32
19.5: An HCI-Healing 60-GHz CMOS Transceiver © 2015 IEEE International Solid-State Circuits Conference 0 of 30 Rui Wu, Seitaro Kawai, Yuuki Seo, Kento Kimura, Shinji Sato, Satoshi Kondo, Tomohiro Ueno, Nurul Fajri, Shoutarou Maki, Noriaki Nagashima, Yasuaki Takeuchi, Tatsuya Yamaguchi, Ahmed Musa, Masaya Miyahara, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan An HCI-Healing 60GHz CMOS Transceiver

An HCI-Healing 60GHz CMOS Transceiver · 2015-03-08 · 19.5: An HCI-Healing 60-GHz CMOS Transceiver © 2015 IEEE International Solid-State Circuits Conference 2 of 30 Freq 57 58

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 0 of 30

Rui Wu, Seitaro Kawai, Yuuki Seo, Kento Kimura,

Shinji Sato, Satoshi Kondo, Tomohiro Ueno, Nurul Fajri,

Shoutarou Maki, Noriaki Nagashima, Yasuaki Takeuchi,

Tatsuya Yamaguchi, Ahmed Musa, Masaya Miyahara,

Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

An HCI-Healing 60GHz CMOS

Transceiver

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 1 of 30

Outline

• Motivation

• Hot-Carrier-Injection Issues,

Prior Arts and Proposed Solution

• Proposed HCI-Healing 60GHz TRX

• Detailed circuit implementation

• Measurement and Comparison

• Conclusion

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 2 of 30

Freq

(GHz)57 58 59 60 61 62 63 64 65 66

1 2 3 4

1.76 GHz

2.16 GHz

60GHz-Band Capability

Channels of IEEE 802.11ad standard

7.04Gbps/ch

in 16QAM

0.1 1 10 100

ISDB-TDVB-T

9-GHz BW@60-GHz band

Frequency (GHz)

Wir

ele

ss S

tan

dard

s

PDC

GSM

UMTS

GPSBlue-tooth UWB

WLAN

WiMAX

LTE

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 3 of 30

Hot-Carrier-Injection Issue in CMOS (1/2)

Large Vds,peak

HCI damage

Small Vds,peak

Low efficiency

Vds

t

VDD

Vds,peak=2VDD

η=50% Class-A

Vds

t

VDD

Vds,peak=1.5VDD

η=12.5% Class-A

CMOS power amplifier

Drain efficiency: η=Pout/PDC

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 4 of 30

Hot-Carrier-Injection Issue in CMOS (2/2)

Lifetime: the time when ∆IDS = 10% @ saturation

HCI damage

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8 1.0 1.2

VG (V)

I D(m

A)

VD=1.2 V

Stress cond.

VD=2.4V

VG=0.8V

1 hour

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 5 of 30

P-Substrate

Impact ionization

n+n+

Generated defects:Trapped charges &

Interface states

Isub

IG

Gate oxide

VG

VDVS ID

High field

Hot-Carrier-Injection Mechanism

Degrade Vt, mn, gm, ID, and lifetime

[*Y. Leblebici et al.,

JSSC 1993]

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 6 of 30

0

2

4

6

10100200 40 20 60

HCI Issue in Advanced CMOS

Process node (nm)

HCI aging ∝ 𝑬𝐥𝐚𝐭𝐞𝐫𝐚𝐥∝ 𝑽𝐝𝐬/𝑳𝐞𝐟𝐟

Nominal VDD**

Vds,peak for

same Vds,peak/Leff

Vo

ltag

e (V

)

HCI limited

Vds,peak=1.35V*

[*D. Stephens et al.,

RFIC 2009]

[**ITRS2013]

HCI issues more severe

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 7 of 30

HCI Issues for 60-GHz Applications

60-GHz power amplifier

Standard

1.0 V

L=65 nm (core Tr.)

fmax=220 GHz

2.4-GHz power amplifier

Thick oxide

2.5 V

L=250 nm (I/O Tr.)

fmax=40 GHz

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 8 of 30

Summary of Prior HCI Solutions@60GHz

Low VDD*

Better lifetime

Degraded output power, linearity and efficiency

[*M. Tanomura et al., ISSCC 2008] [**A. Siligaris et al., JSSC 2010]

Stack Transistor**

VDD=0.7V

Vds

t

VDD=1.2V

P1dB=10dBm

Low VDD or

Stack Tr. VDD=1.2V

P1dB=6dBm

P1dB=5dBm

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 9 of 30

PA1

PAn

Power

combining Output

(combiner,

antenna

array, etc.)

Compensate output power and linearity

Deteriorated efficiency can not be improved

[*J. Chen et al.,

ISSCC 2011]

Power Combining Techniques

Pin,n Pout,n

In

𝐏𝐀𝐄 =𝑷𝐨𝐮𝐭,𝐧 − 𝑷𝐢𝐧,𝐧

𝑰𝐧𝑽𝐃𝐃 𝐏𝐀𝐄 =

𝒏 × (𝑷𝐨𝐮𝐭,𝐧 − 𝑷𝐢𝐧,𝐧)

𝒏 × 𝑰𝐧𝑽𝐃𝐃 Individual: Combined: ≈

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 10 of 30

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8 1.0 1.2

VG (V)

I D(m

A)

VD=1.2 V

Proposed HCI-Healing Technique

Ultimate solution: Physically heal HCI damage

HCI damage

HCI healing How?

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 11 of 30

n+ n+ p+

VB

VG

VS

P-Substrate

VD

Proposed HCI Healing Mechanism (1/2)

Damage mechanism: trapped electrons

[Y. Leblebici et al., JSSC 1993]

Damaged

gate oxide

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 12 of 30

n+ n+ p+

VB

VG

VS

P-Substrate

VD

0V 2.2V

Proposed HCI Healing Mechanism (2/2)

Possible solution: charge ejection

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 13 of 30

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8 1.0 1.2

VG (V)

I D(m

A)

VD=1.2 V

Accelerated Meas.

Fresh

Damaged

Healed

Measured HCI-Healing ID-VG Curves

First HCI healing demonstration

Stress cond.

VD=2.4V

VG=0.8V

1 hour

Heal cond.

VB=2.2V

VG=VD=0V

1 second

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 14 of 30

HCI-Healing Function in Transistor

VH

Deep n-well

VG High voltage

VS

High Z

First HCI healing transistor

[**K. Miyaji et al.,

JJAP 2012]

High Z

n+ n+ p+p+

Deep n-well

n+ n+

High voltage

VB

VB

R

VHVG

VD

VS

Ejection of the trapped

electrons

EBG

EBD

[*T. Endoh et al.,

IEDM 1989]

Floating source* & low drain bias**

assisting ejection (memory cells)

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 15 of 30

VGT

VH

Deep n-well

VG

MIM TL TL

Deep n-well

VG VH

VH

Deep n-well

VG High voltage

VS

High Z

VDD

1.2 V

Equivalent circuit for

60-GHz operation

Equivalent circuit

for HCI healing

VD

VD

VB

HCI-Healing Transistor Module

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 16 of 30

VDD

Mp

VPA

Mn

RFin

RFout

VH

VGT

MIM TL

TL

VG6

S6c

S6

VD6

HCI-Healing Power Amplifier (1/3)

Proposed

HCI healing

block

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 17 of 30

VDD

Mp

VPA

Mn

RFin

RFout

VH

MIM TL

TL

VG6

VD6

VDD

VDD

GND

HCI-Healing Power Amplifier (2/3)

HCI healing

status

VH

Deep n-well

VG High voltage

VS

High Z

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 18 of 30

VDD

Mp

VPA

Mn

RFin

RFout

VH

MIM TL

TL

VG6

VD6

GND

VDD

GND

HCI-Healing Power Amplifier (3/3)

Deep n-well

VG VH

1.2 V

Vod

60GHz

operation

status VD

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 19 of 30

TX

ou

tpu

t

PA

LNA

RX

inp

ut

RF Amp.

RF Amp. Q Mixer

I Mixer

BB Amp.

BB Amp.

Control

signals

I+

I-

Q+

Q-Logic

Gain controlPower mgmt.HCI healing

VH

Ref.

40MHz20GHz PLL

HCI-healing block

60GHz QILO

60GHz QILO

I+

I-

Q+

Q-

RF Amp.

RF Amp.

I Mixer

Q Mixer

HCI-Healing TRX Block Diagram

Direct

Conversion

20GHz PLL+

60GHz QILO

Integrated

HCI-healing

function

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 20 of 30

TX

ou

tR

X in

QIL

O

PLL

Logic

LNA

2 m

m

2 mm

TX RX PLL Logic

Area (mm2) 0.79 1.01 0.27 0.21

RF Amp. & I Mixer

QIL

ORF Amp. & Q MixerHCI PA

RF Amp. & Q Mixer

RF Amp. & I MixerStandard

65 nm CMOS

Die Micrograph

Block Area

(mm2)

TX 0.79

RX 1.01

PLL 0.27

Logic 0.21

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 21 of 30

Measurements

• Transistor TEG

– DC stress lifetime

– AC stress lifetime

• Stand-alone PA TEG

– Pin-Pout with healing

– AC stress lifetime with healing

• TRX Board

– EVM versus Pout with healing

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 22 of 30

65 nm NMOSFET DC Stress Lifetime

1E+00

1E+02

1E+04

1E+06

1E+08

1E+10

0.4 0.5 0.6 0.7 0.8 0.91/VDS (1/V)

100

102

104

106

108

1010

Lif

eti

me

t (

s)

[*E. Takeda et al., EDL 1983]

VGS

VDS

VDS

t

V

Stress condition

VGS = 0.8 V 𝝉 = 𝑲 ∙ 𝒆

𝒃

𝑽𝑫𝑺 *

Lifetime = 63 years

@ VDS=1.2V

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 23 of 30

1

10

100

1E+02 1E+03 1E+04 1E+05

∆I D

Sa

t (%

)

Freq.=100 MHz

Pout=11 dBm

102 103 104 105

Time (s) [*L. Negre et al., JSSC 2012]

Vgs

Vds

Stress condition

t

0.8 V

1.2 V

Vds Vgs

∆𝑰𝐃𝐒𝐚𝐭 = 𝑨 ∙ 𝒕𝒏*

Lifetime = 2 hours

65 nm NMOSFET RF Stress Lifetime

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 24 of 30

Measured Pin-Pout of the PA

0

3

6

9

12

-30 -25 -20 -15 -10

Po

ut(d

Bm

)

Freq.=60 GHzVG6=0.7 V

Pin (dBm)

Fresh

Damaged

Healed

Symbols: P1dB

Accelerated Meas.

DC Stress-AC Meas.

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 25 of 30

1E-2

1E-1

1E+0

1E+1

1E+2

1E+31E+41E+51E+61E+71E+81E+91E+10

10-2

103 104 105 106

10-1

100

101

∆I D

6 (%

)

Fresh Tr.Stress Pout=7dBm

Healed Tr.Stress Pout=7dBm

Lifetime@10%1.2 year

Lifetime@10%81.2 years

102

107 108 109 1010

Time (s)

AC Stress-DC Meas.

Measured Lifetime of the PA

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 26 of 30

Measured TX EVM versus Pout

Fresh 9dBm

Stress cond.

12.5dBm with

VDD=1.5V (40hr)

Damaged 5dBm

Healing cond.

VB=2.2V 1sec.

Healed 8dBm -30

-27

-24

-21

-18

-2 0 2 4 6 8 10

Averaged TX Output Power (dBm)

TX

EV

M (

dB

)

Fresh

Damaged

Healed

IEEE802.11ad MCS12(16QAM) specification

7Gb/s

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 27 of 30

Ref. CMOS

Process

Data rate

(Modulation)

Pout

/each PA

(dBm)

TX

efficiency

Pout/PDC

(%)

HCI

healing

Core

area

(mm2)

Power

Consumption

Tokyo

Tech [1] 65nm

10.56Gb/s (64QAM)

28.16Gb/s (16QAM)

8.5* @TX EVM = -21dB

2.8 NO 3.9 TX: 251mW RX: 220mW

NEC [2] 90nm 2.6Gb/s (QPSK)

6 3.0 w/o PLL

NO 3.4 TX: 133mW RX: 206mW

w/o PLL

Panasonic

[3] 90nm

2.5Gb/s (QPSK)

1.9 @TX EVM = -19.6dB

0.4 NO 5.7 TX: 361mW RX: 260mW

Broadcom

[4] 40nm

4.6Gb/s (16QAM)

-4* @TX EVM = -23dB

0.5 NO 26.3†

TX: 1190mW RX: 960mW 16x16 array

This work 65nm 7Gb/s

(16QAM)

9.3 @TX EVM = -21dB

3.9 YES 2.3 TX: 218mW RX: 188mW

*Estimated from literature †Chip area

60GHz TRX Performance Comparison

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 28 of 30

– 60-GHz CMOS transceiver with HCI damage

healing function by using charge ejection

technique.

– 81-year lifetime without sacrificing the output

power and efficiency

– The transceiver demonstrates an EVM of -27.9dB

and can transmit 7Gb/s in 16QAM within 2.16GHz

bandwidth.

Conclusions

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 29 of 30

Acknowledgement

This work is partially supported by MIC,

SCOPE, MEXT, STARC, STAR, and VDEC in

collaboration with Cadence Design

Systems, Inc., Mentor Graphics, Inc.,

Synopsys Inc., and Agilent Technologies

Japan, Ltd.

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 30 of 30

References

[1] K. Okada, et al., “A 64-QAM 60GHz CMOS transceiver with 4-channel bonding,” IEEE

ISSCC, pp.346-347, 2014.

[2] M. Tanomura, et al., “TX and RX front-ends for 60 GHz band in 90 nm standard bulk

CMOS,” IEEE ISSCC, pp.558-559, 2008.

[3] T. Tsukizawa, et al., “A PVT-variation tolerant fully integrated 60 GHz transceiver for

IEEE 802.11ad,” IEEE VLSI Circuits, pp.123-124, 2014.

[4] M. Boers, et al., “A 16TX/16RX 60GHz 802.11ad chipset with single coaxial interface

and polarization diversity,” IEEE ISSCC, pp.344–345, 2014.

[5] Y. Leblebici, et al., “Modeling and Simulation of Hot-Carrier-Induced Device

Degradation in MOS Circuits,” IEEE JSSC, pp.585-595, Vol.28, No.5, May 1993.

[6] E. Takeda, et al., “An empirical model for device degradation due to hot-carrier

injection,” IEEE Electron Device Letters, Vol.EDL-4, No.4, pp.111-113, Apr. 1983.

[7] L. Negre, et al., “Reliability characterization and modeling solution to predict aging of

40-nm MOSFET DC and RF performances induced by RF stress,” IEEE JSSC, Vol.47,

No.5, pp.1075-1083, May 2012.

19.5: An HCI-Healing 60-GHz CMOS Transceiver

© 2015 IEEE International Solid-State Circuits Conference 31 of 30

References

[8] A. Siligaris, et al., “A 60 GHz power amplifier with 14.5 dBm saturation power and 25%

peak PAE in CMOS 65 nm SOI,” IEEE JSSC, Vol.45, No.7, pp.1286-1294, Jul. 2010.

[9] J. Chen, et al., “A compact 1V 18.6 dBm 60 GHz power amplifier in 65 nm CMOS,”

IEEE ISSCC, pp.432-433, 2011.

[10] K. Miyaji, et al., “Zero additional process, local charge trap, embedded flash memory

with drain-side assisted erase scheme using minimum channel length/width standard

CMOS single transistor cell,” Japanese J. Appl. Phys., Vol.51, pp.04DD02-1–04DD02-

7, Apr. 2012.

[11] D. Stephens, et al., “RF reliability of short channel NMOS devices,” IEEE RFIC,

pp.343-346, 2009.

[12] T. Endoh, et al., “New design technology for EEPROM memory cells with 10 million

write/erase cycling endurance,” IEEE IEDM, pp.599-602, 1989.