36
1 An injectable meta-biomaterial A. Béduer 1,2,§ , F. Bonini , C. Verheyen , P. Burch 2,3 , T. Braschler 1 * 1 University of Geneva, Faculty of Medicine, Department of Pathology and Immunology. Rue Michel-Servet 1, CH-1022 Geneva, Switzerland. 2 Ecole polytechnique fédérale de Lausanne, EPFL, School of Engineering, LMIS4. BM, Station 17, CH-1015 Lausanne. 3 Volumina-Medical SA, Route de la Corniche 5, CH-1066 Epalinges, Switzerland. § These authors contributed equally * Corresponding author: [email protected] Abstract We present a novel type of injectable biomaterial with an elastic softening transition. The material enables in-vivo shaping, followed by induction of 3D stable vascularized tissue adopting the desired shape. We establish the necessary geometrical and physical parameters by extensive numerical simulation. Irregular particle shape dramatically enhances yield strain for in-vivo stability against deformation, while friction and porosity provide the elastic softening transition as an emergent meta-material property. Accordingly, we synthesize our injectable meta-biomaterial as a suspension of irregularly fragmented, highly porous sponge-like microgels. The meta-biomaterial exhibits both high yield strain, and the desired novel elastic softening transition for in- author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the . https://doi.org/10.1101/2020.01.30.926931 doi: bioRxiv preprint

An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

1

Aninjectablemeta-biomaterial

A.Béduer1,2,§,F.Bonini1§,C.Verheyen2§,P.Burch2,3,T.Braschler1*

1UniversityofGeneva,FacultyofMedicine,DepartmentofPathologyandImmunology.

RueMichel-Servet1,CH-1022Geneva,Switzerland.

2EcolepolytechniquefédéraledeLausanne,EPFL,SchoolofEngineering,LMIS4.BM,

Station17,CH-1015Lausanne.

3Volumina-MedicalSA,RoutedelaCorniche5,CH-1066Epalinges,Switzerland.

§Theseauthorscontributedequally

*Correspondingauthor:[email protected]

Abstract

Wepresentanoveltypeofinjectablebiomaterialwithanelasticsofteningtransition.

Thematerialenablesin-vivoshaping,followedbyinductionof3Dstablevascularized

tissueadoptingthedesiredshape.Weestablishthenecessarygeometricalandphysical

parametersbyextensivenumericalsimulation.Irregularparticleshapedramatically

enhancesyieldstrainforin-vivostabilityagainstdeformation,whilefrictionand

porosityprovidetheelasticsofteningtransitionasanemergentmeta-materialproperty.

Accordingly,wesynthesizeourinjectablemeta-biomaterialasasuspensionof

irregularlyfragmented,highlyporoussponge-likemicrogels.Themeta-biomaterial

exhibitsbothhighyieldstrain,andthedesirednovelelasticsofteningtransitionforin-

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 2: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

2

situshapingandunprecedenteddynamicmatchingofadiposetissuemechanics.Invivo,

predeterminedshapescanbesculptedmanuallyaftersubcutaneousinjectioninmice.

The3Dshapeismaintainedduringexcellenthosttissueintegrationintotheparticle

porespace.Themeta-biomaterialsustainsvascularizedconnectivetissuetotheendof

one-yearfollow-up.

Aging,disease,trauma,congenitaldeformitiesandsurgicalsequelaecanallleadtoaloss

orlackofsofttissuevolume,producingamajorandincreasingmedicaldemandfor

tissuereconstructionstrategies1-4.Ideally,suchproceduresshouldbeminimally

invasivetoreducethepatientburdenanddecreasepotentialsurgicalcomplications5,6.

Forsofttissuereconstruction,thisrequiresatissuebulkingagentthatcanbeinjected

throughathinneedleintoatargetsiteinthebody4.However,afterdeploymentthis

bulkingmaterialmustmaintainastablethree-dimensional(3D)configurationto

provideadequatevolumeforthemissingsofttissue7.Beyondinjectabilityandvolume

maintenance,surgeonsimposetheadditionalrequirementofinsitushapeabilityin

ordertosmoothlymatchthearbitrarygeometryofapatient’stissuedefect8.Evenifthe

threeconditionsofinjectability,shapeabilityandstabilityaresatisfied,thistheoretical

tri-statematerialshouldalsoexhibitahighdegreeofbiocompatibilitywhileclosely

matchingthelocaltissuemechanics9,10.

Inpractice,suchanidealmaterialisexceedinglydifficulttoengineer.Forexample,fluid-

likebehaviorneededforminimally-invasivedeliverythroughaneedlelimitsmechanical

stiffness11.Asaresult,manyofthecurrentlyavailableinjectableagentsaretoosoft11to

matchthelocaltissueproperties12,13.Thoughusefulforsmoothingandenhancing

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 3: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

3

existingshapes,theyrequireimprovementstoadequatelyliftandshapethree-

dimensionaltissuevolumes11.Ontheotherhand,solid-likebehaviorinpreformed

implantsinterfereswithin-situshaping,evenifminimallyinvasivedeliveryispossible

bycompressionorfolding14,15.Thisunmetneedhaslaunchednumerouseffortsto

engineerinjectable,shape-fixabletissueimplants,basedonvariousphysicalorchemical

in-situcrosslinkingmechanisms16,17.Emergingstrategiesincludetheuseofpeptide,

DNA,orpolyelectrolyteandothercomplexestoimpartintrinsicself-healingability18-20.

Thoughsuchapproachesprovideimprovedmechanicalproperties,theyalsoimposea

numberofadditionalchemicalconstraintsandraiseconcernsregarding

biocompatibilityandtissueintegration16,21,22.

Here,wereconcileinjectability,shapeability,andlong-termvolumestabilitybya

radicallynovelapproach:aninjectablemeta-material23.Mechanicalmeta-materials

obtainunusualpropertiesbytheirmeregeometry23,24.Wehypothesizeherethat

physicalinterlockingofgeometricallydesignedparticlescanrestoremeta-material

propertiesevenaftertransientliquefactionforinjection25-27.Inthisnovelparadigm,

self-healingdeliversmeta-materialphysicsin-vivo,in-situ,inaminimallyinvasive

fashion.Weengineeratri-statemicrogelmeta-biomaterialthatcombinesinjectability,

solid-statesofteningforshapeability,andtissue-mimickingmechanicalstability12,13.The

materialdramaticallyincreasestheaccessiblestiffnessrangeandforthefirsttime

demonstratesareversibleelasticsofteningtransitioninaninjectable.Itexhibits

excellentbiocompatibilityandiscolonizedtoinduceformationofvascularizedtissue.

Takentogether,wehavesuccessfullyintegratedthedesigncriteriainformedbyclinical

needtoengineeranovelinjectableandshapeablebiomaterialforstable3Dsofttissue

reconstruction.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 4: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

4

Results

Elastic porous injectable (EPI) biomaterial

Fig.1.Elasticporousinjectable(EPI)biomaterial.a)Injectability:Particleliquefaction

andmobilityunderhighstrainenablesminimally-invasivedelivery.b)Shapeability:

Partialmechanicalstabilityduetogeometricparticleconstraintsenablesin-situshaping

underintermediatestrains.c)VolumeStability:Fullyinterlockedparticlestateenables

long-termthree-dimensionalstabilityunderlowstrains.d)Macroscopicdemonstrationof

thematerialproperties,depictingfluid-likeejectionofparticlesthroughacannulaand

solid-like3Dshapestability.Scalebar:4mme)Scanningelectronmicroscopepictureofa

singleporousparticle(brightnessproportionallyenhanced).f)Confocalimageshowing

fourinterlockingporousparticles(maximalintensityzprojection).g)Particleidentityin

Fig.1f,determinedbythresholdingtheindividualcolorchannels,andforthedoubly

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 5: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

5

labeledparticle,co-localizationofblueandgreenaftercorrectionforchromatic

aberration.Scalebar:200µm.

Theconceptofourelastic,porous,andinjectable(EPI)biomaterialisillustratedin

Figure1.Underthehighshearimposedbyinjection,thematerialfluidizesandbehaves

asaliquid(Fig.1a).Underintermediateshear,typicalofinsitushapingand

massaging8,28,theEPIbiomaterialbehavesasaweakviscoelasticsolidamenableto

smoothdeformation(Fig.1b).Atrest,theself-healingprocessiscompleteandtheEPI

biomaterialbehavesasasoftsolidwithshearmoduliinthelowerkParangetomatch

thenativetissueproperties12,13(Fig.1c).

TheEPIbiomaterialconsistsofaninterlockingsuspensionofhighlyirregular,sponge-

likemicroparticles.Itsuniquematerialdesignenablesbothfluidicinjectionthrougha

cannulaandshapeablethree-dimensionalstability.Amacroscopicdemonstrationofthe

behaviorisprovidedinFig.1d,whileFig.1eshowstheirregular,porousparticle

morphology.Fig.1fand1gdemonstratemicrosopicparticleinterlocking.

In-silico design

TodesigntheEPIbiomaterial,outlinedinFig.1,wefirstperformedadiscreteelement

simulation.Thisessentialsteptranslatestheclinicalusecriteriaintoasetofdesignrules

thatguidedourmaterialfabricationstrategy.Toreiterate,anidealtissue-filling

biomaterialshoulddisplayinjectability,shapeability,3Dvolumestability,

biocompatibility,andtissue-matchingmechanicalproperties.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 6: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

6

Fig.2.InSilicosimulationanddesignoftheEPIbiomaterial.a)Graphicaloverviewof

thesimulation.b)Elasticstorageandviscouslossmodulus(G’andG’’)foradense

suspensionoffrictionalspheresc)forabulkmaterialformedbyfullcross-linkingofevery

neighboringsphered)foradensesuspensionofdiscrete,compact,irregularparticles

formedfromneighboringspherese)foradensesuspensionofdiscrete,irregularparticles

withalowcrosslinkdensityandfreecontactinterfaces.f)Characteristicrheological

responsewithaccompanyingstoragemodulusandstrainvalues. =low-deformation

limit, =softeningtransition, =softplateaustress, =yieldstrain.g)Overviewofthe

influenceofthemodelparametersonthecharacteristicvaluesdefinedinFig.2F.‡The

frictioncoefficienthasamagnitude-dependenteffect,seeSupplementary5,Fig.S5-3.h)

InfluenceoftheYoungmodulusoftheconstituentmaterialonthelow-strainlimitstorage

modulusforthedifferentparticlegeometries.Errorbars=onestandarddeviation.n.s.=

notsignificant.SamplesizeandstatisticaltestinginformationinSupplementary14,items

1to26.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 7: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

7

AfulldescriptionofoursimulationisprovidedinSupplementary1(mathematical

model),2(softwareusageinstructions),3(implementationdetails),4(testcases),15

(sourcecode),16(APIdocumentation)and17(installguide).Briefly,thesimulation

modelsthephysicalinteractionbetweensphericalparticlesbycentralandfrictional

forces25.Tomeetthelong-standingchallengeofsymmetricalstresstensorevaluationin

granularmedia29,30,wesystematicallyreviewedandcorrectedthepublished

mathematicalframework25andstresstensorevaluation29(Supplementary1).Wethen

addedpermanentcrosslinkstostudybothirregularandporousmicroparticles(Fig.2a).

Analogoustotheempiricalcharacterizationofviscoelasticagentsforsofttissue

reconstruction8,weperformedinsilicooscillatoryshearrheometrybyapplicationof

time-varyingstrain(Fig.2a).Thisprovidesanestimateoftheelasticstiffness(elastic

storagemodulusG’)andtheabilitytodeform(viscouslossmoduliG’’)25,31.

Wefirstsimulatedfourprototypicalscenariosofmicrogelsuspensions:asimple

suspensionoffrictionalsphericalmicrogels(Fig.2b,Supplementaryvideo18),

completelycrosslinkedelasticbulkmaterial(Fig.2c,Supplementaryvideo19),

compactlycrosslinkedirregularparticles(Fig.2d,Supplementaryvideo20)andloosely

crosslinkedparticleswithadecreasedinternalcrosslinkingdensity(Fig.2e;

Supplementaryvideo21).Anelasticsofteningtransitionwasfoundforthefrictional

sphericalmicrogelsuspensionasexpected25(Fig.2b,absentinnon-frictionalcontrol

providedinSupplementary5).Buttheyieldstrainwassubstantiallybelowthe50%

typicallyrequiredforasofttissuefiller8towithstandphysiologicalmovement32.Onthe

otherhand,bulkcrosslinking(Fig.2c)abolishedtheyieldingtransitionaltogether.

Irregularparticlesfinally(Fig.2d)exhibitedyieldstrainwellabove50%,enablingboth

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 8: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

8

injectabilityandinvivoshapestability.Thisestablishesourfirstdesignrule:The

materialshouldbeasuspensionofirregularratherthansphericalparticles.

Quantitatively,theelasticsofteningtransitionwasbetterpreservedinloosely(vs.

densely)crosslinkedparticles(Fig.2e).Thesofteningbehavioriscriticalbothfor

shapeabilityandformatchingthemechanicalpropertiesoflocaladiposetissue,which

alsodemonstratestrainsofteningundershear12,13.Wethusobtainourseconddesign

rule:theparticlesshouldhavealowdensityofinternalcrosslinkswithfrictionalintra-

particleporosity.

Withourfirsttwodesignrulesestablished,wegeneralizedthedesiredrheological

behavior(Fig.2f)andperformedsystematicanalysisofthemodel’sparameters(Fig.2g,

Supplementary5).Theanalysisconfirmedthatthegeometricparameters(particle

shapeandporosity)dominatethehigh-strainbehaviors33ofyielding( inFig.2fand

2g)andthesoftplateau( ),importantforshapingandinjection.Conversely,the

mechanicalparameters(friction,packing,andYoung’smodulus)dominatethelow-

strainbehaviorsofsoftening( )andthelow-strainplateaushearmodulus( ),

importantfortissueinteraction.

Specifically,Fig.2hindicatesthatthelow-strainstoragemoduluswasproportionalto

theYoung’smodulusoftheconstituentmicrogelmaterial(linearregression,P=8*10-88),

butindependentoftheparticlegeometry(P=0.50)orcrosslinkingdensity(P=0.29)

(statisticalanalysisinSupplementary14,item27).Ideally,ourmaterial’slow-strain

mechanicalbehaviorwouldmatchthatofnativesofttissue(lowerkParange12,13).Thus

weobtainourthirddesignrule:thebulkprecursorfromwhichwesynthesizeour

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 9: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

9

microparticlesuspensionshouldhaveastoragemodulusclosetothelowstrainlimitof

adiposetissue.

Thefirstthreedesigncriteriaproducetheoptimalrheologyforinjectability,

shapeability,andtissue-matching3Dstability.Ourlastguidelinecomesfromthe

establishedrulethatscaffoldsshouldhaveporesofatleast50µmdiametertoensure

vascularizationandcolonization34,35.Thusweobtainourfourthandfinaldesignrule:

themicroparticlesshouldhaveameanporesizeofatleast50microns.

Synthesis and mechanical characterization

Ourinsilicoanalysisrevealedthataninjectable,shapeable,andvolume-stablematerial

couldbeachievedbyadenselypackedsuspensionofelastic,frictionalmicroparticles

withirregularporousgeometry(Fig.2).Tofurtherensurebiocompatibilitywebased

oursynthesisonthecryogelation36ofcarboxymethylcellulose34,37.Thepolymercontent

wasadjustedtoobtainaporousbulkmaterialwithanelasticstoragemodulus(G’)of

2.4kPa+/-0.9kPa(Supplementary6).Wethereforesatisfieddesignrule#3,which

statedthatthebulkprecursorelasticstoragemodulusshouldbeinthelow-strainlimit

ofadiposetissue12,13.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 10: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

10

Fig.3.InvitrocharacterizationoftheEPIBiomaterial.Confocalimagesofa)theEPI

biomaterial(stainedwithrhodamine6G)andb)SephacrylS200(autofluorescence).The

starsdenoteporespace.Scalebars=200microns.c)G’oftheEPIbiomaterialasafunction

ofappliedoscillatorystressforvariousEPIbiomaterialpolymerconcentrations(indicated,

mg/ml).Largesymbols( ):solid-likebehavior(G’>G’’);smallsymbols( ):liquidlike

behavior(G’’<G’).Eachcurverepresentsasinglemeasurement.d)Normalizedmaster

curvesforEPIandSephacryl200,errorlines+/-onestandarddeviation.e)Poresizevs.

low-stressG0’values.Greybox( ):50μmminimalporesizeandaG0’valuebetween2and

3kParequiredformatchingadiposetissue12,13,34,35.f)ComparisonoftheEPIbiomaterial

(26mg/mL)tocommercialdermalfillerJuvedermVoluma(singlesamples)andre-plotted

literatureG’dataonbovineretro-orbitaladiposetissue13g)EPIbiomaterialinjectability.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 11: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

11

h)Uniaxialcompressionanalysisofasamplebeforepassagethroughthecannula,afterthe

firstpassage,andaftertwoconsecutivepassages.i)ComparisonofEandG0’beforeand

after1or2passagesthroughthecannula.j)RecoveryoftheG’valuesafteraperiodof

liquefyingshear(“Stress”).k)LevelofG’recoveredafterdifferenttime-pointsasafunction

ofcontinuousoscillatoryshearstress(samedatasetasforFig.3j).l)Rapidandreversible

self-healingbytransitionbetweenliquidstateandsolidstate.Errorbars=onestandard

deviation.SamplesizesandstatisticaltestingdetailsinSupplementary14,items28-41.

Throughforcefulextrusionwethenfragmentedthehighlyporousbulkmaterial37into

irregularmicroparticleswithadiameterof805+/-363µm(Supplementary7).Thanks

totheintra-particleporosity,theporespaceintheresultingEPIbiomaterialdisplaysan

intricateandwidelyconnectedmorphology(Fig.3a).Thisuniqueporositycontrasts

starklywiththatofatraditionalmicrogelsuspensionlikethechromatographymedium

SephacrylS20038,whereporesarelimitedtotheintersticesbetweenthedensespherical

particles(Fig.3b).Thereforetheabundanceoflargefrictionalporespacesfulfilled

designrules#2and#4,whiletheexceptionalirregularityfulfilleddesignrule#1.Thus

weobtainedanelastic,porous,andinjectable(EPI)biomaterialthatsatisfiedourpre-

defineddesigncriteria.

Withthefabricationphasecompletewebeganextensivephysicalcharacterization.We

firstinvestigatedthepresenceofanelasticsofteningtransition,alongwithhighyield

strain,aspredictedbyoursimulation(Fig.2).Forthis,wesubjectedtheEPIbiomaterial

(atvariouslevelsofpolymerconcentration)toincreasingoscillatoryshearstress(Fig.

3c,Supplementary10).Weindeedobservedastableelasticplateau,auniquesoftening

transition,andyieldingathighstrain(62+/-5%)forawiderangeofpolymer

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 12: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

12

concentrations,Supplementary10).Normalizationtothelow-strainplateauvalue(G0’)

39confirmsthatthesefeaturesareconservedfortheEPIbiomaterialacrossalltested

concentrations(Fig.3d).Asexpectedforanessentiallynon-frictional33micro-hydrogel

suspension(Supplementary5,ref.25),nodistinctsofteningbehaviorwasseenwiththe

SephacrylS200material(P=1.7*10-8fordifferenceat1%strain,item29Supplementary

14).Further,inagreementwithournumericalresultsforsphericalparticles,theyield

strainwassignificantlylower(24+/-6%,P=4.8*10-6vs.EPIbiomaterial,Supplementary

10anditem27inSupplementary14).Wethereforesucceededinengineeringanovel

biomaterialthatdisplaysnotonlyelasticbehaviorwithhighyielding,butalsoanew

softeningtransitionthatshouldenablebothshapingandtissuematching.

Ournextaimwasprecisemechanicalmatchingtoadiposetissue12,13,whileconservinga

poresizegreaterthan50μmrequiredforvascularization34,35.Fig.3edemonstrates

indeedaninverserelationbetweenG0’andtheaverageporediameter:Fluidwithdrawal

toincreasepolymerconcentrationsloweredbothtotalporefractionandaveragepore

size(Supplementary8).WiththeEPIbiomaterial,adiposetissuestiffnessG0’=2-

3kPa12,13wasmatchedwhilesuccessfullymaintainingaporesizeof100-120µm(Fig.

3e,Supplementary8and9).Onthecontrary,sufficientstiffnessintheSephacrylS200

materialcouldonlybeachievedatinsufficientporesize,andviceversa.TheEPI

biomaterialdesignthusspecificallyenablesthejointfulfillmentofbothmechanicaland

geometricrequirements.

Wefurtherassesseddynamicadiposetissuematchingbyrheologicalcomparisonofthe

EPIbiomaterialtothepublishedrheologicalresponseofadiposetissue(bovine,

retroorbital13).WefindthattheEPIbiomaterialdynamicallymimickstheoverall

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 13: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

13

adiposetissueresponseoverawiderangeofdeformations(Fig.3f).Inaddition,theEPI

biomaterialshowsyieldingbehaviorsimilartotheestablisheddermalfillerJuvéderm

Voluma(Fig.3f).TheJuvédermVolumafillerisknowntoconsistofirregularlyshaped

microparticles40,confirmingthepredictedimportanceofthisfeatureforhighyield

strain(57+/-7%forJuvédermVoluma®,P=1.0vs.EPIbiomaterial,Supplementary10).

ThesofteningtransitionengineeredintotheEPIbiomaterialadditionallyoffersthe

unprecedenteddynamictissuematching.

Forminimallyinvasivedelivery,theEPIbiomaterialmustbeinjectable.Fig.3g(controls

inSupplementary11)showsthattheforcesrequiredforextrusionoftheEPIarewell

belowtheupperboundofapproximately20Nreportedforfacilemanualinjectabilityin

aclinicalsetting20.Fig.3hfurtherindicatesconservationofmaterialproperties

throughouttheinjectionprocess,astheuniaxialcompressionresponsewasidentical

after1or2injectioncyclescomparedtotheoriginalcompressionresponse.TheYoung

modulus(E’)wasconservedoversubsequentinjectioncycles(Fig.3i,P=1.0,item35in

Supplementary14),whereastheelasticstoragemodulusG’actuallyslightlyincreased

(Fig.3i,P=3.4*10-8,item36inSupplementary14).Thisincreasewaslikelydueto

dehydrationduringtransfersteps.Overall,weconcludethattheEPIbiomaterialcan

easilybeinjectedandretainsitsmechanicalpropertiesafterminimallyinvasivedelivery

throughacannula.

Finally,weinvestigatedthephysicalself-healingprocessenablingrestorationofsolid-

likemechanicalintegrityaftertheinjectionprocess.ForFig.3j,self-healingoftheEPI

biomaterialfollowingfluidizationwasassessedunderweak(0.1Pa)tostrong(50Pa)

continuousoscillatorystress.Self-healingwasefficientforallstresslevels,butdifferent

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 14: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

14

time-scaleswereinvolved.Forsmallershearstresses,substantiallyhigherG’values

wereeventuallyachieved,butthefinalvaluewasreachedonatimescaleof10minutes

orabove(Fig.3j,Fig.3k,Supplementary12).Forstrongcontinuousshearstress,

relativelylowbutstableG’valueswererapidlyestablished.Usinganabruptswitchof

stressslightlyaboveandbelowyieldstress,wecouldindeeddemonstratenear-

instantaneousrecovery(Fig.3i,additionalcreep-recoverydatainSupplementary13).

Webelievethattheimmediateself-healingafterinjectioncouldstabilizetheinjected

implanttopreventunwantedspreading,followedbyattainmentofamuchhigherelastic

storagemodulustobettermatchthelocaladiposetissueatlongertimescales.

Insummary,wehaveengineeredanelastic,porous,andinjectable(EPI)meta-material

(Fig.1)accordingtothedesignspecificationsderivedfromclinicalcriteriaandinsilico

simulation(Fig.2).TheEPIbiomaterialdisplaysauniquetri-phasicrheology:Yield

stressenablesfacilemanualinjection,followedbyrapidinitialself-healingtoprevent

spreading.Thereversibleelasticsofteningtransitionthenprogressivelyrecoversan

elasticstoragemodulusof2-3kPa,inlinewiththatofthelocalsofttissue12,13.Thatsame

softeningtransitionenablestissue-matchingacrossawiderangeofappliedforces.

In-vivo

Afterthedesign,synthesis,andextensiveinvitrotestingofourengineeredmeta-

material,wetheninvestigatedinvivoperformanceoftheEPIbiomaterial.Withthe

ultimategoalofclinicalimplementation,wespecificallyexaminedminimally-invasive

delivery,insitushapeability,long-term3Dshapemaintenanceandtissueintegration.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 15: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

15

Fig.4.InVivoApplicationoftheEPIBiomaterial.a)Experimentalworkflowb)MRI

imagingoftheEPIimplantation,EPIlabeledinfalsecolor(centerofinjectedmaterialat

hairlinecrossing).Scalebars=1mm.c)A400μLbolusoftheEPIbiomaterialafter

minimally-invasiveinjection.d)EPIarbitrary3Dinsitushapingbyapplicationof

moderateexternalforces.e)Quantificationofthemaintenanceoftheshapebytheaspect

ratiooflengthalongtheinjectiondirectiontowidthoftheimplantforEPIandJuvéderm

Voluma®.f)HistologyoftheEPIafter21daysofimplantation,EPIscaffoldmaterialin

darkpurple(S).Towardstheleftlowercorner:endogeneousadiposetissue.Scalebar=500

µm.g)HistologyoftheEPIat6months.Scalebar=500µm.Notshaped,200μLbolus.h)

HistologyoftheEPIatdecreasedsynthesisconcentrationtoacceleratedegradation,at1

year.Exampleofasmallvesselshowninmagnifiedinset.Scalebar=100µm.Notshaped,

200μLbolus.i)Sameconditionas4h,highermagnificationimage.Degradingscaffold

denotedbystars,E=exampleofeosinophilicregion,H=exampleofregionstainedby

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 16: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

16

hematoxylin.Images4hand4iwereadjustedregardingwhitebalanceandluminosityon

cell-freeareasfordirectcomparisonto4g.Errorbars=onestandarddeviation.

Vasculatureoutlinedbyarrows.StatisticaltestingdetailsandsampleinSupplementary14,

items43-46.

Forthis,wemanuallyinjectedEPIbiomaterialintothesubcutaneousspaceofCD1mice

andthenshapeditbyapplicationofgentleexternalforce(Fig.4a).Wefoundthat

fluidizationenabledfaciledeliverythrougha20Gcatheter.MagneticResonanceImaging

(MRI)confirmedthatthematerialbehavedasawell-defined,cohesiveimplantinthe

dermalspace(Fig.4b).

Duringatimewindowofabout20minutesfollowingbolusinjection,thematerialcould

bere-shapedinsitutoproduceanewdesiredshape,retainedspontaneously(Fig.4c,4d,

4e,VideoSupplementary22).Thisindicatesoursuccessinengineeringashapeable

materialthatprovidessubstantialliftingcapacityfor3Dsofttissuereconstruction.For

comparisonwealsoinjectedabolusofthehyaluronicaciddermalfiller(Juvéderm

Voluma®)butwereunabletoperforminsitushaping,sincethematerialwouldspread

ratherthanadoptanewshape.

Aftertheshapingtimewindow,theshapestabilizedandexcessiveforcewasrequiredto

dislodgethemechanicallyinterlockedparticles.Weassessedthelong-termstabilityby

attemptingtoreshapethe3Dvolume(bymassaging)everydayduringthefirstweek,

andthenonceaweekfortheremainderofthe3weekfollow-up.Despitethisgentle

mechanicalchallenge,theshaperemainedremarkablystable(Fig.4e).

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 17: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

17

Onthetimescaleofhourstodays,initialstabilizationbymechanicalself-healingismost

likelyrelayedbyirreversiblebiologicalprocessessuchasfibrincoagulation41,and

progressivetissueingrowth(Fig.4f,21days).At6months(Fig.4g,notshaped),we

indeedfindmostoftheimplantporespacecolonized,withanonsetofscaffold

degradation.Wethenassessedbio-integrationatthescaleof1yearinFig.4hand4i

(reactionmixdiluted2:1withdeionizedwatertoenhanceourchancestoobservelate

biodegradationstages,notshaped).WefindareasofadvancedEPIbiomaterial

degradationatoneyear(starsinFig.4i).Afibrovasculartissue(pinkinFig.4hand4i,

examplelabeled“E”inFig.4i)neverthelesspersists,alongwithpresumablyphagocytic

cellsprocessingthedegradingmaterial(lightpurpleinFig.4handFig.4i,example

labeled“H”).Detailedquantificationoflong-termvolumestability,colonizationand

biocompatibilityoftheEPIbiomaterialincomparisonwithcommercialinjectablesisto

bepublishedelsewhere(A.B.,M.Genta,N.Kunz,P.B.,T.B.,inpreparation).

Takentogether,ourinvivoexperimentationdemonstratedthattheuniquerheological

andmorphologicalpropertiesoftheEPIbiomaterialtranslatedintoanovelcapacityto

inject,shape,andstabilizecustomized3Dtissuevolumesfortissueinduction.Giventhe

rangeofconditionsdrivingapathologicallossofsofttissuevolume,weproposethatour

newmeta-materialapproachcouldhaveamajorimpactonclinical3Dtissue

reconstruction.

Discussion

Wepresentthedesign,synthesis,andtestingofanin-vivo3Dshapetissueengineering

materialbaedonmeta-materialphysics.23,24Numericalsimulationallowedusto

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 18: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

18

translatetheunmetclinicalneedofashapeablesofttissueimplant8,11,16intoasetof

engineer-ablemechanicalandgeometricparameters.Withtheelastic,porous,and

injectable(EPI)biomaterial,weachieveddesiredshape-stable,softening,andyielding

behaviors,alongwithsubstantialporosityandatissue-matchingmechanicalresponse.

Theresultwasexcellentin-vivoinjectability,shapeability,shapestabilizationaswellas

long-term3Dtissueintegration.

Inthisworkweengineeredandexploitedtheelasticsofteningtransitiontocombine

injectabilitywiththefullmatchingofadiposetissuerheologyoverawiderangeof

strains.Suchanapproachallowsforaminimally-invasivefillerwithunprecedentedin

vivo3Dlifting11andshapingcapacity.Strainsofteningiscommoninductilematerials

(likeplasticsormetalalloys)butitisgenerallyaccompaniedbylarge-scaleplastic

deformation42.Onthecontrary,reversiblestrainsofteningwithnegligibledeformation

israre,buthasbeendescribedpreviouslyinactinorcellulosehydrogels26,27.Thoughtto

becausedbyabucklingofconstituentfibers,thisresponseallowsthenetworkto

maintainrigidityatnearstaticconditionsbutsmoothlyandreversiblyrespondto

moderateforcesbycontrolleddeformationaftersoftening26.Reversiblestrainsoftening

inmicrogelsuspensionshasbeenconjectured25,43,hereweprovideexperimentalproof.

Taughtbythenumericalsimulation,thekeytothisachievementisthecombinationof

porosityandirregularparticleshape.Indeed,sphericalcryogelparticlesarereportedto

displayalowyieldstrainandcompleteabsenceofasofteningregime44,whiledermal

fillerswithirregularhyaluronicacidparticles40havehighyieldstrain8,butdonot

displayreversiblesoftening.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 19: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

19

OurfocusongeometricaldesignofthemicrostructurecharacterizestheEPIbiomaterial

asamechanicalmeta-material24.Hereweemployedcarboxymethylcellulose-based

scaffoldchemistryforitsknownbiocompatibility34andobtainedexcellentbio-

integrationupto1year.Nevertheless,ourmeta-materialdesignsuggeststhatother

scaffoldchemistriescouldbeusedtorealizesimilarmaterials.Thusinjectable,

shapeable,porousmaterialscouldbeappliedtofieldsasdiverseasboneengineering,

woundrepair,andregenerativeorganengineering.Bymodulatingthestiffness,

degradation,andbiologicalactivityorcelldelivery14,37,webelieveourapproachiswell

suitedforawiderangeofcustomizedtissueengineeringapplicationsbeyond3Dsoft

tissuereconstruction.

Acknowledgments

ParticularthanksgotoAleksandraFilippovaforhelpwithteamcoordinationandtask

schedulingandDanielLyubenovforinitialhelpwiththesimulation.Wewouldfurther

liketothankBenoitDesboillesforSEMimaging,NicolasKunzforMRIimaging,andSidi

Bencherifforteachingandinitialhelpwiththecryogeltechnology,MartinaGentaand

MarianaMartinsforhelpwithanimalexperiments,andProf.PaulBowenforlettingus

usehisrheometer.Wealsoacknowledgethesupportbythefollowingfacilitiesandtheir

staff:microscopicimagingfacilitiesoftheUniversityofGeneva(BioimagingCoreFacility

oftheFacultyofMedicine)andEPFLLausanne(BioimagingandOpticsPlatform),the

histologycorefacilityatEPFLandparticularlyJessicaSordet-Dessimoz,theCenterof

MicronanotechnologyCMIandtheCIBMfacilityatEPFL,includingitsanimalfacility.

ThesimulationswereperformedontheBaobabClusteroftheUniversityofGeneva.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 20: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

20

FundingforthisworkwasprovidedbytheSwissNationalScienceFoundation

(PP00P2_163684andPZ00P2_161347),theGebert-Rüffoundation(GRS-0043/15),and

aWhitakerInternationalFellowship.

Author contributions

A.Béduer,F.Bonini,C.VerheyenandT.Braschlercontributedtothedesignofthisstudy.

Allauthorscontributedtothewritingandproofingofthemanuscript.A.Béduercarried

outandanalyzedthein-vivostudy.F.Boniniprovidedthemorphologicalbiomaterial

characterizationandthedesignofthefiguresinthemanuscript.C.Verheyenperformed

themechanicalcharacterization,andT.Braschlerwrotethesoftware,ranandanalyzed

thesimulations.P.Burchdevelopedandoptimizedbiomaterialfabrication.

Competing interests

A.BéduerandT.BraschlerdeclarefinancialinterestinVolumina-MedicalSA,

Switzerland,P.BurchandA.BéduerarenowemployeesofVolumina-MedicalSA.The

otherauthorsdeclarenoconflictofinterest.

Data availability

Figures2,3and4haveassociatedquantitativerawdata.Therawdataandthescriptsto

producethequantitativefiguresareprovidedattheZenodorepository

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 21: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

21

(https://zenodo.org/record/2653804#.XNBXFIS7Ldk).Qualitativerawdata(histology,

MRI)isavailablefromtheauthorsuponrequest.

Code availability

Thefullsimulationsourcecodeisavailablefordownload(Supplementary15).Detailsof

themathematicalmodel(Supplementary1),fullusageinstructions(Supplementary2),

implementationdetailsincludingpseudocode(Supplementary3),anautomatically

generatedfullAPIdocumentation(Supplementary16)andunittestcases

(Supplementary4)arealsoprovided.Aquickinstallationguideisavailablein

Supplementary17.ThesourcecodeisalsoincludedintotheZenodorepository

(https://zenodo.org/record/2653804#.XNBXFIS7Ldk)forappropriateversioning.

References

1 Wysong,A.,Joseph,T.,Kim,D.,Tang,J.Y.&Gladstone,H.B.Quantifyingsofttissuelossinfacialaging:astudyinwomenusingmagneticresonanceimaging.DermatolSurg39,1895-1902,doi:10.1111/dsu.12362(2013).

2 Patrick,C.W.,Jr.Tissueengineeringstrategiesforadiposetissuerepair.AnatRec263,361-366,doi:10.1002/ar.1113(2001).

3 Sturm,L.P.,Cooter,R.D.,Mutimer,K.L.,Graham,J.C.&Maddern,G.J.AsystematicreviewofpermanentandsemipermanentdermalfillersforHIV-associatedfaciallipoatrophy.AIDSPatientCareSTDS23,699-714,doi:10.1089/apc.2008.0230(2009).

4 VanNieuwenhove,I.etal.Softtissuefillersforadiposetissueregeneration:Fromhydrogeldevelopmenttowardclinicalapplications.ActaBiomater63,37-49,doi:10.1016/j.actbio.2017.09.026(2017).

5 Gandaglia,G.etal.Effectofminimallyinvasivesurgeryontheriskforsurgicalsiteinfections:resultsfromtheNationalSurgicalQualityImprovementProgram(NSQIP)Database.JAMASurg149,1039-1044,doi:10.1001/jamasurg.2014.292(2014).

6 Ochsner,J.L.Minimallyinvasivesurgicalprocedures.OchsnerJ2,135-136(2000).

7 Tezel,A.&Fredrickson,G.H.Thescienceofhyaluronicaciddermalfillers.JCosmetLaserTher10,35-42,doi:10.1080/14764170701774901(2008).

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 22: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

22

8 Ilyin,S.O.,Kulichikhin,V.G.&Malkin,A.Y.Therheologicalcharacterisationoftypicalinjectionimplantsbasedonhyaluronicacidforcontourcorrection.RheolActa55,223-233,doi:10.1007/s00397-016-0913-z(2016).

9 Ramakrishna,S.,Mayer,J.,Wintermantel,E.&Leong,K.W.Biomedicalapplicationsofpolymer-compositematerials:areview.CompositesScienceandTechnology61,1189-1224,doi:https://doi.org/10.1016/S0266-3538(00)00241-4(2001).

10 O'Brien,F.J.Biomaterials&scaffoldsfortissueengineering.MaterialsToday14,88-95,doi:https://doi.org/10.1016/S1369-7021(11)70058-X(2011).

11 Borrell,M.,Leslie,D.B.&Tezel,A.Liftcapabilitiesofhyaluronicacidfillers.JCosmetLaserTher13,21-27,doi:10.3109/14764172.2011.552609(2011).

12 Patel,P.N.,Smith,C.K.&Patrick,C.W.Rheologicalandrecoverypropertiesofpoly(ethyleneglycol)diacrylatehydrogelsandhumanadiposetissue.JBiomedMaterResA73a,313-319,doi:10.1002/jbm.a.30291(2005).

13 Yoo,L.,Gupta,V.,Lee,C.,Kavehpore,P.&Demer,J.L.Viscoelasticpropertiesofbovineorbitalconnectivetissueandfat:constitutivemodels.BiomechModelMechanobiol10,901-914,doi:10.1007/s10237-010-0281-z(2011).

14 Bencherif,S.A.etal.Injectablepreformedscaffoldswithshape-memoryproperties.PNatlAcadSciUSA109,19590-19595(2012).

15 Montgomery,M.etal.Flexibleshape-memoryscaffoldforminimallyinvasivedeliveryoffunctionaltissues.NatMater16,1038-1046,doi:10.1038/nmat4956(2017).

16 Kempe,S.&Mader,K.Insituformingimplants-anattractiveformulationprincipleforparenteraldepotformulations.JControlRelease161,668-679,doi:10.1016/j.jconrel.2012.04.016(2012).

17 Vaishya,R.,Chauhan,M.&Vaish,A.Bonecement.Journalofclinicalorthopaedicsandtrauma4,157-163,doi:10.1016/j.jcot.2013.11.005(2013).

18 Guvendiren,M.,Lu,H.D.&Burdick,J.A.Shear-thinninghydrogelsforbiomedicalapplications.SoftMatter8,260-272,doi:10.1039/c1sm06513k(2012).

19 Shao,Y.,Jia,H.,Cao,T.&Liu,D.SupramolecularHydrogelsBasedonDNASelf-Assembly.AccChemRes50,659-668,doi:10.1021/acs.accounts.6b00524(2017).

20 Chen,M.H.etal.MethodsToAssessShear-ThinningHydrogelsforApplicationAsInjectableBiomaterials.AcsBiomaterSciEng3,3146-3160,doi:10.1021/acsbiomaterials.7b00734(2017).

21 Geurtsen,W.Substancesreleasedfromdentalresincompositesandglassionomercements.EurJOralSci106,687-695(1998).

22 Goldring,S.R.etal.Formationofasynovial-likemembraneatthebone-cementinterface.Itsroleinboneresorptionandimplantlooseningaftertotalhipreplacement.ArthritisRheum29,836-842(1986).

23 Kadic,M.,Milton,G.W.,vanHecke,M.&Wegener,M.3Dmetamaterials.NatureReviewsPhysics1,198-210,doi:10.1038/s42254-018-0018-y(2019).

24 Bertoldi,K.,Vitelli,V.,Christensen,J.&vanHecke,M.Flexiblemechanicalmetamaterials.NatRevMater2,doi:ARTN17066

10.1038/natrevmats.2017.66(2017).25 Otsuki,M.&Hayakawa,H.Discontinuouschangeofshearmodulusforfrictional

jammedgranularmaterials.PhysRevE95,062902,doi:10.1103/PhysRevE.95.062902(2017).

26 Chaudhuri,O.,Parekh,S.H.&Fletcher,D.A.Reversiblestresssofteningofactinnetworks.Nature445,295-298,doi:10.1038/nature05459(2007).

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 23: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

23

27 Torres,F.G.,Troncoso,O.P.,Lopez,D.,Grande,C.&Gomez,C.M.Reversiblestresssofteningandstressrecoveryofcellulosenetworks.SoftMatter5,4185-4190,doi:10.1039/b900441f(2009).

28 Johl,S.S.&Burgett,R.A.Dermalfilleragents:apracticalreview.CurrOpinOphthalmol17,471-479,doi:10.1097/01.icu.0000243021.20499.4b(2006).

29 Nicot,F.,Hadda,N.,Guessasma,M.,Fortin,J.&Millet,O.Onthedefinitionofthestresstensoringranularmedia.IntJSolidsStruct50,2508-2517,doi:10.1016/j.ijsolstr.2013.04.001(2013).

30 Fortin,J.,Millet,O.&deSaxce,G.Constructionofanaveragedstresstensorforagranularmedium.EurJMecha-Solid22,567-582,doi:10.1016/S0997-7538(03)00054-8(2003).

31 Schramm,G.APracticalApproachtoRheologyandRheometry.(GebruederHAAKEGmbH,1994).

32 Maiti,R.etal.Invivomeasurementofskinsurfacestrainandsub-surfacelayerdeformationinducedbynaturaltissuestretching.JMechBehavBiomedMater62,556-569,doi:10.1016/j.jmbbm.2016.05.035(2016).

33 Bhattacharjee,T.etal.Polyelectrolytescalinglawsformicrogelyieldingnearjamming.SoftMatter14,1559-1570,doi:10.1039/c7sm01518f(2018).

34 Beduer,A.etal.Additivemanufacturingofhierarchicalinjectablescaffoldsfortissueengineering.ActaBiomater76,71-79,doi:10.1016/j.actbio.2018.05.056(2018).

35 Chiu,Y.C.etal.TheroleofporesizeonvascularizationandtissueremodelinginPEGhydrogels.Biomaterials32,6045-6051,doi:10.1016/j.biomaterials.2011.04.066(2011).

36 Okay,O.etal.PolymericCryogels:MacroporousGelswithRemarkableProperties.(Springer,2014).

37 Beduer,A.etal.Acompressiblescaffoldforminimallyinvasivedeliveryoflargeintactneuronalnetworks.AdvHealthcMater4,301-312,doi:10.1002/adhm.201400250(2015).

38 Johansson,B.L.&Gustavsson,J.Elutionbehaviourofsomeproteinsonfresh,acid-orbase-treatedSephacrylS-200HR.JChromatogr457,205-213(1988).

39 Menut,P.,Seiffert,S.,Sprakel,J.&Weitz,D.A.Doessizematter?Elasticityofcompressedsuspensionsofcolloidal-andgranular-scalemicrogels.SoftMatter8,156-164,doi:10.1039/c1sm06355c(2012).

40 Ohrlund,J.A.&Edsman,K.L.TheMythofthe"Biphasic"HyaluronicAcidFiller.DermatolSurg41Suppl1,S358-364,doi:10.1097/DSS.0000000000000545(2015).

41 Langdell,R.D.,Bowersox,L.W.,Weaver,R.A.&Gibson,W.S.Coagulationpropertiesofcaninethoracic-ductlymph.AmJPhysiol199,626-628,doi:10.1152/ajplegacy.1960.199.4.626(1960).

42 Roesler,J.,Harders,H.&Baeker,M.MechanicalBehaviourofEngineeringMaterials:Metals,Ceramics,PolymersandComposites.(Springer,2007).

43 Dagois-Bohy,S.,Somfai,E.,Tighe,B.P.&vanHecke,M.Softeningandyieldingofsoftglassymaterials.SoftMatter13,9036-9045,doi:10.1039/c7sm01846k(2017).

44 Xia,P.F.etal.InjectableStemCellLadenOpenPorousMicrogelsThatFavorAdipogenesis:InVitroandinVivoEvaluation.AcsApplMaterInter9,34751-34761,doi:10.1021/acsami.7b13065(2017).

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 24: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

24

Online Methods

Simulation

ThesimulationwasimplementedasacustomPythonlibrary.Itimplementsthephysical

interactionframeworkdefinedbyOtsukiatal.25,correspondingtocentralviscoelastic

interactionandtangentialfrictionbetweensphericalparticles.Toensureexactrather

thanapproximateconservationofangularmomentum,weadjustedtheexpressionof

thetorqueresultingfromfrictionalinteraction(Supplementary1,eq.S1-3).

Tocorrectlyevaluatestresstensorsatlargeamplitudes,weimplementedthestress

tensorevaluationframeworkprovidedbyNicotetal.29.Asunittesting(Supplementary

4)revealednon-symmetricstresstensorsinsomecases,were-evaluatedthe

calculationsbyNicotetal.29.Wefoundaprobableintegrationmistakeregardingthe

inertiamatrixforthecontributionofunbalancedtorquestothestresstensor

(Supplementary1).Thisdirectlyconcernseq.29inref.29,andasresultalsoeq.30-35in

ref.29;weuseacorrectedversionofeq.34inNicotetal.29,suppliedaseq.S1-24in

Supplementary1.Toavoidcompleteinterpenetrationofneighboringparticlesatlarge

shear,weaddedanon-lineartermtotherepulsiveelasticinteraction.Weensuredthat

inthesmallcompressionlimit,werecoverthelinearrepulsionlawusedbyOtsukiet

al.25(Supplementary1,eq.S5b).

Finally,wealsoimplementthepossibilityofpermanentcrosslinksbetweenneighboring

spheres.Thepermanentcrosslinksremainintactregardlessofthegeometrical

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 25: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

25

separationofthespheres,generatingattractiveforcesifthespheresareseparated

beyondtouchingdistance.Theyalsodonotallowforfrictionalslippage.Additional

mathematicaldetailsoftheimplementationaregiveninSupplementary1.Thesource

codecanbedownloadedasSupplementary15;softwareusage,implementationdetails

andtestcasesareprovidedrespectivelyinSupplementary2,3and4.ThefullAPI

documentationisavailableasSupplementary16,andquickinstallinstructionsas

Supplementary17,simulationvideosareprovidedasSupplementary18–

Supplementary21.

ThesimulationswererunontheBaobabclusteroftheUniversityofGeneva.

Instructionsonhowtoreplicateoursimulationsanddataanalysisareprovidedin

Supplementary2.

Statistics

StatisticalevaluationandgraphingweredoneusingtheR-Cranfreesoftware,version

3.2.345.Centraltendencywasreportedbyarithmeticmeanvalues,andvariabilityby

indicationofsinglestandarddeviations.Forcomparisonswith5orlessmeasurements

pergroup,individualvalueswerealsographed(Fig.3i,Fig.4e).Linearregressionwas

usedtoassesscontinuouseffects,andpairedorunpaired,Student(t)testswereusedto

compareindividualconditions,withP-valuesreportedafterBonferronimultipletesting

correction46foralltestsperformedpersubfigure.Foralltests,theShapiro-Wilkstest

wasusedtoassessnormalityoftheresiduals.Ifsignificantdeviationwasfound,an

alternativetestwasevaluated:generalizedlinearmodelswithidentitylinkbut

expection-valuedependentvariance(quasi-likelihoodestimators47)toaccommodate

heteroscedasticityinlinearregression,andWilcoxonsignedrank(paired)orMann-

WhitneyU(unpaired)forbinarycomparison.Alltestsperformedarereportedin

Supplementary14,includingtheireffectsizesandnormalitytestingresults.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 26: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

26

Forthestatisticalevaluationofthecharacteristicstrainsandstressesofthesimulated

elasticstoragemodulusandviscouslossmoduluscurves(G’andG’’)asafunctionofthe

modelparameters(Fig.2G)abootstrappingapproachwastaken48.Foragivensetof

modelparameters,5subsetsamongthesimulationscarriedoutforthevariousstrain

amplitudesaredrawnrandomlywitha20%probabilityforagivensimulationtobe

included.Foreachsubset,slightlydifferentestimationsforcharacteristicstressesand

strainsasdefinedinFig.2farethusobtained.Bylinearregressionofthesevalues

againstthephysicalparameterbeingvaried,theP-valuesdepictedinFig.2gare

obtainedafterBonferronicorrection46.ToreducedependenceoftheP-valueonthe

randomdraw,weaveragedtheunderlyingF-statisticsover500bootstrappingruns48.

Reagents

1,4-Piperazinediethanesulfonicacid(PIPES),adipicacidanhydride(ADH),1-ethyl-3-(-

(3-dimethylaminopropyl)carbodiimide(EDC),rhodamine6Ghydrochloride,4′,6-

diamidino-2-phenylindole(DAPI),6-aminofluorescein,37%HClsolution,NaOHpellets

andSephacrylS200HRwereallpurchasedfromSigma-Aldrich.Carboxymethyl

cellulose(AQUALONCMC7LFPH,90.5KDa,DS:0.84)waspurchasedfromAshland.

EDTASolution(0.5M,pH8.0)wasobtainedfromThermoFisherScientific.Saline

solution(0.9%NaCl)waspurchasedfromBichsel.Disposablesterilevacuumfiltration

systems(poresize0.2um,filtercapacity1000mL)werepurchasedfromSigma-Aldrich,

whereascellstrainers(40µm)wereobtainedfromVWR.

Biomaterialsynthesis

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 27: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

27

Cryogelscaffoldsweresynthesizedasreported37,withminormodifications.Briefly,

carboxymethylcellulose(13.56g),PIPESBuffer(6.30g),adipicacidanhydride(486mg)

andNaOHpellets(1.20g)wasdissolvedtoafinalvolumeof1000mLindeionizedwater

andthesolutionfilteredat0.2µm.Thissolutioncouldbestoredina4°Cforuptoa

monthpriortouseinafridge.ThenEDC(2.70g)wasadded.Aftermixing,thesolution

wasfilledinto35mLplasticsyringes.Thesyringeswereclosedwithasyringecapand

thenplacedintoafreezersetto-20oC.

After2daysthesyringeswereremovedfromthefreezerandallowedtoreachroom

temperature.TheEPIbiomaterialwasobtainedbyforcefulextrusionthrougha22G

catheter.Onafiltersystem,thebiomaterialwaswashedwith10mMEDTA,followedby

incubationwith2MNaOHsolution(2h),washingwithphysiologicalsaline(3x).Forin-

vivoexperimentsthebiomaterialwassterilizedfor20minat121°C.

Microscopicimaging

ConfocalimageswerecapturedonaconfocalZeissLSM700drivenbyZen2010b

versionservicepack1(Zeiss),usinga10xPlanNeofluarlenswithanumericalaperture

(NA)of0.3ora20xPlanApochromatobjectivewithNA=0.8.Alternatively,wealsoused

aZeissLSM800drivenbyZEN2.3withZENmoduleTiles(Zeiss),alsousingeither10x

PlanApochromatlenswithNA=0.45ora20xPlanApochromatwithNA=0.8.Imagesof

histologicalslideswereacquiredwithaLeicaDM750,withachromatlensesof10x(HI

PLAN,NA=0.25),20x(HIPLAN,NA=0.4)or40xmagnification(HIPLAN,NA=0.65),with

imagestoragedirectlytoanSDcardbyaLeicaICC50HDCamerawithoutadditional

software.Table1belowdetailsthemicroscopesetupusedforeachexperimentorfigure.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 28: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

28

Figure Microscope/Objective Adjustments

1f ZeissLSM700,10x Noadjustment

3a ZeissLSM700,10x Noadjustment

3b ZeissLSM800,20x Noadjustment

4f LeicaDM750,10x Noadjustment

4g LeicaDM750,10x Noadjustment

4h LeicaDM750,20x Adjustmentofwhitebalance

andluminosityoncell-freeareas

tomatchFig.4g

4i LeicaDM750,40x Adjustmentofwhitebalance

andluminosityoncell-freeareas

tomatchFig.4g

Table1.Microscopicimaging.Summarylistofthemicroscopesandobjectivesused.

Furtherdetailsonthemicroscopesandlensesinthetext.

Forvisualizationandmorphologicalquantification,theEPIbiomaterialwasstainedwith

5microgram/mLRhodamine6Ghydrochloride(Fig.1and3a)or4′,6-diamidino-2-

phenylindole(DAPI,byaffinitytothefinalmaterial)or6-aminofluorescein(byinclusion

of10micromolaraminofluoresceinintothesynthesismixture37),orDAPIand

aminofluorescein(Fig.1).Forthereferencematerial,SephacrylS200,auto-fluorescence

images(excitation353nm,emission405nmandabove)wasusedforvisualizationand

quantification.

ScanningelectronmicroscopeSEMimageswerefinallyacquiredwithaZeissMerlin

SEM,equippedwithaGeminiIIcolumnandtheZeissSmartSEMacquisitionsoftware.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 29: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

29

Poresizeandporefraction

Afterstaining(fortheEPIbiomaterial)andconfocalimageacquisition,Fijisoftware49

(ImageJversion2.0.0-rc-44/1.50g)wasusedtovisualizez-stackimages,andtoquantify

poresizeandfractionaswellasparticlesize.Forporefractionquantification,images

wereacquiredataresolutionsothatseveralporesfitacrosstheimage,implying

generallytheuseofa10xobjectivefortheEPIbiomaterialvs.a20xobjectiveforthe

SephacrylS200controlmaterial.TheEPIbiomaterialwasstainedwithrhodamine6G

(excitedat550nm)whereasautofluorescenceimages(excitedat355nm,)were

acquiredfortheSephacrylS200reference.Theimageswerethresholdedautomatically

usingtheLialgorithm50,built-ininFiji.Incaseofevidentgrossmisinterpretationofthe

imagesbythealgorithm,thresholdingwascarriedoutmanuallyinstead.Thewalland

porefractioncouldthenbeestimatedfromthefractionofwhiteandblackpixels;for

poresizeestimation,themaximalspherefittingalgorithmbyBeatMünchetal.51,52was

used(Supplementary8).Foreachpolymerconcentrationandmaterial,between20and

34imageswerequantified.

Particlesizedistribution(Supplementary7)finallywasevaluatedfromlargetile-

stitchedimagesacquiredondiluteparticlesuspensionsusingaZeissLSM800witha5x

PlanApochromatobjective,NA=0.16,afterstainingwithrhodamine6Gasforporesize.

StandardFiji49routineswerethenusedontheresultinglargeimages:binarizationby

manualthresholding,digitalfillingofholes,andparticlesizeanalysis(minimalsize10

micrometers2,circularityatleast0.1).

Forallconfocalimaging,observationchambersavoidingbothevaporationand

mechanicalcompressionwereused.Thesechambersconsistedofa1.5mmhighPerspex

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 30: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

30

sheet(Evonik)cuttotheshapeofamicroscopeslide(75mmx25mm)usingalaser

cutter(HobbyLaser,FullSpectrumEngineering,commandeeredbyFullSpectrumLaser

RetinaEngrave3D,Version4.423).Arectangularsamplereservoir(30mmx12.5mm)

wasfurthercutintothesePerspexmicroscopeslides.Amicroscopecoverslidewasglued

permanentlytothelowersideofthePerspexmicroscopeslideusingbathroomsilicone

glue(CoopBricoLoisir,Switzerland).Afterfillingwiththesampletobeobservedby

confocalmicroscopy,theobservationchamberwasclosedbycapillarityusingasecond

microscopecoverslide.

Rheology

RheologicalmeasurementswerecarriedoutonaHaakeRheostressRS1005Ncm

apparatus,usingtheRheoWinsoftware(RheoWinJobManager:version3.61.0005)to

controltheapparatusandacquiredata.Toavoidwallslipping,roughenedsurfaceswere

obtainedbygluingaroughcleaningcloth(Miobrill,MigrosSwitzerland,ref.7065.206/

15.02.2330)withhotglue(UHU,LT110,localhardwarestore)tothesurfacesincontact

withthematerial.Experimentsweregenerallyconductedinacustomcupgeometry

(Supplementary10),exceptforwherethesamplevolumewastoolow(Juvéderm

VolumasampleforFig.3fandtheinjectedsamplesforFig.3i,measuredwithplate-plate

geometry:HaakePP20,ref.222-0586).Inaddition,wemeasuredrepeatedsolid-liquid

transition(Fig.3l)withavanegeometry(HaakeFL-16,ref.222-1326)tolimitsample

movement.Furtherdetailsandcomparisonofthedifferentgeometriesaregivenin

Supplementary10.Asolventtrap(Haakeref.222-0607)wasusedwheneverpossibleto

limitsampleevaporation.

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 31: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

31

Withtheexceptionoftheself-healingexperiments,wegenerallypreconditionedthe

materialwithanoscillatorystresssweepfrom1-10Paandbackat0.2Hzbefore

applyingthedesiredshearprotocolstominimizetheimpactofshearhistory.Inrare

casesofverydilutematerial,wefoundthistoinducesignificantshearsofteningoreven

yielding,inwhichcasewechangedtoapreconditioningsweepfrom0.1Pato1Paand

back,stillat0.2Hz.Afterdataacquisition,weexportedthedatatotextfiles(RheoWin

DataManger:version3.61.0005)andcompleteddatatreatmentandgraphinginR-Cran

(version3.2.3).

RheologicalmastercurvesrepresenttheelasticmodulusG’normalizedtotheplateau

valueatlowstress39.TheyareobtainedbynormalizingG’curveswithrespecttothe

low-strainG0’plateauvalue39.Weevaluatethelow-strainlimitG0’astheaverageofthe

G’valuesforthemeasurementpointswithlowappliedshearstress(τ<2Pa).Wefurther

takecaretoexcludepointsshowingalreadyanonsetofsofteningorliquefactionbyalso

imposingG’’(τ)<0.1*G’(τ).WealsonormalizetheappliedstressτtoG0’.Aftervisual

verificationthatindeedallthedifferentG’curvesobtainedatdifferentpolymer

concentrationscollapseontoasinglemastercurveafternormalizationofboththeG’and

τ,weobtainthemainmastercurvebyaveragingofthenormalizedcurves,alongwith

evaluationofthestandarddeviation.Forthemorehorizontalpartofthemastercurve

(G’/G0’>0.5fortheSephacrylS200mastercurve,G’/G0’>0.1fortheEPIbiomaterial)we

performverticalaveragingoftheG’/G0’associatedwithagivenintervalofappliedstress

τ,whereasforthesteepestpartofthemastercurves,weratheraveragetheτassociated

withagivenintervalofG’/G0’values.

Uniaxialcompressionandinjectabilitytesting

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 32: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

32

WeperformeduniaxialcompressiontestingonaTextureAnalyzerTA.XTplusmachine

byStableMicrosystems,usingtheTestMakerprogram(Version4.0.6.0)suppliedbythe

manufacturertoprogramthetests,andtheTextureExponent32program(Version

4.0.13.0),alsosuppliedbythemanufacturer,torunthem.Afteracquisition,thedatawas

exportedastextandanalyzedusingR-Cran.

Forcompressionanalysisoftheelasticporousinjectable(EPI)biomaterial,adiskof

20mmdiameterandapproximately6mmheightwasshapedundera20mmdiameter

chuck.Thechuckwasthenmovedbyfeedbacktothezeroforcecondition.Thisdefined

theoriginalsampleheight,usuallyintherangebetween5and6mmdependingonthe

actualamountofsample.Fromthisposition,compressionby50%oftheheightata

speedof0.01mm/swasthencarriedout,acquiringtheforceandpositiondata.The

forcewaslow-passfilteredtoreducenoice,andwasthenconvertedtostressbydividing

throughthecontactarea(circleof10mmradius),whereasdeformationwasexpressed

asdeformationstrainrelativetooriginalsampleheight.

Forinjectabilityanalysis,a1mLsyringe(BD)wasloadedwithtestmaterial(EPI

biomaterial,deionizedwater,orair),andequippedwithabluntdeliverycannula

(ThiebaudBiomedicaldevices,ref.F9020100,outerdiameter2mm,length10cm).The

syringewasthenplacedoncustomholder.Thepistonwasthenmovedbyusingthe

TextureAnalyzerXTPlusmachineatthedesiredrate,whilerecordingforceand

distance.

Animalexperiments

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 33: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

33

Allin-vivoexperimentswereapprovedbytheAnimalCareandUseCommitteeofthe

CantonofVaud,Switzerland(AuthorizationVD3063).Female,adultCD1micebetween

12and20weeksofagewereobtainedfromCharlesRiver(BarHarbor,Maine,USA)and

allowedtoacclimatizeintheanimalfacilityforatleast1weekpriortoimplantation.

Roomtemperaturewaskeptat22+/-2°Cwith12hourslight/darkcycleandnormaldiet

adlibitum.

Priortoinjection,animalswereanesthetizedwith4%(2%formaintenance)isoflurane

(AnimalcareLtd),usinganophthalmicgel(Viscotears,Alcon)foreyeprotection.The

areaforinjectionwasshavedanddisinfectedwithbetadine(MundipharmaMedical

Company).Forinjection,asmallaccesswascreatedintheskinwitha18Gneedle,

followedbyinjectionofbiomaterialsamples(2injectionsitesperanimal,ormax.400

μLintosinglesite)througha20Gcatheter(BDBiosciences).Nosutureswererequired.

Animalsweremonitoredweeklythroughoutthestudy.

WhenshapingwasfirstattemptedwiththeJuvédermVoluma®,thematerialwasfound

toflowandredistributeduringtheprocedure,andduringfollow-up,weobservedlarge

swellingresponsesoverthefollowingweeks.Toavoidunnecessarystrainonthe

animals,wethereforelimitedthemaximuminjectionvolumeforJuvédermVoluma®to

200μLandrefrainedfromshaping.Theswellingresponseandsomespontaneous

redistributionstilltookplace,butthisallowedustofollowtheaspectratioovertime

despitetheseunexpectedexperimentaldifficulties.

Atpre-definedtimepointsthemacroscopicdimensionsoftheimplantswereassessed

withacaliper(day0,after3days,after3weeks).Forhistologicalevaluation(at3weeks

forshapedsamples,at6monthsand1yearforunshaped200μLsamples),micewere

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 34: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

34

sacrificedbyintraperitonealinjectionofsodiumpentobarbital(150mg/kg),followedby

transcardialperfusionwith4%paraformaldehydeinPBS.Harvestedsampleswere

furtherimmersedfor24hoursin4%paraformaldehydeat4°C,washed3xwithPBSand

embeddedinparaffinfollowingroutineprocedures.4µmsliceswerestainedwith

hematoxylin/eosininanautomatedslideprocessor(Prismaspecialstainer,Tissue-Tek;

GlasG2coverslipperfromSakura).

Magneticresonanceimaging

Magneticresonanceimaging(MRI)imageswereacquiredat3dayspost-implantationon

aVarianINOVAconsolewith14.1Tmagnetof26cmhorizontalbore(MagnexScientific,

Abingdon,UK)andagradientcoil(maximum400mT/m)withafixrisetimeof120ms.

Ahome-builtsingleloopsurfacecoilof24mmofdiameterwasusedasatransceiver

positionedontopofthetissuegraft.

Duringmeasurements,eachadultmousewasanesthetizedwith1.5–2%isofluranein

mixtureofairandO2(50/50%)andsubsequentlyplacedsupinewithinanadapted

holder.Bodytemperaturewasmaintainedat37°Cusingathermoregulatedwater

circuit.Monitoringrespirationwitharespirationcushionwasusedfortriggeringduring

allacquisitions.

Spinechointensityimageswereacquiredwitharepetitiontimeof1.5sandechotimes

at14msandagainat25ms(theoverallintensityofthissecondechoisusedforthe

imagesshown).Theacquisitionmatrixwas96×192pixelsforafieldofviewof15×25

mm,with46slicesspacedby0.05mm.Theacquisitiontimewasonaverage12min,with

minordifferencesduetorespiratorygating.

Replication

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 35: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

35

Unlessexplicitlystatedotherwise,replicatedexperimentswereperformedondistinctly

preparedbiomaterialsamples.Wefurtherusedtwo2separate1Lsynthesisbatches.

Thusthesamplescontainvariabilityassociatedwithsamplepreparation,andtosome

extentchemicalsynthesis.Weusedhoweveridenticalreagentstocks,andsocannot

guardagainstlot-to-lotvariationofthechemicalsobtainedcommercially.

Supplementary10furthercomparesrheologicalcharacterizationintwodistinct

geometries.

References

25 Otsuki,M.&Hayakawa,H.Discontinuouschangeofshearmodulusforfrictionaljammedgranularmaterials.PhysRevE95,062902,doi:10.1103/PhysRevE.95.062902(2017).

29 Nicot,F.,Hadda,N.,Guessasma,M.,Fortin,J.&Millet,O.Onthedefinitionofthestresstensoringranularmedia.IntJSolidsStruct50,2508-2517,doi:10.1016/j.ijsolstr.2013.04.001(2013).

37 Beduer,A.etal.Acompressiblescaffoldforminimallyinvasivedeliveryoflargeintactneuronalnetworks.AdvHealthcMater4,301-312,doi:10.1002/adhm.201400250(2015).

39 Menut,P.,Seiffert,S.,Sprakel,J.&Weitz,D.A.Doessizematter?Elasticityofcompressedsuspensionsofcolloidal-andgranular-scalemicrogels.SoftMatter8,156-164,doi:10.1039/c1sm06355c(2012).

45 R:ALanguageandEnvironmentforStatisticalComputing(RFoundationforStatisticalComputing,Vienna,Austria,2015).

46 Bland,J.M.&Altman,D.G.Multiplesignificancetests:theBonferronimethod.BMJ310,170(1995).

47 Zeger,S.L.&Liang,K.inEncyclopediaofBiostatistics(edsP.Armitage&T.Colton)(JohnWiley&Sons,2005).

48 Nisbet,R.,Miner,G.&Yale,K.inHandbookofStatisticalAnalysisandDataMiningApplications(SecondEdition)(edsRobertNisbet,GaryMiner,&KenYale)215-233(AcademicPress,2018).

49 Schindelin,J.etal.Fiji:anopen-sourceplatformforbiological-imageanalysis.NatMethods9,676-682,doi:10.1038/nmeth.2019(2012).

50 Li,C.H.&Tam,P.K.S.Aniterativealgorithmforminimumcrossentropythresholding.PatternRecognitionLetters19,771-776,doi:https://doi.org/10.1016/S0167-8655(98)00057-9(1998).

51 xlib_.jaratftp://ftp.empa.ch/pub/empa/outgoing/BeatsRamsch/lib/(2015).

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint

Page 36: An injectable meta-biomaterialmassaging8,28, the EPI biomaterial behaves as a weak viscoelastic solid amenable to smooth deformation (Fig. 1b). At rest, the self-healing process is

36

52 Münch,B.&Holzer,L.ContradictingGeometricalConceptsinPoreSizeAnalysisAttainedwithElectronMicroscopyandMercuryIntrusion.JournaloftheAmericanCeramicSociety91,4059-4067,doi:10.1111/j.1551-2916.2008.02736.x(2008).

author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.30.926931doi: bioRxiv preprint