng operat i on i s i n progress, we have an upper bound on v ( i ) , i . e. ,

    b. ( i , ) and the survi vor f unct i on f or the j - l evel beta val ue i sJ d

    B. . " (x) - [ V- . - C x ) ] 1 ^ 1 \ (4. 2)

    Note that the j - l evel al pha and beta val ues associ ated wi t h i ^ are

    i ndependent but not i dent i cal l y di st r i buted random vari abl es and thedi s

    t r i but i on funct i on of cKi ) i s

    Arf (x) = An (x) A (x). . . A (x) (4. 3)0 , 1 , 2, i 3 l d- 1^,1o

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    24/56

    - 19-

    and si mi l arl y the survi vor f uncti on ofP dd )i s

    B-* (x) - B- . (x) B (x). . . B. . . (x) (4. 4)1* 12 3 j l 4 L d" 1 J o 1LdJ e

    We can now prove several f undamental propert i es of the al pha- beta

    pruni ng al gor i thm.

    Theorem 1. Node p( i d) i s exami ned, i . e. , not pruned, by the cHS pruni ng

    al gori thm i f and onl y i f

    of(id) < P( i d) . (4. 5)

    Proof . Fi r st , suppose

    I n other wor ds, i f p( i d) i s not exami ned, an al pha or beta cutof f has

    occurred; the candi dates f or p(i *) are shown i n Fi gure 2. 4. I f we con

    si der the al pha cutof f case, Eqn. (4. 6) , we see

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    25/56

    Fi gure2. 4

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    26/56

    - 21-

    si nce bj , (Tj) i s the mi ni mum of the i -1 successors of P(*-j ] ) Cl ear l y

    PTFJ.,) , (1 (4. 9)

    by def i ni t i on of the bet a val ue, Eqn. 2. 6. FromEquat i ons ( 4 . 6 ) , ( 4 . 8 ) ,

    and ( 4. 9) i t f ol l ows that

    ati^j* PTFJ-I> ( 4 - 1 0 )

    and f romEqns. (2. 5) and (2. 6)

    of(i d) *P( i d) (4. 11)

    whi ch cont radi cts Eqn. (4. 5) . By a preci sel y anal ogous argument our second

    case, Eqn. ( 4. 7) , al so l eads to Eqn. ( 4. 11) , and hence a cont radi ct i on.

    Now i t remai ns to be shown that i f p(i ) i s exami ned, then Eqn. (4. 5)

    must f ol l ow. Agai n proof by cont radi cti on provi des the si mpl est argument ,

    i . e. , suppose

    ( i d) * B(i d) . ( 4. 12

    I t f ol l ows f rom thi s i nequal i ty t hat there must exi st aj and ak such

    that

    bj (V * a k (V - ( 4 - 1 3 )

    Supposek>j;then t here exi st s a nodep(T +,*) such that

    v ( T k + I * >= V V - ( 4 - 1 4 )

    However, the above t wo equati ons guarantee a beta cutof f no l ater than

    p( i k+1*) and t hi s cont radi cts the assumpt i on of no cut of f .

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    27/56

    - 22-

    I f k < j , by a preci sel y anal ogous argument we get an al pha cutof f ,

    agai n a cont radi cti on,

    Now that Theorem 1 has been f ormal l y presented i t may be hel pf ul to

    provi de an i ntui t i ve descr i pt i on. Theorem 1 says that a node i n a game

    tree i s exami ned i f and onl y i f the associ ated upper bound (beta val ue) i s

    greater than the associ ated l ower bound (al pha val ue) . Not e that i n thi s

    paper we have def i ned al pha and beta val ues f or al l nodes i n the t ree, not

    j ust those nodes exami ned by the al pha- beta procedure.

    The next theorem i s the cent ral resul t of thi s sect i on: an expressi on

    f or the probabi l i ty of eval uat i ng an arbi t rary node i n the game t ree.

    Theorem2. Let A-+ (x) and (x) be the di st r i but i on f unct i ons of the al pha

    J J -and bet a val ues, respecti vel y f or a node p( l ) at depth d i n a game t ree.

    Then i f i . > 1 f or some j {2, 4, ,LdJ }:

    (a) Pr{i d} = f Bj (z) dAj (z)-c o d d

    and i f i j > 1 f or some j 6 { 1, 3 , . . . , L dJ q } :

    (b) Pr{i , } = r A? (z) dBj (z)d J -c o^ d ~*d

    and i f i . = 1 for al l j :J

    (c) Pr{i d} =1 .

    Proof . Fi r st , par t ( a) . FromTheorem 1 we know that the statement "posi

    t i onp(i , ) i s not pruned11 i s equi val ent to the statement ) < B( i ) "

    and so:

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    28/56

    - 23-

    Pr{i d} = Pr{(y(i d)

    (Note: the condi t i on cKi ) = z i s def i ned onl y i f some el ement of i ^ wi th

    an even i ndex i s greater than 1. )

    -o o d d

    -o o d d

    The proof of par t (b) i s anal ogous to the above proof f or part ( a) . Part

    (c) i s obvi ous, si nce the f i rst l eaf node must al ways be eval uated.

    5. THE EXPECTED NUMBER OF BOTTOM POSI TI ONS

    I n order to der i ve the expected number of bot tom posi t i ons E[NBP^ ]

    eval uated i n a tree of depth D and branchi ng f actor N whi ch conf orms to

    our model , we t ake advantage of the l i near i ty of the expected val ue operat or ,

    i . e. , E[ Exi ] = SE[ xi ] . Hence E[ NBP D ] i s equal to the sumover the set of

    al l bot tom posi t i ons of the probabi l i ty that the bot tom posi t i on i s eval uated,

    i . e. ,

    E[NBP ] - S E . . . S PRFL} (5. 1)w , u l t l i 2 N

    and we may compute Pr i j usi ng Theorem2.

    To i l l ust rate the method we wi l l f i rst eval uate E[NBP 9 ] . Fi rst con-N, Z

    si der the case for i 0 > 1.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    29/56

    - 24-

    Pr {i ) = - j' " A-+ (z) df j ( z) (f romThm. 2b)1 _oo

    2

    - - f V 1 (z) dV2 (z) (fromEqns. 4. 1- 4. 4).CO

    i . -l i 9- 1- - J* [ l - V z) ] 1 dV2

    z ( z) (f romEqn. 3. 2)-00

    We may now perf orm the subst i tut i on u V2( z ) , el i mi nat i ng the speci f i cdi s

    t r i but i on of bot tomposi t i ons.

    Pr i i - j =- I 0- u ) d uz ' 1

    i . - l 1

    = ( I - x) d xJ o

    i - 1 i -1 - g 1

    J o

    i -1 i 2 - l

    4 - 3 ( 1 , , - f - ) ( i 2 > D

    where 0( x, y) =F ^ ^ ^ , the beta f unct i on.

    Si mi l ar l y we can f i nd t he val ue of Pr {i 2) f or i 2 = 1 and i > 1 f rom

    Theorem2a.

    Pr {i2

    ) = f & (z) d (z)-o o 2 2

    f V 1 ( z) d V, (z)2

    .00

    For i 0 85 1 we have

    Pr{i 2} =f d V*1 ' ( z )

    L 2 i . -l

    V1 1 00.00

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    30/56

    - 25-

    by the f undamental theorem of cal cul us. Theref ore

    Pr{i 2} =1 ( i 2> 1, i 2 = 1)

    By Theorem2c, Pr{( l , 1) } = 1.

    Thus

    N N N i -1 iE[NBP 2 ] = 1 + 2 1 + S L - | ^

    N , /

    1 2 i2=2

    N 1 N

    . N- l NN + N 1 . S5>

    1=1 j =1

    , N-l N i - iN +J E i E F u3" ' ( l - u ) M du

    i =l j =l 0

    1 N- l . -1 / NN + 2 i | ' ' ( l - u) N ( SuJ - ' ] duN I=l 0 VJ= 1

    1 N _ 1 l n " 2 n

    N + i 2 i f ( l - u) N (1-u ) duN I=l JO

    E[ NBPN) 2] = N + V j i j - [ *

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    31/56

    - 26-

    Thi s f orm i s qui te adequate f or comput i ng the expected val ue over the range

    of branchi ng f actors useful i n game pl ayi ng programs. For smal l val ues of

    N, E[NBP 9 ] was computed exactl y usi ng MACSYMA, a symbol i c mani pul at i onN, Z

    programdevel oped at MI T [ Bogen, et al . 1972] . These val ues are presented

    i n Tabl e 5. 1.

    Next we wi l l eval uate Pr f i } f or arbi t rary dept h. A f ew prel i mi nary

    def i ni t i ons and l emmas wi l l suppl y the necessary f oundat i ons.

    Fi rst we def i ne the operator T( f , k) f or a f uncti on f and non- negat i ve

    i nteger k as f ol l ows:

    r i f k = 0T(f , k)

    l - [ T( f , k-1) ] N i f k > 0

    For exampl e, T( V3( x ) , 2) = 1-[T(V3(x ) , 1)]

    = l - [ 1- [ T( V3(x) , 0) ]N] N

    N N

    Lemma 5. 1a

    Lemma 5. l b

    Lemma 5. l c

    Lemma 5. I d

    Vk

    Vk ( x )

    T( VD( x ) , k) , D even, k

    T( VD( x ) , k ) , D odd, k

    T( VD( x ) , k) , D even, k

    T( Vp( x ) , k ) , D odd, k

    1, 3, 5, . . . , D-1

    0, 2, 4 D-l

    0, 2, 4, . . . , D

    1, 3, 5, . . ,D

    Proof : We wi l l prove 5. 1a by i nduct i on on k. The other proof s are the same.

    For k 1, D even, we have f rom Eqn. 3. 2

    Vi ( x )

    Vi ( x )

    V D- 1 ( X )

    vZ(x)

    1- Vj (x)

    T( VD( x ) , 1)

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    32/56

    - 27-

    1 1

    Tabl e 5.1. E[ NBPJN, 2

    E[NBP . J > N B P 2 C 2 )

    3

    5 2 1

    N B P 2 C 3 )

    7 0

    5 4 7 0 3 3

    N B P 2 C 4 )

    4 5 0 4 5

    1 7 2 0 2 9 1 1 6 9

    N B P 2 < 5 )

    9 7 3 4 9 6 1 6

    1 4 7 8 6 0 0 1 0 1 7 7 7 1

    N B P 2 < 6 >

    6 1 7 1 0 9 2 0 0 4 0 0

    1 4 8 3 6 3 4 2 7 3 4 3 1 5 2 7 6 1 7

    N B P 2 C 7 ) -

    4 7 9 1 3 4 8 9 5 5 2 3 4 9 9 8 0

    1 2 5 2 6 1 5 1 4 5 6 3 8 0 4 3 8 0 9 7 0 6 7 2 6 9

    N B P 2 C 8 )

    3 2 4 0 8 6 3 1 6 9 1 4 1 5 0 8 4 0 8 7 4 8 2 5

    6 0 6 3 0 1 9 4 2 4 9 2 9 1 7 2 5 1 2 6 4 9 1 1 0 1 9 2 4 9 7 7

    N B P 2 ( 9 > . . . .

    1 2 9 0 2 8 3 6 1 5 9 7 6 2 0 9 6 8 7 3 7 8 0 7 9 0 1 9 2 0 0

    3 9 0 1 5 2 2 6 2 5 9 2 7 7 9 8 4 1 9 6 8 1 7 8 0 9 9 7 1 6 0 6 2 2 1 7 5 1 8 0 9

    N B P 2 C 1 0 ) *

    6 9 7 2 0 3 7 5 2 2 9 7 1 2 4 7 7 1 6 4 5 3 3 8 0 8 9 3 5 3 1 2 3 0 3 5 5 6 8

    2 0 1 9 6 5 4 2 6 4 2 3 8 0 8 7 6 5 6 2 3 8 3 8 5 6 5 6 6 4 5 9 6 1 1 3 2 3 4 8 9 3 0 1 3 8 3 1 1 9

    N B P 2 C 1 1 ) - - * '

    3 0 8 1 5 2 1 7 6 7 6 5 3 8 6 3 5 0 5 8 4 6 2 6 3 8 2 4 1 6 5 9 5 8 5 8 7 3 5 2 1 1 6 4 8 8 0 0

    NBP2 ( 12) =?29^I5234423499941_235877

    26468917348837676265384815256420322119583790673790618350""

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    33/56

    - 28-

    Assume , . (x) = T(\L(x), k*) f or a part i cul ar odd k*. Then

    VD- k * - 2 ( x ) - 1" >- k*- 1( x ) ( f r m E q n * 3 , 2 )

    1 - ( 1 - V D- k * - l ( x ) ) N

    - 1- ( 1-VJJ_k*(x))N (f romEqn. 3. 2)

    l - [ 1- TN( VD( x ) , k* ) ]N

    =l - TN( VD( x ) , k*+l )

    = T( VD( x) , k*+2) , provi ng the i nduct i on step. I

    We now observe that i f i 1 f or m 2,4, . . . , | .DJ , then Theorem2a maym e

    be appl i ed di rectl y.

    Pr{i _} = f By ( z ) dAy ( z )

    F N B . . ( z ) d( N A ( Z ) )- j&=2, 4, . . . , LDJ e

    X" ' k=1, 3, . . , , LDJ o K" '

    i.-l i , -1j 1 " n V

    &

    ( z ) d ( n VK

    (ZJ 6=2,4 |DI k- l , 3, . . . , LDj

    o

    V1

    f d( n V ( z) , si nce i 1 f or- k=l , 3, . . . , LDJ o

    K I even *

    V ,00 '

    II V ( z ) I b y the Fundamentalk=1, 3, . . . , LD] 0 -

    00Theoremof Cal cul us.

    Pr{i D} = 1 f or i ] = i . = . . . = U = 1. (Thm. 2c)

    .'. Pr{i n} = 1 for i 9 = i ^ = . . . = i | D ] =1 and i 1 for some odd m.J e

    For the rest of the devel opment we wi l l assume i m > 1 for some even m.

    We are now ready to consi der Pr {i D} f or arbi t rary depth D. FromTheorem

    2b we have

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    34/56

    - 29-

    -oo D D

    - - T n \ , (z ) d( n B , . ( z ) )k=1, 3, . . . fLDJ o

    K_ l j 2, 4, . . . , LDJ e*-1

    i . - l i . -l- - T n v k ( Z) d( n v * ( z

    k=l , 3 LJ)J J 2, 4,...,LDJ *o e

    As i n t hecase f or D 2 ,wewi sh toperf orma subst i tut i on whi ch wi l l

    el i mi nate theunder l yi ng di str i but i on. For Dodd we canappl y l emmas5. 1b

    and5. I d:

    Pr{i }- - p n [T(V( z ) , D- k ) ] ^ \( n [T(V( z ) , D-D] 1*- k=l , 3 , . . . , | _Dj * = 2 , 4 , . . . , [ D J

    o e

    Substi tut i ngu V^(z)9 weobtai n

    P r f L } - - ! 1 1 n [T(u, D- k) ] k d ( n [ T ( u , D- ja)] l A ) (5. 3)-1 i . -l

    d ( n [T0 k=1, 3 [DJ * * 2 , 4 , . . . , LDJ

    ' e

    f or D odd.

    Si mi l ar l y, f or Devenweappl y l emmas5. 1a and 5. 1c:

    i , -1 i . -Pr(i }- - J* H [ T(V ( z ) , D- k)] d( n [ T(V ( z ) , D- A) ] 1

    - k=1, 3, . . . j&2, 4, . . . , [Djo e

    (5. 4)1 i . - 1 i . - l

    P r C l } - +J n [T(u, D- k) ] K d( [ T ( u , D - l ) ] ' ) , Deven.' 0k1, 3, . . . , [Dj 2, 4, . . . J D J

    o e

    Combi ni ng equati ons(5.3) and (5. 4) ,

    pr {i D}=(-DY n [ K u . D- k ) ] ^1 d( n [ T(u, D- j t ) ] Xi \

    ' 0k=1, 3, . . . , [Dj tf2yUt...J DJo ^J e

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    35/56

    - 30-

    Di f f erent i at i ng the second product and observi ng that the termf or

    whi ch i ^ 1 di sappear , we have

    . i -1Pr{i n} - (- l )

    Df II T (u, D- k) )0 k = 1 ' 3 LDJ o , .

    S [( n T * (u, D- i )) dTm ( u, D-m)]m=2, 4, . . . , LDj J, 4. . . . , | DJ

    i {1 6 Jfcf m .m

    (5. 5)

    We eval uate the der i vat i ve ofEqn. 5. 5 wi t h the fol l owi ng l emma.

    1 i f k = 0k-1

    nn=0

    Lemma 5. 2; -r- T( u, k) = < k-1 .d U n T ' ( u, n) i f k > 0

    Proof (by i nducti on onk) ;

    3JT < U '0 )

    " '

    du

    * k -2d * k- 1 N-1 *

    Now assume -rT(u,k - 1) = (-N) II T (u, n) f or some f i xed k Thend U n=0

    d * d N *

    N-1 * d *= -N T W ' (u, k - 1) ^ T( u, k -1)

    * k -1= ( - N) k n ^( u . n )

    n=0

    Appl yi ng thi s l emma to Eqn. 5. 5 we obtai n

    i -1 i - - 1

    Pr{J n}- ( - UYC n Tk (u, D-k) ) S [( II T * (u, D-A))

    D ' 0 k=l , 3, . . . , | _Dj m=2, 4, . . . fLDJ eA=2, 4, . . . , LDJ e i f 1 1 f m

    mi -2 D D-m-1 -

    ( i - 1) Tm (u, D-m)( -N) " n ir' Oi . n) ) ] dum n0

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    36/56

    - 31-

    Movi ng thesummat i on to thef ront , wehave

    m=z,tt, . . . , [DJ 0k=l naO

    **^1 k / m

    Col l ecti ng termsandnoti ci ng that ( - l ) 20" 01 = 1, we f i nal l y have

    2, 4, . . . , ] 0 k=0 du (5. 6)

    where Pk( m) = 7

    0 i f i =1m

    i D. k+N- 2 i f k < D-m

    i D_k- 2 i f k = D-m

    i D_k- 1 i f k > D-m

    LD 4

    JD i f D i seven

    J D-1 i f D i s odd

    and i > 1 f or some evenm.m

    Eval uat i on ofEqn. 5. 6 requi res i ntegrat i onoff uncti onsof thef orm

    1 k j

    I k ( j rj 2 J k> - J H Tn( u, k- n+l ) .

    0n=l

    For exampl e, i f i / 1

    1 i +N-2 i -2 i -1Pr{i }= ( i 9- l ) NJ* T ( u,0)T (u, l ) T

    1 ( u,2)du* 0

    , i +N-2 i -2 KT i . -l= ( i - 1) Nf1 u3 (1- uN) 2 ( l - ( l - uN) N) 1 du

    ( i 2- l ) N 1 3 ( ^ - 1 , 1 2 - 2 , 1 ^ - 2 ) ,

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    37/56

    - 32-

    These i ntegral s may be eval uated exactl y usi ng the recurrence rel at i ons of

    the fol l owi ng l emma.

    Lemma 5. 3:

    V1

    j 2+i

    j

    i f k = 1

    i f k - 2

    '1S (-0 ( J 2+AN, J 3, . . . , J k) i f k > 1.

    Proof : = [ u du* 0

    I 2( j , , j 2) - fV-uV1 u2du

    1 V1

    k j 4

    k 1 K 0 n=1du

    = I*1 T ^ (u, k) n T*"(u, k-n+1) duJ

    ' 0 n=2

    1 N j l k j k- (" (1- TN( u, k- 1) ) ' n T (u, k- n+l ) du

    J 0 n=2

    = f Z ( - 1 ) A( ) [ TN( u, k- 1) ] A n TJ k( u, k- n+1) du

    k j ,

    0!F0n=2

    (f romthe Bi nomi al Theorem)

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    38/56

    - 3 3 -

    S 1("D f!1

    ) ^ ( u. k - l ) N TJ k( u, k- n+1) dui -0 *' 0 n=2

    i ^(2i) A - i v - ^ Vj&=0

    I

    As another exampl e of the method, we present the di f f erent cases f or

    D = 4 and arbi t rary N.

    Pr{i j = 1 f or i j - i i j i l f romThm. 2c.

    Pr{i , }1 for i 9=i ,=L f romEqn. 5. 2.

    i i v 1 v 2 i - ^ + N - 2

    Pr{i , } = a , - D i r r , T ' (u, 3) TZ (u, 2) T (u,L)du0

    - (IJ-DN2 ( 1 1, 12- 2, 1 - 2, 0) i f i 4=L and 1 2/ 1

    Pr{i 4} = ( i 4-L) I 4( i r 1, 0, i 3-L, i 4- 2 ) i f i 2=L and ^ J 1

    Pr{i 4} =(IJ-DN2 I 4( i RL, i 2- 2 , i 3+N- 2, i 4+N- 2) +

    + ( i 4-1 ) I 4( i RL, i 2- 1, i 3- 1, i 4- 2) i f 1 and i ^L.

    N N N NThen E[NBP , ] - 2 2 2 2 Pr{i . },

    i =1 i =1 i =1 i =11 2 3 4

    and I 4( J 1, J 2J 3J 4) i s eval uated wi t h Lemma 5. 3.

    I t i s possi bl e t o el i mi nate one summat i on f rom thi s method of eval uat

    i ng E[ NBPN D ] . We observe that

    P r [ 7 l > } = 9 L 2 m i V V V " - ' W >m=2, 4, . . . , | _DJ e

    where > 1 f or some even m, t f c= PD_k( m) - i k (Eqn. 5. 6) , and I D i s computed

    wi t h a D-2- f ol d summati on. However , the summati on on the i ndex i-j may be

    combi ned wi t h the f i rst reduct i on of Lemma 5. 3.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    39/56

    - 34-

    i ,-". pr - 1, L2,4>L, LDJ e( v, ) i D

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    40/56

    - 3 5 -

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    41/56

    - 3 6 -

    7 1 9

    E [ N B P J = N B P 3 C 2 ) -

    2 , 3

    ' 1 0 5

    5 7 8 7 9 3 8 9 7 9 1

    N B P 3 C 3 )

    2 9 7 4 5 7 1 6 0 0

    1 0 5 8 6 1 2 1 3 4 8 2 7 2 0 8 0 2 3 1 6 8 8 7 9 6 7

    N B P 3 C 4 )

    2 6 3 8 9 8 8 5 8 0 5 8 6 6 5 6 8 4 7 1 2 3 5 7 5

    NBP3 ( 5 ) = 12 1-^I?Z51Z2457756H97 8 7 6 8 5 1 _ 26 9 3 7 8 7 8 7 6 2 3 8 7 5 9 0 4 1 7

    1 7 4 1 3 6 0 2 5 7 6 2 2 4 0 9 3 1 6 3 8 2 8 2 9 6 9 7 4 8 1 7 3 4 5 9 0 6 1 1 9 9 7 1 6 4 8

    r ~\ 7 7 5 0 3E [N BP J = N B P 4 C 2 ) - - - - - -

    ' \ 6 4 3 5

    3 7 9 7 1 7 6 7 4 9 8 0 5 9 8 5 7 0 5 8 3 3 0 8 7 2 6 5 7 0 0 2 3

    N B P 4 ( 3 > .

    8 4 0 0 3 7 7 9 4 7 3 6 9 5 8 8 9 4 3 6 9 9 2 4 1 7 2 6 4 0 0

    Tabl e 5 . 2 . Exact val ues for E [ N B P n f or D = 3 , 4 .

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    42/56

    - 37-

    the val ues are drawn, we see that the expected number of move generati on f or

    a depth D search i s si mpl y t he sumof the expected number of non- termi nal

    posi t i ons at each l evel , i . e. ,

    E [ N M G N > ] ) ] = 1 + V E [ N B P N > I ]

    6. APPLI CATI ON OF THE GAME TREE MODEL TO CHESS

    Several assumpt i ons have been made to si mpl i f y t he anal ysi s of the

    model whi ch do not conf orm to the propert i es of game t rees i n general .

    Fi rst , the model assumes a f i xed branchi ng f actor and f i xed depth. Many

    game pl ayi ng programs ( though not al l ) use searches of var i abl e depth and

    breadth. Second, the val ues of the bot tomposi t i ons have been assumed

    to be i ndependent ; i n pract i ce there are strong cl uster i ng ef f ects. For

    exampl e, i n a chess programwi t h an eval uat i on f unct i on whi ch depends

    st rongl y on materi al , a subt ree whose parent move i s a queen capture wi l l

    have more bot tom posi t i ons i n the range correspondi ng t o the l oss (or wi n)

    of a queen than wi l l subt rees whose parent move i s a non- capt ure. The

    f i nal assumpt i on i s t hat the probabi l i ty that two bot tom posi t i ons i n the

    t ree wi l l have the same val ue i s zero ( cont i nui ty assumpt i on) . I n pract i ce,

    game programs sel ect the val ue of the termi nal posi t i on f roma f i ni te (and

    somet i mes smal l ) set of val ues.

    No attempt has been made to model modi f i cati ons to t he basi c al pha-

    beta search, such as f i xed order i ng, dynami c order i ng, or the use of

    aspi rat i on l evel s. Thi s model shoul d be vi ewed as an upper bound i n the

    sense t hat any program can perf orm thi s wel l i f the moves are no worse t han

    randoml y ordered.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    43/56

    - 38-

    I n thi s secti on we wi l l i nvest i gate the ef f ects of these assumpt i ons

    by compari ng the predi cted average search ef f ort wi t h the observed searches

    of a chess program. Si nce several exi st i ng chess programs use a f i xed

    branchi ng f actor (sel ecti ng the N best moves accordi ng to a stat i c eval ua

    t i on funct i on) and f i xed depth (at tempt i ng to resol ve i ssues of qui escence

    wi th a stat i c anal ysi s), we wi l l concent rate on the i ndependence assumpt i on

    and the cont i nui ty assumpt i on.

    I n order to assess the expected ef f ect of the cont i nui ty const rai nt ,

    we rel ax i t i n the model so that the val ues f or the eval uat i on functi on

    are chosen f romR equal l y l i kel y di st i nct val ues. I f R88 1, we have, i n

    ef f ect , per f ect order i ng, si nce equal val ues wi l l produce a cutof f . As

    R approaches i nf i ni ty the expected number of bot tomposi t i ons i s predi cted

    anal yt i cal l y by thi s paper . The var i at i on of the number of bot tom posi t i ons

    wi t h R i s shown i n Fi gure 6.1 f or D 3; these curves were generated usi ng

    a Monte Car l o si mul at i on.

    The chess programused f or compari sons was a modi f i cat i on of the

    Technol ogy Chess Program [Gi l l ogl y, 1972] . The Technol ogy Program (Tech)

    i s a "brute f orce" programwhi ch i nvest i gates al l l egal moves to a f i xed

    depth; al l chai ns of captures f rom these bot tom posi t i ons are expl ored. The

    termi nal posi t i ons are eval uated onl y wi t h respect to materi al , where a pawn

    i s consi dered to be wort h 100 poi nts, kni ght and bi shop 330, rook 500, and

    queen 900. A number of posi t i onal heur i st i cs are appl i ed st at i cal l y at the

    top l evel , and var i ous modi f i cat i ons are made to the basi c t ree search.

    Tech was modi f i ed f or thi s anal ysi s to search t rees of f i xed depth

    and branchi ng f actor (the branches to be exami ned sel ected randoml y) , and

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    44/56

    - 39-

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    45/56

    - 40-

    the t ree search modi f i cat i ons were del eted. I n addi t i on to Tech' s st andard

    eval uat i on f unct i on, an opt i onal eval uat i on term f or mobi l i t y was programmed.

    Thi s term i s useful f or the anal ysi s, si nce i t i ncreases the ef f ect i ve range

    of eval uat i on and decreases the degree of correl at i on i n subt rees. Most

    chess programs have eval uati on f unct i ons whi ch are consi derabl y more compl ex

    than Tech' s.

    I n order to ensure a r easonabl e mi x of openi ng, mi ddl e and endgame

    posi t i ons a compl ete game was anal yzed, consi st i ng of 80 posi t i ons (Spassky-

    Fi scher , Reykj avi k 1972, game 21) , Each of these posi t i ons was anal yzed by

    the modi f i ed Tech programs f or D = 2, 3, and 4 over the ef f ect i ve range of

    branchi ng f actors. Fi gure 6. 2 shows the anal yt i c r esul ts f or these para

    meters wi t h the empi r i cal val ues obtai ned usi ng Tech' s standard eval uat i on

    f unct i on. At a typi cal poi nt ( = ) , the observed r ange ( R) of

    di st i nct bot tomposi t i on val ues i n the t rees var i ed bet ween 1 and 9, wi t h

    medi an 5. Thi s agrees wel l wi t h Fi gure 6. 1. To demonst rate the ef f ect of

    the i ndependence assumpt i on, these poi nt s were r e- run wi t h the programmodi

    f i ed so t hat a val ue whi ch woul d r esul t i n a prune by equal i ty was randoml y

    perturbed up or down. Thi s si mul ated an eval uat i on f unct i on that assi gns

    uni que val ues f or al l the bot tomposi t i ons. The pertubat i ons changed the

    val ue of the posi t i on by at most two poi nt s, si nce there are at most twoal phas or two bet as bei ng kept at any gi ven ti me i n a depth 4 t ree. Si nce

    two poi nt s i s smal l compared to the val ue of a pawn (100poi nt s) , t he t i e-

    breaki ng procedure does not si gni f i cant l y af f ect the correl at i on among posi

    t i ons i n a subt ree. The systemat i c di screpancy between these poi nt s and

    the anal yt i c curve must then be due to the assumpt i on of i ndependence.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    46/56

    - 4 1-

    BRANCHI NG FACTOR (N)

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    47/56

    - 42-

    I n Fi gure 6.3 we pl ot the anal yt i c curves wi t h t he data f romthe

    eval uat i on functi on whi ch i ncl udes mobi l i t y as wel l as mat er i al . The

    range i s much hi gher f or thi s eval uat i on f unct i on, so that the number of

    bot tomposi t i ons i s consi derabl y hi gher than the unmodi f i ed versi on. The

    range (R) at = f or thi s versi on var i ed between 12 and 82, wi t h

    medi an 43. Si nce the ti ebroken poi nt s are onl y sl i ght l y hi gher , i t i s cl ear

    that the range i s cl ose to the ef f ect i ve maxi mum range f or that eval uat i on

    f uncti on. I t i s of i nterest to not e that the t i ebroken poi nts l i e al most

    on the anal yti c l i ne, i ndi cat i ng t hat the i ndependence assumpt i on i s more

    near l y correct f or thi s eval uat i on f uncti on.

    Compar i son of these graphs i ndi cates two ways i n whi ch t he eval uati on

    f uncti on af f ects t he number of bot tomposi t i ons eval uated: (1) as the

    range of the eval uat i on f unct i on i ncreases, the number of bot tomposi t i ons

    i ncreases; (2) as t he correl at i on among val ues i n the same subt ree i ncreases,

    the number of bot tomposi t i ons decreases.

    7. EMPRI CAL OBSERVATI ONS

    For l arge val ues of N and D, the anal yt i c r esul t presented i n Secti on

    5 i s i n i ts present f orm computat i onal l y i nf easi bl e. The growth of computa

    t i on ti me i s governed by two f actors. Fi r st , the probabi l i ty t hat a bot tom

    posi t i on i s eval uated must be cal cul ated f or each bot tom posi t i on i n the

    compl ete t ree, aD- f ol d nested summati on f or D > 2. Second, the expressi on

    f or thi s probabi l i ty i s i n the f orm of a recurrence rel at i on ( Lemma 5. 3)

    whi ch reduces the i ntegral to a D-2- f ol d nested summat i on of eval uat i ons of

    the beta f unct i on and bi nomi al coef f i ci ent s. The number of nest ed summat i ons

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    48/56

    - 43-

    BRANCHI NG FACTOR (N)

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    49/56

    - 44-

    f or the compl ete t ree i s thus 2D- 2. Thesi mpl i f i cati onof theanal yt i cal

    resul t to a form f or whi ch thecomputati on eff or t grows at a si gni f i cantl y

    sl ower rate remai ns anopen probl em.

    I n thehope ofprovi di ng some resul t s ofpracti cal val ue, wepresent

    the empi r i cal observat i ons whi ch f ol l ow. The set ofdata poi nt s upon whi ch

    the empi r i cal observat i ons arebased were obtai ned i npart f rom theanal yt i cal

    f ormul at i on and i npart f romaMont e Car l o si mul at i onof theal pha- betaal

    gor i thm. I n the si mul at i on the stat i c val ues f or the l eaf nodes of thetrees

    were drawn f romauni f orm randomprobabi l i t y di str i but i on of i ntegers i n the

    35

    i nterval (0, 2 - 1) . Thesampl e meanand standard devi ati on were obtai ned

    from theresul ts of 1000i t erat i ons of theal pha- beta al gor i thm f or each

    si zeof the tree. The sampl e mean t hus l i es wi t hi n the i nterval x + Rx^

    N, D N, D

    at the 95$conf i dence l evel , where x D i s thet rue meanand 0.008 < R < . 013

    f or thepoi nt s col l ected i n the si mul at i on. Therat i o of sampl e st andard

    devi at i on tosampl e meanwascomputed f or 173poi nt s (thepoi nt s der i ved f rom

    the anal yti c f ormul at i on were al so si mul ated to obtai n thei r sampl e st andardde

    vi at i ons) , and al l of t hese rat i os l i e i n the i nterval ( . 120, . 215) .

    The val uesof l ogE[ NBP ] as a f uncti onof l og N f or f i xed D are

    observed to beapproxi matel y a st rai ght l i ne (Fi gure 5. 1) . A l east squares

    f i t of a str ai ght l i ne to these data gi ves anapproxi mati on whose root mean

    square rel at i ve er ror i sabout . 004 f or theval ues exami ned. Thecor res

    pondi ng approxi mati on to theexpect ed number ofbot tomposi t i ons takesthe

    L

    f orm E[ NBPN D l ^# N >wi t h an RMS rel at i ve error ofapproxi matel y. 015.

    Furthermore, theval ues areobserved to beapproxi matel y l i near wi t h

    respect to D. A l east squares f i t of a str ai ght l i ne to the

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    50/56

    - 45-

    val ues yi el ds t he approxi mat i on 1^ . 720D + . 227, wi t h an RMS rel at i veerror of approxi matel y . 007.

    Tabl e 7. 1:

    Depth1 1. 00

    2 1. 12

    3 1. 30

    4 1. 39

    5 1.51

    6 1. 59

    7 1. 67

    8 1.71

    9 1. 73

    I t i s of i nterest to note that the growth rate f or the al pha- beta al gor i thm

    ( . 720D) i s about mi dway between t hat of perf ect order i ng (0. 5D) and mi ni max

    search ( D) . An accurate si mpl e approxi mat i on to the val ues i s not read

    i l y apparent . The val ues of f or D=l , 2, . . . , 9 are f ound i n Tabl e 7. 1. The

    val ues l i e i n the range [1, 2] .

    Thi s empi r i cal anal ysi s of the data avai l abl e to us suggest s an approxi

    mat i on of the form E[ NBP^D l N# 7 2 0 D + # 2 7 7

    . The l i mi ted number and

    arbi t rary sel ecti on of the data poi nt s used i n thi s anal ysi s prevent us f rom

    attachi ng hi gh conf i dence t o thi s approxi mat i on f or the general case, al

    though f or the poi nt s f romwhi ch i t i s der i ved t he approxi mat i on i s excel l ent .

    We do note t hat the approxi mati on agrees wi t h the boundary case D = 1, f or

    72 0D + 27 7 QQ7whi ch E[ NBPN - N N * - W , and agrees f ai r l y wel l wi t h

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    51/56

    - 46-

    the boundary case N 1 f or whi ch E[NBP^ ] K .

    Sl agl e and Di xon [1969] def i ne a measure of the rel at i ve ef f i ci ency

    of a t ree- searchi ng al gor i thm:

    l og NBPDR s ,

    X l Q gm*m

    where NBP *- s the expected number of bot t omposi t i ons exami ned i n a mi ni max

    search and NBPx

    i s the expected number of bottomposi t i ons exami ned by al

    gori thmx.

    The val ue of DR l i es between 0 and 1. As an exampl e of the i nterpre

    tat i on of DR, DR .6 i ndi cates that the al gor i thmunder consi derat i on can

    be used t o search a tree of depth 5 wi t h about the same ef f ort as that r e

    qui red by t he mi ni max al gor i thm to search a t ree of depth 3. Usi ng the

    empi r i cal l y der i ved approxi mat i on,

    277 l o g *DDR Q w . 720 +

    1

    zL

    + -Ma-j 3w D D l og N

    277For l arge N, DR Q w . 720 + - -r - .

    Qf-P D

    For the search wi t h per f ect order i ng [Sl agl e and Di xon, 1969] ,

    D R

    1 , l og 2D R P0 2+ D l og N *

    For l arge N, DRp Q M j .

    The depth rat i o DR i s useful as a measure of the ef f i ci ency of a t ree

    searchi ng al gor i thmrel at i ve to the mi ni max al gor i thm. However , the ex

    pected number of bot tomposi t i ons exami ned by t he al pha- beta al gor i thmpro

    vi des a much t i ghter upper bound f or the expected perf ormance of a good tree-

    searchi ng al gor i thm than does the number of bot tomposi t i ons exami ned by the

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    52/56

    - 47-

    mi ni max al gor i thm. Hence, i t woul d be more desi rabl e to redef i neDRsuch

    that the perf ormance of the al pha- beta al gor i thm rather than the mi ni max

    al gor i thm i s used as the standard of compar i son, i . e. ,

    * l og NBPxDR s

    xl og NBP

    Qf-P

    8. CONCLUSI ONS

    We have proven that the probabi l i ty of exami nganode P(i^) inagame

    tree wi t h cH3 pruni ngi s

    Pr{i k}= - f A^( z ) dB ( z ) =fj^^ ^(z)>

    >

    where ( z) and ( z) are the di st r i but i on f unct i onsofcKi^) and PCi^)

    respect i vel y. The i ntegral may be eval uated exact l y usi ng Eqn. 5. 6 and

    Lemma 5. 3. Thi s f ormul a i s used to compute the expected val ueof the

    number of bot tom posi t i ons to be eval uated i nat ree of arbi t rary (but f i xed)

    depth and branchi ng f actor .

    For l arge val ues ofDandNLemma 5. 3 i s not computat i onal l y f easi bl e

    and so we empi r i cal l y f i t the f ol l owi ng curve toaset ofsi mul at i on poi nt s:

    E t N B P ^ y r 7 2 0 1 * - 2 " ,

    where i sacoef f i ci ent i nthe i nterval [ 1, 2] dependi ng on dept h. Thi s

    shows that the depth rat i o as def i nedbySl agl e and Di xon [1969] f or a-P

    i s about

    277

    DR

    o,-P - 7 2 0+ ^'irfor large N

    -

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    53/56

    - 48-

    We i nvest i gate t he def i ci enci es of the model wi t h respect to correl a

    t i on and possi bl e equal i t y of bot tomposi t i on val ues and demonst rate that

    hi gher correl at i on reduces the number of bot tomposi t i ons, as does equal i ty

    of bot tomposi t i on val ues (Fi gures 6. 2 and 6, 3) .

    A number of i nterest i ng probl ems remai n to be sol ved i n the anal ysi s

    of the al pha- beta al gor i thm: The si mpl i f i cat i on of the anal yt i cal expressi on

    to a f ormwi t h a smal l er computat i onal growth rate than i ndi cated by Lemma

    5. 3 i s an open quest i on. I t woul d al so be usef ul to f i nd an anal yt i cal ex

    pressi on f or the var i ance of the number of bot tomposi t i ons.

    Extensi on of the model to more general game t rees woul d be an i nter

    esti ng goal . The range const rai nt may be rel axed, as shown i n Sect i on 5.

    Anal ysi s of thi s model i s consi derabl y more compl i cated than the model we

    chose.

    The present model i s i nadequate f or model l i ng var i at i ons of the search

    strategy such as f i xed order i ng, dynami c order i ng, and aspi rat i on l evel s,

    because the model assumes i ndependence of the underl yi ng r andomvari abl es.

    One possi bl e extensi on of the model to encompass these requi rements mi ght

    be to assi gn a randomnumber to each branch t hroughout the t r ee, and l et

    the f i nal eval uat i on of the bot tomposi t i ons be the sumof the val ues of

    i t s predecessor . Thi s woul d l ead to an i ntui t i vel y appeal i ng stati c eval ua

    t i on functi on that woul d i nt roduce a measure of correl at i on i nto the t ree.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    54/56

    - 49-

    APPENDI X: NOTATI ON

    a k( i d) kth- l evel al pha val ue, where k=0, 2, . . . , LdJ

    A, . ( x) di str i but i on f unct i on ofa, _ ( i j ) ; d > k

    >

    A-? (x) di str i but i on f unct i on of a( i , )a

    a( i d) i ax{a0( i d) , a2( i d) , . . . , a( i ) }

    e

    e

    obk( i d) kth- l evel bet a val ue, where k=1, 3, . . . , LdJ

    B, . (x) di str i but i on f unct i on of b, ( i , ) ; d > kk , 1k+l k d

    B-? (x) di st r i but i on f uncti on of P( i , )a

    aP( i d) mi n{b1( i d) , b3( i d) , . . . , b( i }

    L J e

    P( a, b) (i+b)t h e B 6 t a f u n c t i o n

    D depth of game tree

    F( x) the survi vor f unct i on, i . e. , F( x) = 1-F(x)

    i d i , i 2, , i . Let i g be the empty vector .

    1 k j

    I k( j rj 2, . . . , j k) J n Tn( u, k- n+1)

    0 n=l

    L k j o 2

    111

    N branchi ng f actor of game t ree

    p( i d) a node at l evel d i n the game tree wi t h i ndex i d # Number

    of el ements i n vector i ndi cates depth of node i n the t ree

    For exampl e, p( i ) *-s a l eaf node.

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    55/56

    - 50-

    P k ()

    D-k+ N- 2

    V k - 2

    v. - k

    i f i = 1m

    i f k < D-m

    i f k = D-m

    i f k > D-m

    T(f , k)

    1 - [T(f , k- 1)]

    N

    i f k - 0

    i f k > 0

    v( i d) val ue of p( i , ) . Thi s i s the backed- up val ue unl essa

    d D, i n whi ch case p( i d> i s a l eaf node and we

    use the l eaf node' s stat i c val ue.

    Vd( x ) cumul at i ve di st r i but i on f uncti on of v( i )

  • 7/27/2019 Analysis of the Alpha-beta Pruning Algorithm

    56/56

    References

    Bogen, R. A. et al . MACSYMA Users Manual , Proj ect MAC, MI T (September 1972)

    Gi l l ogl y, J . J o , "The Technol ogy Chess Program, 11 Art i f i ci al I ntel l i gence 3( 1972) , 145- 163,

    Ni l sson, N. J . , Probl em Sol vi ng Methods i n Ar t i f i ci al I ntel l i gence, McGraw-Hi l l ( 1971) .

    Parzen, E. , Modern Probabi l i t y Theory and I ts Appl i cat i ons, Wi l ey and Sons,I nc. , N. Y. ( 1960) .

    Samuel , A. L. , "Some Studi es i n Machi ne Learni ng Usi ng t he Game of CheckersI BM J ournal 3, ( 1959) , 211- 229.

    Shannon, C. E c , "Programmi ng a Computer f or Pl ayi ng Chess,11 Phi l . Mag. 7th

    ser i es, V. 41, N. 314 ( 1950) , 256- 275.

    Sl agl e, J . R. , "Game Trees, m and n Mi ni maxi ng, and the m and n Al pha- BetaProcedure, 11Al Group Rep. No. 3, UCRL- 4671, Lawrence Radi at i on Laboratory,Uni versi ty of Cal i f orni a ( November , 1963) .

    Sl agl e, J . R. and J . K. Di xon, "Exper i ments wi t h Some Programs that SearchGame Tr ees, " J . ACM 16, 2 (Apr i l , 1969) , 189- 207.